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Abstract: The electrostatically embedded many-body
method has been very successful for calculating cohesive
energies and relative conformational energies of clusters,
and here we extend it to calculate bond breaking energies
for metal-ligand bonds in inorganic coordination chemistry.
We find that, on average, the electrostatically embedded
pairwise additive method is able to predict bond energies
yielded by conventional full-system calculations done at
the same level of theory to within 2.5 kcal/mol and that
the electrostatically embedded three-body method con-
sistently yields energies within 1.0 kcal/mol of the full-
system calculations.

An important theme of modern quantum chemistry is enabling
reliable calculations on large and complex systems. A general
strategy for achieving this is fragmentation, and a variety of
fragmentation schemes have been explored.1-12 One especially
promising approach is the electrostatically embedded many-
body5,13-18 (EE-MB) expansion. In work reported so far, we
have obtained accurate results at low cost for noncovalently
bonded clusters. For example, the electrostatically embedded
three-body (EE-3B) method based on CCSD(T) calculations of
dimers and trimers was able to reproduce full water hexamer
calculations with a mean unsigned deviation of only 0.12 kcal/
mol (0.3%), whereas full CCSD calculations using the same
basis set yielded a mean unsigned relative deviation of 0.43
kcal/mol (0.9%),14 and to reproduce full calculations on (H2SO4)-
(HSO4

-)(NH4
+)(H2O)6 with a mean unsigned deviation of only

0.15 kcal/mol (0.2%).17 In the present letter, we apply these
methods to bond breaking energies of complexes bound by
coordinate covalent19 bonds.

The EE-MB method is described elsewhere,5 and so it is
reviewed only briefly here. The fragments into which the system
is partitioned are called monomers. We will test two variants:
the electrostatically embedded pairwise additive (EE-PA)
method and the EE-3B method. In EE-PA, the energy of systems
composed of monomers m, n, p, etc. is approximated as

where

and the EE-3B energy is

where

where Em, Emn, and Emnp are the energies of a monomer, dimer,
and trimer, respectively, each embedded in a field of point
charges representing the other monomers, and Emnp

PA is the EE-
PA approximation to the energy of trimer mnp. The individual
embedded oligomer energies (where oligomer is a general term
that can be replaced by monomer, dimer, or trimer) can be
computed using any desired level of electronic structure theory.
Most levels of electronic structure theory require that any system
on which they are used have an integer number of electrons;
therefore, charge transfer between oligomers of a given type
usually cannot occur within most practical applications of the
EE-MB approximation (including the present study).

All calculations were carried out with the M05-2X density
functional20 and the B2 basis set,21 which is a polarized valence
triple-� basis set optimized for use with Zn-containing com-
plexes. The innermost 10 electrons (small core) of Zn are
replaced by the (MEFIT,R) relativistic effective core potential.22,23

The M05-2X density functional was chosen because of previous
tests21,24 that showed it to yield high accuracy results for Zn-
containing complexes and biological structures.* Correponding author e-mail: lever046@umn.edu.
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All conventional calculations were performed using Gaussian
09.25 All EE-MB calculations were performed using MBPAC
2009-2,26 which is a program that requires the user to define
which atoms in the overall system belong to each monomer
and then calls MN-GFM,27 a locally modified version of
Gaussian 0328 to perform the necessary monomer, dimer, and
trimer calculations.

No attempt was made to correct for basis set superposition
error (BSSE)29,30 in any of the present calculations for the
following reasons: (1) The goal of this work is not to obtain
high-level benchmark calculations of the binding energies of
coordinate covelent clusters; rather, the goal of this work is to
show that the EE-MB method can yield metal-ligand binding
energies close to those of conventional calculations performed
at a given level of theory. Therefore, attempting to correct for
BSSE in the present study would be somewhat superfluous
because it is not necessary in order to achieve our goal. (2)
The counterpoise correction (CP)29 for BSSE is only clearly
defined for dimer interactions. Rigorous extensions of the CP
correction for BSSE in trimer interactions and beyond have been
proposed,31 but these methods are computationally costly. Rather
than investing computer time in applying a many-body extension
of the CP correction, one can invest that computer time (or less)
into performing a non-BSSE-corrected calculation with a basis
set large enough to preclude the need for such corrections. Often,
a triple-� basis set with a judicious choice of polarization and
diffuse functions will suffice.32

The systems that we consider are (1) Zn(NH3)5
2+ (shown in

Figure 1), (2) Zn(H2O)5
2+ (Figure 2), and (3) Zn(H2O)4(OH)+

(Figure 3). The quantities we calculate are bond breaking
energies defined as the energy to remove one of the ligands
from the complex, with the internal coordinates of both
fragments frozen; thus, the quantity calculated here is not a
conventional bond dissociation energy but rather a relative
energy along a cut through the potential energy surface with

fixed fragment geometries. This provides a direct test of the
ability of EE-MB to predict relative electronic energies along
bond breaking coordinates, with no complications from compet-
ing effects of relaxation. The energy of breaking the bond is
the sum of the energies of the two products (separated frozen
fragments) minus the energy of the reactant. When calculating
the energies of a product, the embedding charges of the other
(separated) product are not present because the other product
is infinitely separated.

The geometries of the three complexes were optimized with
M05-2X/B2/(MEFIT,R). Each of the coordination complexes
has the structure of an irregular trigonal bipyramid, with axial
ligands A and B and equatorial ligands C, D, and E. If rX denotes
the distance from the nonhydrogenic atom of a ligand to Zn,
we label the atoms so that rA e rB and rC e rD e rE.
Furthermore, if rB ) rA, then B is also called A′; if rD ) rC,
then D is also called C′, and if rE ) rD, then E is also called D′.

The partial atomic charges on the fragments are calculated
in every case for the isolated fragment at the geometry it has in
the entire system. For example, if we are calculating the energy
of ZnABCDE, and if one of the fragments is ZnCD, we calculate
the partial atomic charges of ZnCD by removing A, B, and E
from the system, and if another fragment is E, we calculate its
partial charges by removing Zn, A, B, C, and D. Thus, the
calculations used to obtain charges are the same as the monomer
calculations of eq 2 except that, for obtaining charges, the
monomers are not embedded. We do not want the results to
depend strongly on the method used to calculate charges, and
therefore we used three different methods to calculate charges
in order to test the sensitivity. The methods used are Hirshfeld
population analysis (HPA),33 natural population analysis
(NPA),34 and Merz-Kollman (MK) electrostatic fitting.35

For each of the three complexes, we considered two dis-
sociation processes:

and

where n is 2 (Figures 1 and 2) or 1 (Figure 3). Notice that
process R1 breaks an equatorial bond, and process R2 breaks
an axial bond.

In preliminary work, we found that taking an isolated Zn2+

or a metal ion with a single ligand as a fragment did not yield
accurate results; this is understandable because the Hirshfeld

Figure 1. Structure of Zn(NH3)5
2+.

Figure 2. Structure of Zn(H2O)5
2+.

Figure 3. Structure of Zn(H2O)4(OH)+.

ZnABCDEn+ f ZnABCDn+ + E (R1)

ZnABCDEn+ f ZnBCDEn+ + A (R2)
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partial atom charges of Zn in Zn2+, Zn(H2O)2+, and Zn(NH3)2+,
at typical geometries in the latter two cases, are 2, 1.6, and 1.4,
respectively, whereas in the larger fragments, the Hirshfeld
partial atomic charge on Zn is much lower, in the range 0.5-1.2.
Thus, we only consider fragmentation schemes where one of
the fragments is Zn2+ with two ligands. In particular, because
requatorial < raxial, we take one fragment as ZnCD2+ for Figures
1 and 2 and ZnCD+ for Figure 3. Note that A and B are NH3

in Figure 1, they are H2O in Figure 2, and A is OH- and B is
H2O in Figure 3. We do not break the bond within the fragment
because that gives a product where Zn has only one ligand in
the fragment. In all cases, one fragment is Zn with the two
closest ligands (which are always equatorial ligands), and the
other fragments are individual ligands. We then consider
breaking the bond between Zn and the farthest equatorial ligand
or the bond between Zn and the nearest axial ligand.

Our goal is to test how well the EE-MB approximation can
reproduce a result on the whole complex. Therefore we first
performed M05-2X/B2/(MEFIT,R) calculations on bond break-
ing without using the many-body approximation; the results are
in Table 1. The table shows that the bond breaking energies
vary by more than 20 kcal/mol for the various test cases. If we
can predict the bond energies within 1 kcal/mol, we will have
captured the variation within 5%. Table 2 shows the results.
EE-PA has a mean unsigned error of about 2 kcal/mol, whereas
EE-3B has a mean unsigned error of 0.4-0.5 kcal/mol, with a
maximum error of 0.9 kcal/mol. So we judge the EE-3B theory
to be a success for near-equilibrium structures.

In order to show that the EE-PA and EE-3B approximations
also yield consistent performance on higher-energy, nonequi-
librium structures, we selected several points along a slice of
the potential energy surface (PES) of the [Zn(NH3)5]2+ system
shown in Figure 1. We adjusted the distance between Zn and
the nitrogen atom of ammonia molecule D′, holding the
remaining [Zn(NH3)4]2+ complex (composed of Zn2+, A, B,
C, and D) and the D′ ammonia molecule rigid in the geometries
that they had in the [Zn(NH3)5]2+ complex. At each Zn-N
distance (R(Zn-N)), we calculated the conventional, EE-PA,
and EE-3B M05-2X/B2/(MEFIT,R) energies of the system. The

MK charges of the isolated rigid monomers ZnCD2+, A, B,
and D′ were used as the embedding charges in the EE-MB
calculations. Table 3 shows the conventional binding energy
and the signed errors in the EE-PA and EE-3B binding energies
(relative to the conventional energies) at each R(Zn-N). Figure
4 shows the actual binding energies calculated at each point on
the PES slice using the conventional, EE-PA, and EE-3B
methods. We again find that EE-PA has a mean unsigned error
of about 2 kcal/mol and that EE-3B has a mean unsigned error
of less than 0.4 kcal/mol. Therefore, we conclude that the EE-
3B method is a success for a variety of metal-ligand complex
geometries.

The present study shows that the EE-3B method consistently
yields bond energies within 1 kcal/mol of those obtained from
the full calculation at a given level of electronic structure theory.
This is encouraging because using the EE-3B method instead
of a conventional calculation is advantageous for the following
reasons: (a) An EE-MB calculation at any level of electronic
structure theory can easily be made to run on several processors

Table 1. Target Bond Energies (kcal/mol)

process complex broken bond bond energy

1 1 Zn-A 34.90
2 1 Zn-D′ 45.97
1 2 Zn-A 40.06
2 2 Zn-E 45.68
1 3 Zn-A 25.22
2 3 Zn-E 33.23

Table 2. Unsigned Errors in Bond Energies (kcal/mol)

EE-PA EE-3B

process HPA NPA MK HPA NPA MK

1 0.10 0.59 0.75 0.78 0.14 0.20
2 2.06 3.06 2.60 0.79 0.15 0.22
3 2.21 2.27 2.04 0.65 0.91 0.81
4 3.10 2.35 2.34 0.65 0.91 0.81
5 1.80 2.24 1.98 0.09 0.44 0.26
6 2.95 2.63 2.58 0.08 0.45 0.27
meana 2.04 2.19 2.05 0.51 0.50 0.42

a Mean unsigned error in all six cases.

Table 3. Conventional Binding Energies (BE) and Errors in
EE-PA and EE-3B Binding Energies As a Function of
R(Zn-N) (All Values in kcal/mol)

R(Zn-N) (Å)
conventional
BE (kcal/mol)

EE-PA error
(kcal/mol)

EE-3B error
(kcal/mol)

1.721 -21.26 -0.10 -0.75
1.821 -34.51 -0.61 -0.72
1.921 -41.73 -1.23 -0.61
2.021 -45.08 -1.90 -0.43
2.121a -45.97 -2.60 -0.22
2.221 -45.34 -3.27 -0.01
2.421 -41.68 -4.43 0.27
2.721 -34.32 -5.37 0.20
3.121 -25.52 -5.28 -0.43
4.121 -13.63 -2.61 -0.47
5.121 -8.66 -0.58 -0.09
7.121 -4.63 0.02 -0.01
MSEb -2.33 -0.27
MUEb 2.33 0.35
RMSEb 2.98 0.43

a This is the equilibrium geometry of the complex. b MSE )
mean signed error, MUE ) mean unsigned error, RMSE ) root
mean squared error.

Figure 4. Zn(NH3)5
2+ binding energy (in kcal/mol) as a

function of the distance between zinc and the nitrogen atom
of the ammonia molecule D′ (R(Zn-N), in Å).
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at once in order to save wall clock time. (b) A series of small
calculations is less likely to exceed the memory or disk capacity
of a computer system than is a single large calculation. (c) For
systems with a large number of fragments (e.g., a coordinate
complex in explicit solvent), an EE-3B calculation scales more
favorably with the size of a chemical system than do conven-
tional calculations at a high level of electronic structure theory
(i.e., hybrid density functional theory or correlated wave function
theory).

Previous studies (cited earlier) have shown that the EE-3B
method is consistently able to predict binding energies of
noncovalently bonded systems to within 1 kcal/mol (and often
much less) of a conventional full-system calculation performed
at the same level of theory. The complexes examined in those
studies were held together by hydrogen bonds, intermonomer
dispersion-like interactions, and electrostatic interactions be-
tween oppositely charged ions. The present study has examined
systems held together by a stronger type of interaction: the
coordinate covalent bond. We found that the EE-3B method
consistently yields unsigned errors of less than 1 kcal/mol
(relative to conventional calculations performed at the same level
of theory) in the bond breaking energies of six bond breaking
processes in three different zinc-ligand complexes when the zinc
ion and the two ligands closest to it are treated as a single
monomer. Consistent with previous studies, the errors in the
EE-3B method do not depend strongly on the charge analysis
method used to obtain the embedding charges; the EE-3B
method performs well regardless of which set of embedding
charges is used. We conclude that the EE-3B method is a
convenient and accurate way to study relative electronic
energies, i.e., potential energy surfaces, along bond breaking
coordinates in coordinate covalent complexes.
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Abstract: A new set of time-dependent deterministic sampling (TDDS) measures, based on
local Shannon entropy, are presented to adaptively gauge the importance of various regions
on a potential energy surface and to be employed in “on-the-fly” quantum dynamics. Shannon
sampling and Shannon entropy are known constructs that have been used to analyze the
information content in functions: for example, time-series data and discrete data sets such as
amino acid sequences in a protein structure. Here the Shannon entropy, when combined with
dynamical parameters such as the instantaneous potential, gradient and wavepacket density
provides a reliable probe on active regions of a quantum mechanical potential surface. Numerical
benchmarks indicate that the methods proposed are highly effective in locating regions of the
potential that are both classically allowed as well as those that are classically forbidden, such
as regions beyond the classical turning points which may be sampled during a quantum
mechanical tunneling process. The approaches described here are utilized to improve
computational efficiency in two different settings: (a) It is shown that the number of potential
energy calculations required to be performed during on-the-fly quantum dynamics is fewer when
the Shannon entropy based sampling functions are used. (b) Shannon entropy based TDDS
functions are utilized to define a new family of grid-based electronic structure basis functions
that reduce the computational complexity while maintaining accuracy. The role of both results
for on-the-fly quantum/classical dynamics of electrons and nuclei is discussed.

I. Introduction

The time-dependent Schrödinger equation is the starting point
for many computational methodologies employed in gas-
phase1 and condensed-phase chemical dynamics.2 When uti-
lized, the Born-Oppenheimer approximation allows for sepa-
ration of the nuclear and electronic degrees of freedom in a
system, allowing for varying treatments of the nuclei, be it
classical,3-7 quantum-mechanical,1,8-34 or semiclassical.35-42

In all cases, the nuclei are either propagated along para-
metrically fitted electronic surfaces known a priori, or along

highly accurate (and sometimes computationally expensive)
electronic surfaces that require no prior knowledge of the
system. Due to the large number of quantum mechanical
energy and gradient calculations required by the latter
approach, there has been a strong motivation toward “on-
the-fly” dynamics schemes to overcome this computational
barrier and potentially allow for larger, more complex
systems to be studied.3-7,35,41,43-46 This growing subfield
of ab initio molecular dynamics (AIMD) approximates the
electronic structure alongside the nuclei to simulate molecular
dynamics. When AIMD techniques are embedded in a full
quantum or semiclassical scheme, there is the potential for
large systems to be accurately treated with the complete
machinery of quantum dynamics. Several efforts have been
made toward this goal.41,46-49
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† Present address: Department of Chemistry, Princeton University.
‡ Present address: Department of Chemistry, Northwestern
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Recently,46,50-56 we have introduced a methodology that
accurately computes quantum dynamical effects in a sub-
system while simultaneously handling the motion of the
surrounding atoms and changes in electronic structure
calculation. The approach is quantum-classical40,57-63 and
involves the synergy between a time-dependent quantum
wave packet description and ab initio molecule dynamics.
As a result, the approach is called quantum-wave packet ab
initio molecular dynamics (QWAIMD). Since the quantum
dynamics is performed on Cartesian grids, the predominant
bottleneck is the computation of the grid-based, time-
dependent electronic structure potential and gradients gener-
ated by the motion of the classical nuclei. This limitation is
partially surmounted through the following methodological
improvements:

(a) A time-dependent deterministic sampling (TDDS)
technique was introduced in refs 51 and 52, which
when combined with numerical methods such as an
efficient wavelet compression scheme and low-pass
filtered Lagrange interpolation,52 provides computa-
tional gains of many orders of magnitude (Figure 1).

(b) Multiple diabatic reduced single particle electronic
density matrices are propagated simultaneously with
the quantum wavepacket in ref 54, and the associated
diabatic states are used to construct an adiabatic surface
at every instant in time using a nonorthogonal CI
formalism. The diabatic approximation allows reuse of
the two-electron integrals during the on-the-fly potential
energy surface computation stage and leads to substantial
reduction in computational costs (Figure 1).

QM/MM generalizations to QWAIMD have also been
completed.53 The approach is being generalized to treat
extended systems64 for condensed-phase simulations; a
biased QWAIMD formalism to sample rare events is also
currently being developed. We have utilized QWAIMD to
compute vibrational properties of hydrogen-bonded clusters
inclusive of quantum nuclear effects52 and have also adopted
the method to study hydrogen tunneling in enzyme active
sites.55,65 The quantum dynamics scheme in QWAIMD has
also been used to develop a technique known as multistage

ab initio wavepacket dynamics (MSAIWD) to treat open-
electronic systems.66,67

In this publication, we probe the relevant regions of a
potential surface, using a new TDDS function based on the
notion of Shannon entropy.68-72 This paper is organized as
follows: An overview of QWAIMD is presented in section
II along with a discussion of time-dependent deterministic
sampling and its current efficacy. The derivation and physical
rationale for the sampling functions that utilize Shannon
entropy are given in section III. The numerical benchmarks
are arranged in a multipronged fashion. In section IV.A, we
discuss the use of the Shannon entropy based TDDS
functions in adaptive determination of critical regions of the
potential surface during dynamics. Accuracy in computing
vibrational properties is also discussed. In section IV.B, the
approach is utilized to construct an accurate “grid-based”
electronic basis set. This implementation of Shannon-entropy
based TDDS leads to a sizable reduction in the number of
electronic basis functions that need to be utilized in calcula-
tions involving hydrogen-bonded systems. Consequently, the
approach is tested for accuracy and efficiency for three
different kinds of hydrogen-bonded clusters. This same idea
is further exploited in ref 54 to develop an implicitly time-
dependent, grid-based electronic structure basis to tremen-
dously improve the efficiency and accuracy of QWAIMD.
Concluding remarks are given in section V.

II. Main Features of Quantum Wavepacket
Ab Initio Molecular Dynamics (QWAIMD)

As noted above, QWAIMD is based on a synergy between
quantum wavepacket dynamics and ab initio molecular
dynamics.46,50-55,64 The partitioning scheme divides the system
into three subsystems: subsystem A may include particles that
display critical quantum dynamical effects; subsystems B and
C contain the surrounding nuclei and electrons, respectively,
and are treated under the AIMD formalism.46,50,51,73,74 Sub-
system A is propagated according to the Trotter-factorized
quantum mechanical time propagator:10,75-77

Figure 1. (a) Computational expense for QWAIMD with and without time-dependent deterministic sampling (TDDS). Note that
in all cases the vertical axis is the logarithm of CPU time. TDDS provides an enormous reduction in computational time for two
different types of embedding schemes (QM/MM and QM), with little loss in accuracy. (Reproduced with permission from ref 53.
Copyright 2008, American Institute of Physics). (b) Further reduction in computation time is facilitated through the introduction
of a propagation scheme that involves multiple diabatic states.54 Again, accuracy in computing potential surfaces is preserved,
while reducing the computational overhead substantially. (Reproduced with permission from ref 54. Copyright 2010. American
Institute of Physics).
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and the free-propagator, exp{-(ıKt)/(p)}, is represented using
“distributed approximating functionals” (DAF):46,50,78-81

where {σ(∆t)}2 ) σ(0)2 + ı∆tp/MQM and MQM is the mass
of the quantum mechanical particle. Equation 2 utilizes the
well-known analytical expression for the free-propagation
of a Gaussian function with spread σ(0), 82 as well as the
fact that Hermite functions, {Hn(x)}, are generated from
Gaussian functions.50 The result is a banded-Toeplitz matrix
representation for the quantum propagator.78-81 [The struc-
ture of a Toeplitz matrix is such that the (i, j)th element
depends only on |i - j|, allowing for an efficient computa-
tional scheme that only requires the first (banded) row of
the matrix to be stored. This is exploited in the “DAF” free-
propagator67 to reduce computational cost.] It is routine to
carry out QWAIMD using Hermite functions of the order
of MDAF ) 20-30. When using a larger number of Hermite
functions, numerical stability becomes an issue, but this is
surmounted through a minor modification of the recursion
relation as outlined in ref 46.

II.A. Time-Dependent Deterministic Sampling (TDDS)
Based QWAIMD. The evolution of the classical nuclei
involves the wavepacket-averaged Hellmann-Feynman forces
obtained from electronic structure calculations on the discrete
wavepacket grid. To minimize the number of such calcula-
tions while maintaining accuracy, a time-dependent deter-
ministic sampling (TDDS) function was introduced in refs
51 and 52. The mathematical form of the TDDS function is
defined to be a function of the quantum nuclear degrees of
freedon, RQM, as follows: The TDDS function is chosen to
be directly proportional to the wavepacket probability
density, F(RQM), and gradient of the potential, V′(RQM), while
being inversely proportional to the potential, V(RQM), as noted
in eq 3. Large values of the TDDS function represent areas
where sampling should occur. The construction of TDDS
has physical justifications that ensure that both classical and
quantum (tunneling) regions of the dynamics are equally
sampled. This gives a sampling function of the form:

where F̃, Ṽ′, and Ṽ are shifted, normalized, and maintained
positive semidefinite51,52 according to:

and similarly for F̃(RQM) and Ṽ′(RQM). The quantities Vmax

and Vmin are the maximum and minimum values for the
potential, respectively, and the overall sampling function,
ω0(RQM), is L1-normalized according to

In ref,51 a detailed algorithm for implementation of
TDDS is provided. In addition, the stability of this
algorithm is also analyzed. The choice of parameters, I�

) 1, IV′ ) 3, and IV ) 1, retains significant distribution in
both the classically allowed (minimum energy regions)
and classically forbidden (classical turning point) regions
of the potential and leads to a large reduction in
computational cost, with little perceivable loss in accuracy.
The rationale behind the choice of these parameters can
be qualitatively noted from the following arguments with
details in ref 51. The functions F̃, Ṽ′, and Ṽ are shifted
and normalized51 (see eq 4), and hence, (a) minimum
energy regions of the potential surface are characterized
by low potential energy, low gradient, and relatively high
wavepacket distribution, while (b) quantum tunneling (or
classical turning point) regions of the potential are
approximately characterized by moderately large values
of the potential, high gradients, and smaller wavepacket
values. When one enforces the condition that the TDDS
function must be approximately equal in these two
situations for minimal bias between the classically allowed
and classically forbidden regions, it is found that I� ) 1,
IV′ ) 3, and IV ) 1 provides the lowest order solution
satisfying these considerations.51 (Higher order solutions
further increase the sampling in the classically forbidden
regions.) In addition to these formal considerations, the
parameters have been numerically tested in ref 51 for a
set of 70 analytical and numerical potentials, and the
results are found to be consistent with the above physical
arguments. In ref 52, the TDDS implementation of
QWAIMD has been benchmarked for accuracy in comput-
ing vibrational properties in hydrogen-bonded clusters.
Specifically, the ClHCl- system was treated since it
provides significant challenges for accurate modeling of
electron-nuclear coupling.52,83-85 In ref 52, the TDDS
implementation of QWAIMD was found to accurately
reproduce the experimental spectrum at limited compu-
tational cost. The analysis of trajectories is facilitated
through the introduction of a novel velocity-flux correla-
tion function.52

The computational implementation of TDDS52 is achieved
as follows: For quantum dyanmics beyond one dimension,
the TDDS function on the full grid is evaluated at every
instant in time to determine the grid points where the
potential and gradients are to be obtained for the next time
step. For this purpose, the TDDS function is written as a
linear combination of Haar wavelets:52

�A(x;t) ) exp{- ıHt
p }�A(x;t ) 0)

) [exp{- ıVt
2p} exp{- ıKt

p } exp{- ıVt
2p} + O(t3)]�A(x;t ) 0),

(1)

〈x|exp{- ıK∆t
p }|x′〉 ≡ K̃(x, x′;∆t) ≡ K̃(|x - x′|, ∆t)

) (2π)-1/2

σ(0)
[e-[(x - x′)2]/[2σ(∆t)2]] ×

∑
n)0

MDAF/2
(-1/4)n

n! ( σ(0)
σ(∆t))2n+1

H2n( x - x′
√2σ(∆t))

(2)

ω0(RQM) ∝
[F̃(RQM) + 1/I�] × [Ṽ'(RQM) + 1/IV′]

Ṽ(RQM) + 1/IV

(3)

Ṽ(RQM) ∝
V(RQM) - Vmin

Vmax - Vmin
(4)

|ω0(RQM)|1 ) ∫ |ω0(RQM)| dRQM ) 1 (5)
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where the Haar scaling function, H(x) is a square function
equal to 1 for 0 e x e 1 and zero otherwise. The quantity
NGEN is the number of wavelet generations, and the
underbrace below the summations is meant to indicate that
there are NDim summations, [j1, j2, ..., jNDim]. ci,{j} implies
that the coefficients depend on i and the entire set of j
indices. The Haar wavelets, {H(aix - jkNQ/ai)}, comprise
a hierarchy of translated and dilated forms of H(x). Only
the Haar scaling function is used since the Haar wavelet
function is the orthogonal complement of the Haar scaling
function and is not positive semidefinite, which is one of
the requirements on ω. The quantity xk, in eq 6, is the kth
component of the NDim dimensional vector, and a is chosen
to be 2 or 3. That is, we employ 2- and 3-scale functions
in our scheme. Once the subset of grid points for “on-
the-fly” potential energy determination is computed using
the TDDS function, the value of the potential at the
remaining points is obtained through Hermite curve
interpolation.86 The forces on classical atoms are subse-
quently determined through a low-pass filtered Lagrange
interpolation technique introduced in ref 52. Time-
dependent deterministic sampling has played a pivotal role
in converting QWAIMD into an efficient computational
tool through reduction of computational costs by about 3
to 4 orders of magnitude.52 (See Figure 1.)

It has also been numerically shown51 that the TDDS
function is inversely proportional to the Wentzel-Krames-
Brillouin (WKB) length scale:

Thus, the TDDS function provides a larger sample of data
points in the rapidly varying limit of the potential. Further-
more, it has been numerically shown51,52 that the TDDS
function is directly proportional to the Bohmian quantum
potential.87-99

In addition, as noted in the Introduction, QWAIMD has
been adopted to study hydrogen tunneling in enzyme active
sites,55,65 and QM/MM generalizations to the TDDS imple-
mentation of QWAIMD have also been completed.53 In ref
100, the quantum dynamics tools from QWAIMD were used
to compute the qualitative accuracy involved in classical ab
initio molecular dynamics calculations of vibrational spectra
in hydrogen bonded systems.

II.B. Further Computational Enhancements through
Diabatic Extensions to QWAIMD. To further enhance the
computational scaling of QWAIMD, in ref 54, we introduced
a diabatic generalization. Essentially, multiple single particle
electronic density matrices are simultaneously propagated
through an extended Lagrangian scheme. Following this, the
Slater determinantal wave functions associated with the
density matrices are used to construct a nonorthogonal CI
problem, which is computed on-the-fly to obtain the instan-
taneous adiabatic states. Computational efficiency arises

through the diabatic approximation for the multiple density
matrices: this essentially necessitates a limited dependence
of the quantum nuclear degrees of freedom on the individual
electronic density matrix states. Once this condition is
enforced, it is found that two-electron integrals can be reused
over the entire grid, which reduces the computational
complexity in determining the potential surface enormously.

As will be discussed in the next few sections, the proposed
methodological extensions using Shannon’s entropy condi-
tion have multiple effects on the QWAIMD algorithm:

• An improved TDDS function is first derived and tested
in section IV.A. This has direct impact on the TDDS
implementation of QWAIMD.

• The TDDS functions obtained from Shannon’s entropy
measure are used to locate significant regions on a potential
energy surface. Grid-based electronic structure basis func-
tions are then placed on these important regions, as
discussed in section IV.B. This feature leads to two further
improvements in the QWAIMD methodology:
- The introduction of the grid based electronic structure

basis functions strengthens and influences the diabatic
approximation discussed above and, in further detail,
in ref 54.

- The grid-based electronic structure basis functions also
reduce the computational cost of each electronic
structure calculation, and this in turn has an effect on
the TDDS implementation of QWAIMD.

III. Time-Dependent Deterministic Sampling
through Shannon Entropy Measure

As noted above, the physical justification for the form of
TDDS is based on specific dynamical parameters (wave-
packet probability density, potential, gradients), and in this
section, we introduce additional sampling functions utilizing
the concept of Shannon entropy. With reference to the
TDDS-based implementation of QWAIMD, one particularly
troublesome feature of TDDS is that sampling points can
sometimes be placed in physically uninteresting regions of
the potential during the dynamics simulation, in particular
when both the potential energy and the gradient of the
potential are high. These regions represent areas that are
classically forbidden and also fail to demonstrate quantum
behavior. While the TDDS function still performs remarkably
well in improving efficiency with a negligible loss in
accuracy,51,52the question we address in section IV.A is
whether further improvements can be achieved. As will be
shown in section IV.A, the new sampling functions intro-
duced in this section provide a compressed set of sampling
points and hence yield a more efficient procedure for “on-
the-fly” dynamics. Furthermore, these functions also allow
us to determine the positions of grid-based electronic bases
in section IV.B for enhanced accuracy through diabatic
extensions to QWAIMD.54

p
p

≡ l-1 . ( 1
E - V(x))∂V

∂x
(7)
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The general form of the total Shannon entropy of a system
is given by68

where F is the probability density of the system, k is a
proportionality constant, and we have defined the quantity
in the integrand on the left as S[F(x)] = -F log(F). Later in
this publication, we refer to S[F(x)] as the “local Shannon
entropy”. This is because, while the full sum in eq 8 is the
Shannon entropy,68 S[F(x)] implicitly depends on the local
variable x. Shannon entropy has been used as a general
mathematical tool to describe the information content in a
system, provided there exists some probability distribution
associated for the possible states of the system. A typical
example of how this generic measure can apply to a physical
situation is when Shannon entropy reduces to the notion of
thermodynamic entropy for an ensemble of classical par-
ticles.68 Given an ensemble of possible discrete microstates
for a system, summation over all of these possible microstates
gives the familiar thermodynamic entropy for the system,
where k is now Boltzmann’s constant. Another example deals
with the use of Shannon entropy in DNA and protein structure
determination, and the associated definition of complexity in
biological systems.70,71 In this case, a certain site in a DNA
sequence, or an amino acid sequence, is defined to have an
entropy that reflects the probability of finding different DNA
bases (or individual amino acids for proteins) at that particular
site. Each site, thus, has an entropy that contributes to the
complexity of the organism. Entropy here is, of course, an
information entropy and not a thermodynamic entropy since it
pertains to the propensity of the appearance of amino acid
residues (or DNA bases) at a chosen point in the sequence. In
quantum mechanics, Shannon entropy is related to von Neu-
mann entropy, when eq 8 is rewritten as

where Γ ≡ |ψ〉〈ψ| is now the density matrix associated with
the system. Furthermore, in a fashion analogous to that in eq
8, we can define here a “local von Neumann entropy, ” SνN[Γ].
Along similar lines, semiclassical forms of entropy have been
defined101 where coherent states102 have been employed for the
probability function, F, in eq 8.

Influenced by this early work, here we utilize the local
value of Shannon information entropy defined in eq 8: S[F(x)]
≡ -Flog(F), where F is chosen as the time-dependent
wavepacket density in our QWAIMD simulations, to con-
struct suitable sampling functions of the form

where ω0 is the original TDDS function and ω1 is a
composite function that utilizes the Shannon entropy as well

as the potential energy. In all cases, S̃ and Ṽ are shifted and
normalized as per eq 4, and the sampling functions are
scaled such that the respective values are bounded by unity
(see eq 5). In addition, while the parameters I� ) 1, IV′ )
3, and IV ) 1 define ω0, those for ω1 and ω2 are chosen
as IS ) IV ) 1 in this study. This allows consistent
treatment of the wavepacket and the local Shannon entropy
in the sampling functions. It must also be noted that the
quantum mechanical Shannon entropy defined here for use
in eqs 11 and 12 is a special form of the semi-classical
entropy defined in ref 101. In that case, coherent states102

were used to define the probability function instead of
the time-dependent wavepacket density that is used here.

Before we proceed into a numerical analysis of these
sampling functions, it is useful to inspect limiting cases for
both S[F(RQM)] and S̃[F(RQM)]. An illustration of the behavior
of S̃ and S as a function of F is provided in Figure 2. When
the probability associated with the wavepacket is high, there
is information indicating the presence of the “particle” in
the given region of configurational space and, hence, the
entropy at that point, S[F(x)] ≡ -Flog(F) ≈ 0. In a similar
fashion, we note that when the probability is low there is
information indicating the absence of the particle in the given
region of configurational space, and consequently the local
entropy, S[F(x)], and its scaled form, S̃[F(x)], are both
expected to be small. Intermediate values of the probability
function yield greater uncertainty in regard to the presence
of the particle. This uncertainty may be qualitatively related
to Shannon entropy, and as a result, the local entropy, S[F(x)],
and its scaled form, S̃[F(x)] are both higher for intermediate
values of F.

This naturally creates the situation where a sampling
function constructed from S̃[F(x)] alone, that is eq 12, has
the effect of producing a higher distribution of sampling
points in regions where the wavepacket amplitude is
intermediate. While this may be desirable to represent
tunneling regions, the regions that are classically populated
may have larger F values that are not expected to be
populated well enough when S̃[F(x)] alone is used in a
sampling function. Consequently, eq 11 has been introduced
as a hybrid sampling function that includes the potential to
also represent the classically allowed regions. Indeed, as we
will see in a later section, it is the sampling function in eq
11 that shows the best performance of the three considered
above.

In the next section, we gauge the utility of these sampling
functions in probing important regions of the potential

-k∫-∞

∞
dx Flog(F) ≡ -k∫-∞

∞
dx S[F(x)] (8)

-kTr[Γ log(Γ)] ) kTr[SνN[Γ]] (9)

ω0(RQM) )
(F̃(RQM) + 1/I�)(Ṽ′(RQM) + 1/IV′)

(Ṽ(RQM) + 1/IV)
(10)

ω1(RQM) )
(S̃[F(RQM)] + 1/IS)

(Ṽ(RQM) + 1/IV)
(11)

ω2(RQM) ) (S̃[F(RQM)] + 1/IS) (12)

Figure 2. Behavior of S̃ and S as a function of F.
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surface, both for quantum dynamics and electronic structure
as stated above.

IV. Numerical Tests on Accuracy and
Efficiency of the Shannon Information
Entropy-Based Sampling Techniques

IV.A. Improvements to “On-the-Fly” TDDS-Based
Quantum Dynamics. To evaluate the Shannon information
entropy-based functions as effective TDDS functions, we
compare the performance of ω1 and ω2 to that of ω0.
QWAIMD simulations using these sampling functions
were conducted on the bihalide cluster, [Cl-H-Cl]-. The
choice of system is based on the known challenges this
system presents to accurately compute electron-nuclear
coupling.52,83-85 This model system has been the subject
of substantial experimental and theoretical study83,103-109

and has been used for previous TDDS studies under
QWAIMD.51,52 The bihalide system contains a shared
proton undergoing exchange between donor and acceptor
atoms, allowing the possibility of proton modes to couple
with the other atoms in the system. Here, we utilize this
system to evaluate the effectiveness of the three sampling
functions presented in the previous section. For a detailed
description of the vibrational properties of this system,
obtained using QWAIMD, please see ref 52. The shared
proton is treated using quantum dynamics, whereas all
other atoms are treated with Born-Oppenheimer molec-
ular dynamics (BOMD), as allowed within QWAIMD. The
electronic structure calculations are treated with both
Hartree-Fock and DFT methods. For all Hartree-Fock
simulations, 6-31G(d,p) is used as the basis set, and for
DFT simulations the B3LYP functional is used alongside
the 6-31+G(d,p) basis set. All QWAIMD computations
in this publication are performed using a development
version of the Gaussian series of electronic structure
codes.110

Table 1 provides a summary of energy conservation data
when all three sampling functions are used with QWAIMD.
While using a Hartree-Fock treatment of the electronic
structure, all of the sampling functions appear to perform
well with 11 sampling points per dimension leading to an
order of magnitude compression of the quantum grid. But it
is also noted that using seven sampling points per dimension
leads to acceptable results.

Figures 3 and 4 qualitatively demonstrate the effectiveness
of the Shannon entropy based sampling functions. In Figure
3, we present the evolution of all of the sampling functions
computed from dynamics data calculated using ω0. It is
already clear that there are differences in the way ω0 samples
the edges of the grid as compared to ω1 and ω2. For example,
note that the edges of the grid are much darker for the case
of ω1 as compared to ω0. This important difference is further
highlighted in Figure 4, where again it is noted that ω0 shows
a higher density at the ends of the grid as compared to ω1

and ω2. Furthermore, the center of the grid is sampled to a
slightly greater extent by ω1, although all sampling functions
sample this region suitably. These results are consistent with
the discussions at the end of section III, where we expected
ω1 to provide a greater sample in the classically allowed
regions as compared to ω2. However, the fact that both ω1

and ω2 provide a reduced sampling at the grid edges arises
due to there being no functional dependence on V′ in the
cases of ω1 and ω2.

To further quantify the differences between the sampling
functions, the overlapping regions between the sampling
functions are calculated at each step using

where xj is a particular grid point, and i ) 1 and 2; i.e., ωi

above represents one of the Shannon entropy based functions.
The evolution of eq 13, provided in Figure 5, shows the
common and uncommon regions sampled as the functions

Table 1. Energy Conservation Data from a One-Dimensional Dynamical Treatment of the Shared Proton in [Cl-H-Cl]-a

level of theory TDDS NQ
b NE

c NQ/NE
d temp (K)e time (ps) ∆E (kcal/mol)

HF/6-31G(d,p) -f 101 101 1 325.26 1.0 0.03
HF/6-31G(d,p) ω0 101 11 9.18 325.26 1.9 0.02
HF/6-31G(d,p) ω1 101 11 9.18 318.87 1.3 0.02
HF/6-31G(d,p) ω2 101 11 9.18 319.25 1.3 0.02
HF/6-31G(d,p) ω0 101 9 11.22 340.85 2.5 0.13
HF/6-31G(d,p) ω1 101 9 11.22 320.01 3.2 0.13
HF/6-31G(d,p) ω2 101 9 11.22 337.13 3.3 0.12
HF/6-31G(d,p) ω0 101 7 14.42 368.37 2.6 0.23
HF/6-31G(d,p) ω1 101 7 14.42 370.04 2.7 0.30
HF/6-31G(d,p) ω2 101 7 14.42 341.14 1.5 0.11
B3LYP/6-31+G(d,p) - 101 101 1 258.45 1.1 0.01
B3LYP/6-31+G(d,p) ω0 101 11 9.18 257.63 1.7 0.06
B3LYP/6-31+G(d,p) ω1 101 11 9.18 261.08 0.4 0.00
B3LYP/6-31+G(d,p) ω2 101 11 9.18 261.30 0.4 0.00
B3LYP/6-31+G(d,p) ω0 101 9 11.22 261.94 2.6 0.02
B3LYP/6-31+G(d,p) ω1 101 9 11.22 258.59 1.8 0.03
B3LYP/6-31+G(d,p) ω2 101 9 11.22 260.45 1.8 0.02
B3LYP/6-31+G(d,p) ω1 101 7 14.42 251.23 2.4 0.10
B3LYP/6-31+G(d,p) ω2 101 7 14.42 256.69 4.1 0.05

a For all calculations, the quantum dynamical time step ∆tQM ) 0.05 fs and the classical time-step ∆tCl ) 0.25 fs. b The total number of
grid points. c The number of points on the grid where electronic structure calculations are performed. This set of points is obtained from
TDDS and is adaptive (that is, time-dependent). d Represents the computational gain from TDDS. e Calculated from classical nuclear
velocities and wavepacket kinetic energy. f No sampling. Electronic structure calculations performed on the full grid.

ωi′(xj;t) ) ωi(xj;t) ω0(xj;t) (13)
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change form due to the dynamics. Regions of high density
of the overlap measure correspond to regions of high
commonality, while low density shows areas of divergent
behavior between the two sampling functions. As seen in
the time-averaged behavior of the sampling functions in
Figure 4b, the common regions are contained in the center
of the grid. However, now the time-dependency of this
relationship is revealed, and major oscillations in these
functions are preserved. Furthermore, the fact that edges of
the grid are lighter in Figure 5b as compared to Figure 5a
indicates a greater sampling of the grid edges for the case
of ω2 as compared to ω1.

In the TDDS algorithm, once the sampling function is
constructed, a Haar wavelet fit of this function is dis-
cretized to obtain points in configurational space for
electronic structure calculations. (The detailed algorithm
is presented in refs 52 and 51.) The discrete, time-
dependent set of points obtained from such an algorithm
when using the functions, ω0, ω1, and ω2, are shown in
Figures 6 and 7. Consistent with the previous discussion,
ω1 provides the most compressed representation of the
grid populating only the important regions. It is followed
very closely by ω2, and ω0 provides a greater sampling
of points at the edges of the grid. In addition, the
fundamental oscillations near the center of the grid are
captured by all three functions, but these oscillations are
more intense for the Shannon sampling-based functions.
In section IV.B, this property is used to construct a set of
potential adapted, grid-based electronic structure basis
functions. That is, in section IV.B, electronic structure
basis functions are to be placed along the grid lines seen
in Figures 6 and 7 for potential energy calculations. Such
a basis set is found to be accurate and efficient and is
used in ref 54 to further enhance the computational
efficiency of QWAIMD.

Having examined the differences between the sampling
functions, it is important to see how these directly affect
observables in the dynamics. Thus, we conclude this
section with an analysis of the vibrational effects on the

Figure 3. A comparison of the sampling functions, ω0 (a), ω1 (b), and ω2 (c). The figures depict the evolution of the sampling
functions during a single reference dynamics trajectory. The intensity of ω0 is relatively high at the edges of the grid as compared
to both ω1 and ω2. Similarly, the intensity of ω1 is higher in the important regions as compared to both ω0 and ω2. Note that this
is not a comparison of actual dynamical data. ω1 and ω2 were reconstructed using dynamics data performed with ω0.

Figure 4. (a) A representative time slice of the sampling functions, F, and the potential from a one-dimensional Hartree-Fock
simulation. (b) The time-averaged behavior. Again, as already seen in Figure 3, the fact that ω0 overestimates the significance
of the edges of the grid is clearly noted. Furthermore, ω1 has higher intensities in the important regions, consistent with
Figure 3.

Figure 5. Evolution of eq 13 for ω1 (a) and ω2 (b). The
common regions between ω0 and the new TDDS functions
are represented by regions of high intensity. These are located
in the central regions of the grid. The lower intensity at the
edges demonstrates the crucial difference between the two
sets of sampling functions.
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classical atoms. The root mean squared error in the Cl-Cl
distance is shown in Figure 8. The error was referenced
to a QWAIMD simulation in which no interpolation of
the potential and gradients was used. In all cases, the
Shannon entropy based sampling functions are able to
reproduce the oscillations with fewer sampling points.
This, of course, is a result of the more compact nature of
these sampling functions. The oscillation frequencies are
in agreement with previous calculations,52 but the result
in Figure 8 indicates a reduced computational cost when
using ω1 and ω2.

IV.B. Locating Regions for Potential-Adapted, Grid-
Based Electronic Structure Basis Functions Using the
Shannon Entropy Based Sampling Functions. In this
section, we utilize the TDDS functions to obtain a grid-based
description of electronic structure. This study is particularly
relevant for hydrogen-bonded systems, and we show here
that accurate potential energy surfaces can be obtained over
a wide range of energies and nuclear geometries when grid-

based Gaussian basis functions, directed using TDDS, are
utilized. Essentially, the question we pose is, if Gaussian
basis functions of the kind

were directed such that the basis functions centers,
RF[≡(Rx, Ry, Rz)], were chosen to be functions of multiple
classical nuclear variables according to RF ) f({RC}) and
the centers are determined using the sampling functions, can
this improve efficiency while retaining the accuracy of
electronic structure calculations? In eq 14, the quantities l,
m, and n are the usual orbital angular momentum indices of
the basis function. The result of this discussion is a
generalization of bond-centered basis functions111-114 tra-
ditionally used in quantum chemistry where the positions of
these Gaussian basis functions are determined using the
TDDS functions discussed in section III. Furthermore, these

Figure 6. Time-evolution of sampling points (white lines), compared to sampling function density (blue and yellow density
map), for NE ) 11. ω0 is shown in a, ω1 in b, and ω2 in c.

Figure 7. Time-evolution of sampling points (white lines), compared to sampling function density (blue and yellow density
map), for NE ) 7. ω0 is shown in a, ω1 in b, and ω2 in c.

Figure 8. Error in the Cl-Cl distance. (a) Hartree-Fock simulation. (b) DFT calculation (B3LYP). The dotted black lines in both
parts display the evolution of the Cl-Cl distance (left axis). The error in the Cl-Cl distance is shown on the right axis and
depicted using the red and blue lines. The Cl-Cl oscillations for Hartree-Fock have a larger amplitude due to higher temperatures
for the associated simulations. (Please see Table 1.)

�l,m,n
RF (r) ) (x - Rx)

l(y - Ry)
m(z - Rz)

n exp[-R(r - RF)2]
(14)
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grid-based electronic functions are used in ref 54 to further
improve the efficiency of QWAIMD.

For the case of hydrogen-bonded systems, we specialize our
definition of RF ≡ f({RC}) to a function of the donor and
acceptor coordinates:

where RA and RD are coordinate vectors of the donor and
acceptor atoms for a hydrogen-bonded system and vbi is a
uniform shift that can be used to create a three-dimensional
grid of electronic basis functions. It is further important to note
that the basis functions introduced in eq 15 are functions of
classical nuclear coordinates. Hence, in a fashion similar to
atom-centered basis functions, the centers of these functions
also transform according to the classical nuclear positions.
Furthermore, these grid-based functions are spread uniformly
in space. But these functions differ from plane-waves115 through
the {RF} dependence of the Fourier transforms.

To choose the variables {ai, di, vbi}, we utilize the
sampling functions discussed earlier. Our test case in-
volves three well-studied hydrogen-bonded ion clus-
ters:83,103,107,108,116-124 the bihalide cluster [ClHCl]-1, the
hydroxide water cluster [OH-H2O]-1, and the Zundel
cation [H2O-H-H2O]+. Our goal is to find the optimum
number and associated positions of the grid-based basis func-
tions in the bonding region of the transferring hydrogen. The
stability and vibrational properties of the clusters discussed here
are sensitive to the potential surface along the donor-acceptor
axis. Thus, potential energy surfaces constructed on a one-
dimensional grid were compared between grid-based basis and
atom-centered basis set aug-cc-pvtz.125-127 To quantify the
errors, we define

where the boxcar function is defined as linear combination of
Heaviside functions: Πε1,ε2(V) ) H(V - ε1) - H(V - ε2).

Equation 16 allows us to inspect the accuracy in the potential
surface in a tiered fashion by focusing on specific energy
domains. We have utilized the three functions presented in eqs
10, 11, and 12 and compared the associated behavior with a
uniform distribution function: ω3 ) 1.

In Figure 9, distributions of the potential-adapted, grid-
based basis using various TDDS schemes are presented.
Compared to the uniform sampling function, ω3, the Shannon
entropy based TDDS function reduces the population of
electronic basis functions close to the edge of the grid. The
standard TDDS function, ω0, on the contrary, places roughly
equal weight at both the middle and edge of the grid. This,
of course, is to be expected, since TDDS in eq 10 has been
tuned such that the grid-based basis is distributed equally in
both classically allowed and forbidden regions. However,
bases at the edges (high gradients and large values of the
potential) may not be useful during the electronic structure
calculations, and hence, in practice one might expect the
Shannon information based TDDS functions to be more
efficient.

A detailed examination of the accuracy of various TDDS
functions in obtaining good estimates for the potential
surface is provided in Table 2. The error estimates utilized
are those discussed in eq 14. Since a large number of grid-
based basis functions are distributed in the bonding region
of the hydrogen-bonded systems considered, a relatively
small basis set (3-21G and STO-3G) is used at each grid
point. The accuracy of the potential-adapted, grid-based
basis functions is ascertained through comparison with a
standard atom-centered aug-cc-pvtz basis. To perform the
benchmark in a tiered fashion, we first replace the atom-
centered aug-cc-pvtz on the shared proton with grid-based
basis functions while retaining the aug-cc-pvtz bases on
all of the other classical atoms. Following this, the aug-
cc-pvtz bases on classical atoms are substituted with the

Figure 9. (a) The TDDS functions and (b) the associated origins for the grid-based electronic basis functions obtained from the
TDDS functions. The system under study is [ClHCl]-1, and the horizontal axis for both figures represents (RH-Cl1 - RH-Cl2)/2.
The definitions for RH-Cl1 and RH-Cl2 are provided in Figure 10. Note that b shows a smaller spatial region since this is the
predominant area for ω1. Note also that the functions ω0 and ω2 place a greater weight at the edges, which is consistent with
our earlier discussion in section IV.A.

RF
i ≡ ∑

j

cjiRC
j + vbi ) aiRA + diRD + vbi (15)

∆V(ε1, ε2) )

�∑
i

[V1(RC, RQM
i ) - V2(RC, RQM

i )]2 ∏
ε1,ε2

(V(RQM
i ))

∑
i

∏
ε1,ε2

(V(RQM
i ))

(16)

Figure 10. The parameters RH-Cl1 and RH-Cl2 are defined here
and used in Figure 9.
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relatively small double split valence 6-31+G** basis. All
results are summarized in Table 2.

Although all TDDS schemes give accurate results in the
low energy regions, as seen from the smaller values of ∆V
in the column using ε1 ) 0.0 kcal/mol and ε2 ) 2.5 kcal/
mol, the Shannon entropy based TDDS function, ω1, provides
higher accuracy while using fewer basis functions. (These
are shown in blue in Table 2.) The reduction in the number
of grid-based basis functions is especially striking in this
case where the number of basis functions required is reduced
to roughly half in the case of [ClHCl]-1 and a third in the
case of the larger systems. There appears to be little loss in
accuracy over the entire grid. Due to the O(N3) scaling of
the algorithms involved, this leads to a factor of 8 reduction
in computation time for the smaller [ClHCl]-1 system and
a factor of 27 reduction in computation time for the larger
systems. In ref 54, these potential-adapted grid-based elec-
tronic basis functions are utilized to facilitate an even larger
reduction in computation time when employed in conjunction
with new formalisms of QWAIMD.

V. Conclusions

A new set of time-dependent deterministic sampling func-
tions based on Shannon’s entropy were introduced. These

functions were used to probe important regions of an
electronic potential surface and to facilitate computational
improvements in quantum-classical dynamics of electrons
and nuclei. Computational gains are two-fold as discussed
in the numerical results section: The direct implementation
of Shannon entropy based TDDS functions reduces compu-
tational cost by eliminating the need for sampling points in
physically uninteresting regions of the potential surface. In
addition, when the Shannon entropy based TDDS functions
are utilized to construct a potential-adapted grid-based
electronic basis set, the accuracy of the electronic potential
surface is well-preserved, while the computational cost is
significantly lowered. This idea is further exploited in ref
54 to facilitate the development of a new QWAIMD
formalism that reduces computational costs by several orders
of magnitude.
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Abstract: Acceptance rules for reaction ensemble Monte Carlo (RxMC) simulations containing
classically modeled atomistic degrees of freedom are derived for complex molecular systems
where insertions and deletions are achieved gradually by utilizing the continuous fractional
component (CFC) method. A self-consistent manner in which to utilize statistical mechanical
data contained in ideal gas free energy parameters during RxMC moves is presented. The
method is tested by applying it to two previously studied systems containing intramolecular
degrees of freedom: the propene metathesis reaction and methyl-tert-butyl-ether (MTBE)
synthesis. Quantitative agreement is found between the current results and those of Keil et al.
(J. Chem. Phys. 2005, 122, 164705) for the propene metathesis reaction. Differences are
observed between the equilibrium concentrations of the present study and those of Lı́sal et al.
(AIChE J. 2000, 46, 866-875) for the MTBE reaction. It is shown that most of this difference
can be attributed to an incorrect formulation of the Monte Carlo acceptance rule. Efficiency
gains using CFC MC as opposed to single stage molecule insertions are presented.

1. Introduction

Techniques that rely on molecular simulation to investigate
systems undergoing chemical reactions can be divided into
two categories. One category, ab initio methods, relies on
first principle calculations to rigorously calculate energy-
structure relationships. Electronic degrees of freedom are
captured in these methods, which allows for direct treatment
of bond breaking, distortion, and formation. These methods
work well for computing the equilibrium distribution of
products in the gas phase. Incorporation into time-dependent
algorithms, e.g., Car-Parrinello molecular dynamics (CP-
MD),1 allows reactions to be modeled directly, in principle.
The accuracy of ab initio methods depends on the level of
theory. Highly accurate methods scale poorly with system
size, making them very difficult to apply to the condensed
phase.2 The second category of methods involves treating
the interactions between atoms and molecules through
classical potentials parametrized either from quantum me-
chanical calculations or experimental data. These methods
alleviate the need to perform computationally expensive first

principle calculations at each configuration, and thus much
larger systems can be studied for longer periods of time. One
approach is to use “reactive” force fields that are param-
etrized to treat chemical bond formation and breaking
directly.3-5 While application of these reactive potentials has
led to significant insight into short-time transient behavior,
to date there are relatively few systems for which parameters
have been developed. It has also been found that these
potentials are extremely sensitive to the way in which they
were parametrized.2 A comprehensive discussion of reactive
force fields and their application can be found elsewhere.6

A second classically based approach is to ignore transient
events, such as bond formation and breakage, and focus only
on the equilibrium conversion of each species. Such an
approach was independently developed by Smith and Triska7

and Johnson et al.8 within a Monte Carlo framework. The
so-called reaction ensemble Monte Carlo (RxMC) method
allows reactants and products to be interconverted through
a series of stochastic moves. While there is no need for
potentials containing parameters that describe bond formation
and breakage, RxMC does require as input ideal gas free
energy differences between species, which can be obtained* Corresponding author. E-mail: ed@nd.edu.
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either from thermophysical tables or quantum mechanical
calculations. Also required is a specified reaction set describ-
ing the stoichiometry of the system and relevant intermo-
lecular potentials that accurately describe interactions in the
condensed phase. In practice, RxMC is similar to grand
canonical Monte Carlo9 (GCMC), because random insertion
and deletion of molecular species (during forward and reverse
reaction moves) propagate the system toward equilibrium.
Reaction moves eliminate any activation barriers associated
with transition states or molecular diffusion, thus achieving
equilibrium concentrations in a wide number of highly
nonideal systems irrespective of reaction rates. RxMC has
been quite successful in predicting the equilibrium behavior
of reactions for many systems. A comprehensive review of
the method can be found elsewhere.2

Most applications of RxMC have focused on small
molecules where internal degrees of freedom were con-
strained to equilibrium values.7,8,10-14 For these systems,
there is a clean separation between the classical and quantum
mechanical contributions to the Monte Carlo acceptance rule
(as shown in detail below). The situation is more complicated
for systems where internal degrees of freedom cannot be
constrained to their equilibrium values. Keil et al.15,16 have
formulated a set of RxMC acceptance rules for linear united
atom alkanes and alkenes within a conventional configura-
tional bias Monte Carlo (CBMC) framework. As shown
previously,17-19 this type of CBMC algorithm is only valid
for models without coupling between bond angles, i.e.,
molecules without branch points. Lı́sal and co-workers have
also modeled systems with flexible internal degrees of
freedom within the RxMC framework.20,21 Their system
contained methyl-tert-butyl-ether (MTBE), a molecule with
a flexible dihedral angle and coupling between bond angles.
It is demonstrated below that this study did not properly
incorporate these classical degrees of freedom with ideal gas
quantum mechanical information within their Monte Carlo
acceptance rules, which results in a shift in computed
equilibrium concentrations.

One of the goals of the present work is to formulate a set of
general acceptance rules for RxMC that self-consistently treats
quantum mechanical and classical degrees of freedom for
molecules of arbitrary complexity. A second objective is to show
how a biasing strategy can be utilized with RxMC to improve
sampling efficiency. Previous work by Lı́sal and co-workers
has applied the expanded ensemble method to mesoscopic
reaction ensemble dissipative dynamics simulations.22,23 The
focus of this work is on an adaptive slow growth method
named continuous fractional component (CFC) Monte Carlo.
The rest of this paper is organized as follows: In the next
section background on RxMC is provided, and acceptance
rules in this work are derived. Following this, derivation of
the CFC method is provided followed by simulation details
for two test cases. Next, results for the test cases are presented
and compared with previous works. Finally a brief summary,
and a set of conclusions are provided.

2. Methods

The reaction ensemble Monte Carlo method will be discussed
for a system undergoing one reaction. It is straightforward

to derive the method for multiple reactions in any number
of phases. Equilibrium of a single reaction involving s species
is reached when the following constraint is satisfied

where νi and µi are the stoichiometric coefficient and the
chemical potential of species i, respectively. The Hamiltonian
of each molecule is assumed to be separable into quantum
and classical parts,24 such that for a given species i

where Hi, cl is the Hamiltonian associated with the fi degrees
of freedom one wishes to treat classically, and Hi, qm is the
Hamiltonian associated with the remaining degrees of
freedom that are treated quantum mechanically. During the
simulation, only classical degrees of freedom will be allowed
to change. Equation 2 implies that the molecular partition
function is separable into quantum and classical components,
such that the single molecule partition function is

where p is Planck’s constant, � ) 1/kBT, and pi and ri are
the momenta and generalized coordinates associated with all
the classical degrees of freedom of species i. Note that the
molar standard chemical potential µi

0 is related to the total
molecular partition function by

where P0 is the standard state pressure and Λ is the de
Broglie wavelength. The molar standard chemical potential
can be obtained from thermochemical property databases25,26

or computed from gas-phase quantum mechanical calcula-
tions and will be used as an input to the RxMC acceptance
rules.

The semiclassical canonical partition function for a system
containing a total of s species, each species i having Ni

molecules, is

where Hcl is the classical Hamiltonian of the system with
momenta and coordinates p and r, respectively. Equation 5
implies that all intermolecular interactions are treated clas-
sically. If the classical Hamiltonian is separable into potential
and kinetic contributions, then the integration of momenta
in eq 5 is straightforward. Moreover, if the classical potential
only involves pairwise interactions and there are no external
fields, then it is possible to integrate over the translational
components of the generalized coordinates. The result is that

∑
i)1

s

νiµi ) 0 (1)

Hi ) Hi,qm + Hi,cl (2)

qi ) qi,qmqi,cl )
qi,qm

pfi
∫ exp[-�Hi,cl] dpi dri (3)

µi
0

RT
) -ln( qi

�P0Λi
3) (4)

Q(N1, ...,Ns, V, T) ) ∏
i)1

s qi,qm
Ni

Ni!p
fiNi

∫ exp[-�Hcl] dp dr (5)

Q(N1, ...,Ns, V, T) ) ∏
i)1

s qi,qm
Ni VNi

Ni!Λi
fiNi

∫ exp[-�Vcl] dr′ (6)
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where r′ represents all the classical degrees of freedom minus
translational terms and Vcl is the classical pairwise potential
energy associated with the classical degrees of freedom.

The volume associated with the remaining classical
degrees of freedom of a given species i will be given the
symbol Ωi, such that

It follows that the volume associated with all the classical
degrees of freedom is

The grand ensemble is the most appropriate for RxMC,
and the grand partition function can be written as the
canonical partition function of eq 6, expanded in chemical
potential:

where the subscript cl designating the potential as classical
has been dropped for simplicity.

From eq 9, the probability of state m in the grand ensemble
is

Note that the number of each species as well as the potential
energy depend upon state m.

Equation 10 will be the basis for the derivation of
acceptance rules in the RxMC method. The detailed balance
condition requires that moves between states m and n satisfy
the following expression:27

where Πmn is the one-step transition probability of going from
state m to state n, Rmn is underlying matrix of the Markov
chain (the move “attempt” probability in going from state
m to state n), and Fm is given by eq 10.

Within a RxMC simulation, transitions of the system from
state m to n fall into two categories. One is for transitions
where no change in species composition occurs, and the
second is for a reaction move where the composition does
change. Let the parameter δ differentiate between the three
possible cases. When δ ) 0, no reaction occurs. When δ )
+1, a forward reaction occurs such that reactants (species
with a negative stoichiometric coefficient) are consumed and
products (species with a positive stoichiometric coefficient)
are produced. For a reverse reaction that consumes products
and produces reactants, δ ) -1. For any species i initially

in state m with Ni, m molecules, there will be Ni, n molecules
in the new state n given by

Combining eqs 10-12 results in the following general
formulation of the one-step transition probability for RxMC
moves:

where eq 1 has been employed, and the change in potential
energy has been divided into classical intramolecular and
intermolecular contributions ∆Vmn

intra and ∆Vmn
inter, respec-

tively. Note that the quantum molecular partition function
qi, qm appears in eq 13 and not the total molecular partition
function qi.

If molecules are treated as rigid such that intramolecular
degrees of freedom are frozen at their equilibrium values,
then only intermolecular and translational degrees of freedom
are treated classically (i.e., fi ) 3). A molecule only adopts
one conformation so qi, qm ) qi, ∆Vmn

intra ) 0, and Ωi ) 1.
Also, if no biasing is used, then the stochastic matrix is
symmetric such that Rmn ) Rnm. In this case, eq 13 reduces
to the conventional acceptance rule used in many previous
studies in which small, rigid molecules were simulated.7,8,10-14

When simulations are performed on more complex mol-
ecules that cannot be treated realistically as rigid, intramo-
lecular conformations must be modeled subject to a classical
intramolecular potential function, ∆Vmn

intra. For example,
∆Vmn

intra may include terms that capture bond angle bending
and dihedral angle rotation. In these cases, eq 13 must be
used. One must be careful to properly account for the fact
that qi, qm and not qi appears in the acceptance rules. For
example, the use of tabulated values of µi

0 will lead to an
incorrect accounting of the classical and quantum mechanical
terms (see eq 4). Below it is shown how to formulate a set
of self-consistent RxMC moves that satisfy eq 13 and still
allow the use of qi or µi

0 in the acceptance rule.
The approach relies upon the use of a “reservoir sampling”

method to generate conformations of flexible molecules with
a known probability. More details of the method as well as
how it can be combined with configurational biasing is found
elsewhere,17 but for simplicity only the basic method is
outlined below. To apply the method, molecules are broken
into fragments. Each fragment contains atoms connected only
by bond lengths and angles. These degrees of freedom can
be classified as “hard” because they are very strong functions
of position. Each fragment is connected to another via one
dihedral potential, which is a weaker function of position
compared to bond lengths or angles and is thus known as a
“soft” degree of freedom. This method decouples “hard” and
“soft” degrees of freedom and allows for a systematic
approach to build molecules that satisfy a Boltzmann
distribution of internal energy. A reservoir of each kind of
fragment is created via a standard Metropolis Monte Carlo

Ωi ) ∫ dr′i (7)

ΩiV ) ∫ dri (8)

�(µ1, ...,µs, V, T) ) ∑
N1)0

∞

· · · ∑
Ns)0

∞ ∫ exp[� ∑
i)1

s

Niµi -

∑
i)1

s

ln Ni! + ∑
i)1

s

Ni ln
Vqi,qm

Λi
fi

- �V] dr′ (9)

Fm ) 1
�(µ1, ..., µs, V, T)

exp[� ∑
i)1

s

Ni,mµi - ∑
i)1

s

ln Ni,m! +

∑
i)1

s

Ni,m ln(ΩiVqi,qm

Λi
fi ) - �Vm] (10)

∏
mn
RmnFm ) ∏

nm
RnmFn (11)

Ni,n ) (Ni,m + νiδ) (12)

Πmn ) min(1,
Rnm

Rmn[ ∏
i)1

s Ni,m!

(Ni,m + νiδ)!(ΩiVqi,qm

Λfi )νiδ] ×

exp[-�(∆V mn
inter + ∆V mn

intra)]) (13)
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presimulation. Each fragment appears in the reservoir with
a well-defined probability according to the Boltzmann weight
of all the flexible degrees of freedom in that fragment. That
is, the probability of a given fragment appearing in the
reservoir is

where nfrags is the number of fragments in the reservoir,
V frag is the classical potential energy of the fragment and
∆Vfrag and dVfrag are the discrete and differential volume
elements associated with the flexible classical degrees of
freedom of the fragment, minus the center of mass. For
example, a three-atom fragment with fixed bond lengths but
a flexible bond angle, such as the one shown in Figure 1,
has associated with it the translational volume of atom 1
(dV1 ) dx1dy1dz1) and the internal coordinate volume terms.
Atom 2 is specified by two Euler angles Ψ1 and Ψ2 as well
as a Jacobian associated with Ψ1

and for atom 3 the differential volume element is

So in this particular case, dVfrag ) dV2dV3.
Each fragment required to assemble a molecule is chosen

according to eq 14 and connected to one another through
one bond. As will be shown below, the dihedral angle φ

that defines the relative orientation of two fragments is
chosen according to

where Vφ contains all the energy associated with dihedral
angle φ and any nonbonded intramolecular energy interac-
tions between the fragments involved in the dihedral angle.
For simple molecules that do not contain nonbonded in-
tramolecular interactions, a simple rejection method prevalent
in configurational bias techniques may be used to generate
the correct dihedral distribution. For more complex topolo-
gies that contain nonbonded terms, a number of methods

may be utilized, e.g., presimulations of single molecules in
the ideal gas phase which tabulate dihedral probability
functions.

Once the entire molecule is assembled, the probability of
a particular conformation for a molecule i being inserted into
the system is

where dVcom/V accounts for the random insertion of the center
of mass of the molecule. Note that

When a molecule is deleted from the system, no energy bias
is used. Thus the probability of a configuration of deleted
species i is

The underlying Markov matrix of insertion and deletion
moves can be constructed from eqs 18 and 20. The ratio of
attempt probabilities is

Since the single molecule classical partition function is

Equation 21 becomes

Finally, substituting eq 23 into 13, the desired result for the
one-step transition probability is obtained

Note that the full single molecule partition function appears
in the acceptance rule and that only the difference in
intermolecular classical potential energy is used. By defini-
tion the conformations used in reaction moves already satisfy
a Boltzmann distribution in regards to their intramolecular
energy, and thus only intermolecular terms appear in eq 24.
This acceptance rule is convenient to use because it allows
one to use standard thermochemical data for the ideal gas
partition function of the molecule. Note that in the absence
of any intermolecular interactions, the ideal gas ratio of free
energies completely determines the equilibrium concentra-
tions of the reacting mixture, as is required. Intramolecular
conformations will also appear according to an ideal gas

Figure 1. Internal coordinates associated with a particular
three-atom fragment.

Ffrag )
exp[-�V frag]∆Vfrag

∑
nfrags

exp[-�V frag]∆Vfrag

≈
exp[-�V frag]dVfrag

∫ exp[-�V frag]dVfrag

(14)

dV2 ) d cos(Ψ1)dΨ2 ) 4π (15)

dV3 ) d cos(θ)dφ ) 4π (16)

Fφ )
exp[-�Vφ]∆Vφ

∑ exp[-�Vφ]∆Vφ

≈
exp[-�Vφ]dVφ

∫ exp[-�Vφ]dVφ

(17)

Fins,i )
dVcom

V ∏
j)1

nfrags

Ffrag,jFφ,j (18)

dr′ ) ∏
j)1

nfrags

dVfrag,j dVφ,j (19)

Fdel,i )
dVcom

V

dri′
Ωi

(20)

Rnm

Rmn
) ∏

i)1

s [( ∫ exp[-�Vi
intra]dri′

exp[-�Vi
intra]dri′

)(dri′
Ωi

)]νiδ

(21)

qi,cl )
V

Λfi
∫ exp[-�V i

intra]dri′ (22)

Rnm

Rmn
) ∏

i)1

s [( Λfiqi,cl

dri′V exp[-�V i
intra])dri′

Ωi ]νiδ

(23)

Πmn ) min(1, ∏
i)1

s [ Ni,m!

(Ni,m + νδ)!
qi

νiδ] exp[-�(∆V mn
inter)])

(24)
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probability distribution since eq 23 was used. Equation 24
is the main result, but it must be emphasized that it is valid
only if one generates configurations consistent with eq 23.

As mentioned in the Introduction, Lı́sal and co-workers
modeled the MTBE synthesis reaction. MTBE contains three
flexible dihedral angles that are modeled using a classical
potential. From private communications with the authors, it
was ascertained that they generated random configurations
for MTBE such that Rmn ) Rnm. To ensure that intramolecular
degrees of freedom were properly sampled, the intramolecu-
lar potential energy was included in the acceptance rule. They
also used the molar standard chemical potential which is
related to the full molecular partition function qi through eq
4. Thus during a reaction move, their acceptance rule was

It is clear from eq 25 that the intramolecular contribution is
counted twice; once in the full molecular partition function
qi and once in the exponential term (∆V mn

intra). If one
considers the simple case of an ideal gas reaction in which
components contain flexible intramolecular degrees of free-
dom, then the acceptance probability consistent with quantum
mechanics is Πmn, Lisal ) min (1, i)1

s [Ni
m!/((Ni

m + νiδ)!)qi
νiδ]).

Equation 25 does not reduce to this, while eq 24 does. We
will show explicit simulation results supporting this claim
below.

The only other atomistically detailed RxMC study the
authors are aware of involving flexible intramolecular degrees
of freedom was carried out by Keil and co-workers. They
derived acceptance rules for RxMC within a CBMC frame-
work to study propene metathesis within confined environ-
ments.15,16 While their formulation is only valid for linear
molecules, it is consistent with the acceptance rules given
in the present work. In particular, it is easy to show that eq
A11 of their work16 reduces to eq 23 if only one trial position
of inserted molecules is attempted. Results from simulations
testing eqs 23 and 25 for MTBE synthesis and propene
metathesis are given in the next section.

Finally, the reservoir sampling method17 is directly suited
to include configurational bias in the RxMC framework,
similar to that proposed by Keil and co-workers. An
alternative method to CBMC, described below, relies on slow
growth to overcome large free energy barriers associated with
insertion and deletion in dense fluids. In the continuous
fractional component (CFC) MC method,28 insertions and
deletions are not accomplished in one step but rather by
gradual changes in the intermolecular coupling of fractional
molecules to the rest of the system. The coupling of the
fractional molecules is controlled by a parameter λ that
fluctuates between 0 and 1. At λ ) 0 the reactant molecules
have no intermolecular interaction with the system, while
the product molecules are completely coupled to the system.
At λ ) 1 the opposite is true; product molecules are
decoupled, while reactant molecules fully interact with the
system. Regardless of the value of λ, the fractional molecules

contain full intramolecular interactions (bond, angle, dihedral,
improper, etc.). There is need only to define one λ associated
with the reaction. Any species with a negative νi (reactant)
will have a coupling parameter of λ, while any species with
a positive νi (product) will have a coupling parameter of 1
- λ. A major strength of slow-growth methods is their ability
to incorporate a biasing function to aid in the transition
through λ states. A biasing function η(λj) that depends only
on the amount of coupling between the system and the
fractional molecules is used here. The semiclassical partition
function for systems containing partially coupled molecules
is found elsewhere.28

Reaction moves within a CFC framework are now replaced
by moves from state m to n that consist of attempts to
randomly alter the value of λ. A transition to state n where
the value of the coupling parameter λ changes by an amount
� will fall into either of two categories. The first category
occurs if 0 e (λ + �) e 1. In this category no addition and
deletion of molecules occur, and the transition probability
is

Because there is no change in intramolecular energy for this
category, the difference in energy in eq 26 is purely
intermolecular. The biasing factors η(λj) help overcome
energy barriers and more efficiently sample λ space. Opti-
mization of the weighting factors was done using the
Wang-Landau method.29

The second category of λ transitions occurs if either (λ +
�) < 0 or (λ + �) > 1. The former case (λ + � < 0) refers to
a “forward” reaction, while the latter (λ + � > 1) is a
“reverse” reaction. For a reverse reaction, coupling param-
eters of fractional reactant and product molecules are set to
1 and 0, respectively. Additionally new fractional reactant
molecules are inserted into the system with a coupling
parameter of λnew ) (λ + �) - 1. Finally, random product
molecules are selected from the system and their coupling
parameter is set to 1 - λnew. For a forward reaction, the
coupling parameters of fractional product and reactant
molecules are set to 1 and 0, respectively. New fractional
reactant molecules are chosen from the system, and the
coupling parameter is set to λnew ) (λ + �) + 1. Finally,
product molecules are inserted into the system with a
coupling parameter of 1 - λnew. The transition probability
is very similar to that in eq 24, except that biasing values
are included

3. Simulation Details

3.1. Continuous Fractional Component Method. For
simulations using the CFC MC method, a scaled potential28

Πmn,Lisal ) min(1, ∏
i)1

s [ Ni
m!

(Ni
m + νiδ)!

qi
νiδ] ×

exp[-�(∆V mn
inter + ∆V mn

intra)]) (25)

∏
mn,λ

1

)min[1, exp(-�∆V mn
inter) exp(η(λn) - η(λm))]

(26)

Πmn,λ
2 ) min[1, ∏

i)1

s ( Ni
m!

(Ni
m + νiδ)!

qi
νiδ) ×

exp(-�∆V mn
inter) exp(η(λn) - η(λm))] (27)
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was used to model intermolecular interactions involving
fractional molecules. For Lennard-Jones (LJ) interactions the
following potential was used

λij was taken to be the product of the scaling parameter of
each molecule, λij ) λi × λj, and τ is an adjustable parameter
that was set to 0.5 following the work of Shi and Maginn.28

Eq 28 shows that the full LJ potential is recovered at λij )
1. For electrostatics, the partial charges on fractional
molecules were scaled as Qf ) λi

5Qi because nonlinear scaling
is known to moderate strong electrostatic interactions result-
ing from insertion.28

As described in the Methods Section, bias factors were
used to help push through free energy barriers associated
with insertion or deletion in a dense system. Ideally the bias
factors would allow any value of the scaling parameter λ to
be sampled with equal probability. Recall that the scaling
parameters of reactants (λ) and products (1 - λ) are not
independent, thus a bias function η(λj) dependent only upon
the coupling of reactants is defined. The Wang-Landau
method29 was found to be efficient for determining η(λj).28

In practice λ was divided into 10 equal intervals, [0, 0.1),
[0.1, 0.2), ..., [0.9, 1], with each interval j assigned a bias
factor η(λj). Initially all bias factors were set to 0. During
equilibration, after an attempt to change λ, the value of η(λj)
was modified according to

where υ is a scaling parameter, initially set to 0.01. A
histogram was kept that tracked the number of times each λ
interval was visited. After 10 000 attempts to change the
value of λ, the histogram was checked to see if each interval
was visited at least 30% as often as the most visited interval.
If this criterion was satisfied, then the scaling parameter was
modified according to υ ) 0.5υ, and histograms were reset
to 0. Once the value of υ was equal to 5 × 10-6, η(λj) was
no longer altered.

Subsequent λ moves perturb the same molecule until that
molecule becomes either fully coupled or decoupled from
the simulation box. Local relaxation around this molecule
is thus critical for proper and efficient sampling. Preferential
sampling, introduced by Owicki,30 was utilized so that
thermal equilibration moves were attempted more often for
molecules surrounding the fractional ones. Two parameters
are needed for preferential sampling, the volume around a
fractional molecule Vin in which to bias thermal equilibration
moves, and a parameter that governs the percentage of
thermal equilibration moves to perform within that given
volume p̂. In the present work, Vin ) 4/3π(8 Å)3 and p̂ )

85%, yielding ∼50% thermal moves attempted within the
preferential volume.

3.2. MTBE Synthesis. To test the present method, two
different systems were studied. One was the production of
MTBE from isobutene and methanol, previously studied by
Lı́sal and co-workers.20,21 The reaction is given by

This system was chosen because it is one of only two cases
where RxMC has been used in the condensed phase for
flexible molecules. One objective was to test how the
disparity between eqs 23 and 25 affect equilibrium concen-
trations of reactant and products. A second objective was to
compare the efficiency of the CFC MC method relative to
unbiased approaches. Isobutene and methanol were modeled
using a united-atom version of the “optimized potentials for
liquid simulations” (OPLS) model and contained no intramo-
lecular degrees of freedom. MTBE was also modeled using
OPLS, yet it has three flexible dihedral angles. Published
potential parameters21 were used with two exceptions. First,
private correspondence with the authors revealed that the σ
parameter for oxygen in MTBE used in their study was 3.0
Å, not 3.8 Å as reported. Second, Lı́sal and co-workers
treated Coulombic long-range interactions by the reaction-
field method, while the Ewald summation approach31 was
used here.

AllMCsimulationswereconductedintheisothermal-isobaric
(NPT) ensemble at 360 K and 5 bar. Each simulation was
initialized with 512 molecules of various methanol to
isobutene ratios. Geometric mixing rules were used to
calculate εij and σij in eq 28. The cutoff distance rcut for both
the LJ and real space Coulombic interactions was set to 16
Å for the condensed phase and 65 e rcut e 75 Å for the
vapor phase. LJ long-range corrections were added to the
configurational energy assuming that the radial distribution
function equaled unity beyond the cutoff.27 Ewald parameters
RL and Kmax were set to 7.0 and 7.0, respectively, for both
phases. Equilibrium simulations were run for 20 × 106 MC
steps, and the standard deviation of four independent
production runs of 20 × 106 MC steps was taken to be the
statistical uncertainty. Translations, rotations about an axis,
volume changes, intramolecular rearrangements, and reaction
moves were attempted with probabilities of 20, 59.9, 0.1,
10, and 10%, respectively, for simulations absent gradual
insertions and deletions. For simulations utilizing the CFC
MC method, translations, rotations, volume changes, in-
tramolecular rearrangements, and λ changes were attempted
with probabilities of 35, 53.9, 0.1, 10, and 1%, respectively.
All simulations were performed on dual core Intel opteron
processors. The 80 × 106 MC steps required 1.5 days to
complete.

3.3. Propene Metathesis. The RxMC method developed
in this work was also applied to a system containing multiple
reactions. Propene metathesis, studied by Keil and co-
workers,15 contains the following reactions

Vf ) λij4εij{ 1

[τ(1 - λij)
2 + ( rij

σij
)6]2

-

1

[τ(1 - λij)
2 + ( rij

σij
)6]} (28)

η(λj) ) η(λj) - υ (29)

C4H8 + CH3OH T C5H12O (30)

2C3H6 T C2H4 + trans - C4H8 (31)
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Only two of these reactions are independent, and therefore
eq 32 was not sampled during the simulation. The species
involved in the propene metathesis were modeled using the
TraPPE-UA model for inter- and intramolecular interactions.
The parameters can be found elsewhere.32,33

NPT MC simulations were performed at 5 bar and
temperatures of 300, 450, and 600 K. Lorentz-Berthelot
combining rules were used to calculate εij and σij in eq 28.
LJ long-ranged interactions were added to the configurational
energy for a cutoff of rcut ) 80 Å. All simulations were
initialized with 800 propene molecules. Equilibrium and
production runs were conducted for the same number of steps
as the MTBE system. Simulations required around 1 day to
complete on dual core Intel opteron processors. Because this
reaction occurs in the gas phase, the CFC MC method was
not used; only single stage insertion and deletions were
needed. Move attempt probabilities matched that for integer
insertions and deletions in the MTBE system.

4. Results and Discussion

To determine what effect, if any, calculating long-ranged
electrostatic interactions via the Ewald summation method
rather than the reaction field method, the Gibbs ensemble
MC simulations were conducted to compute pure component
vapor-liquid equilibrium. Table 1 displays the comparison
between this work and that reported by Lı́sal et al. Isobutene
equilibrium bulk properties of this work agree with that of
Lı́sal et al. to a high statistical precision. Interestingly, the
properties of methanol and MTBE agree less perfectly,
although in general the results are similar. Given that the
methanol and MTBE models have partial charges while the
isobutene model does not, the differences may be due to
the fact that Lı́sal et al. used the reaction field method for
calculating long-ranged electrostatics, while the Ewald
summation method is used in the current work. Overall the

agreement of single-component bulk properties is sufficient
to proceed with comparison of the reaction ensemble method.

RxMC simulations were performed for three different
initial mol ratios r of isobutene to methanol in both the gas
and liquid phase at 360 K and 5 bar. Equilibrium properties
were calculated in the vapor phase for r ) 0.34, 0.51, and
0.67 and in the liquid phase for r ) 0.51, 0.67, and 1.0.
Data were first collected using single-step insertions and
deletions using eq 24. A comparison of the present work
with that of Lı́sal et al. is shown in Figure 2. Immediately
apparent in the figure is how the environment affects reaction
equilibria. The presence of intermolecular interactions in the
condensed phase that are not found in the vapor phase shifts
the reaction toward the right, resulting in more MTBE and
less isobutene and methanol at equilibrium. Equilibrium
compositions for the vapor phase obtained in the present
study are in close agreement with the work of Lı́sal and co-
workers, but there is a noticeable discrepancy in data for
the liquid phase.

To probe the discrepancy between the liquid equilibrium
composition predicted using eq 24 and that of Lı́sal et al.,
additional simulations were carried out at the same conditions
in Figure 2 but using the acceptance rule of eq 25. Table 2
contains these results. Using eq 25 as the acceptance rule
for a reaction move, condensed phase equilibrium mole
fractions closely match the values reported by Lı́sal et al.
However, both the liquid molar volume and vapor phase
mole fractions match less well with the values of Lı́sal et al.
Discrepancies may be due to differences in the treatment of
electrostatic long-range corrections; the present work uses
the Ewald summation technique, while Lı́sal et al. utilized
the reaction field method. As this is the only difference
in the method to calculate the data of the present work and
that of Lı́sal et al., it would appear to be fortuitous that the
current vapor-phase reaction results calculated using eq 24
matches the data of Lı́sal and co-workers. Regardless, the
differences in equilibrium concentrations calculated using

Table 1. Single-Phase Vapor-Liquid Equilibrium Data
Computed From Gibbs Ensemble Simulationsa

T PLSN
sat PRM

sat phase V LSN V RM VLSN VRM

Isobutene
350 10.5188 10.3232 g -1.1111 -1.094 2266225 233296

l -15.4718 -15.474 111.513 111.53

320 5.1350 5.2136 g -0.597 -0.604 4635514 4602353

l -16.8916 -16.884 103.79 103.83

Methanol
450 24.07267 21.5388 g -5.9457 -6.2237 660.8388 774.0437

l -21.3969 -24.069 66.18365 59.2268

420 13.23208 15.7868 g -5.0261 -4.4633 118495 163646

l -24.9533 -26.904 54.78106 52.898

MTBE
480 19.26100 20.6570 g -2.7921 -0.9423 1465105 1309101

l -17.5536 -15.6416 170.434 167.516

440 10.0837 10.6126 g -1.4321 0.364 2932364 279047

l -20.2727 -18.342 150.519 150.02

a V, V, Psat is the potential energy in kJ/mol, molar volume in
cm3/mol, and saturated vapor pressure in bar, respectively.
Subscripts LSN and RM correspond to the work of Lı́sal et al. and
the present work, respectively. Temperatures are in Kelvin.

2C3H6 T C2H4 + cis - C4H8 (32)

cis - C4H8 T trans - C4H8 (33)

Figure 2. Triangular composition simplex for MTBE synthesis
at T ) 360 K and P ) 5 bar. Diamonds and triangles
correspond to liquid- and vapor-phase equilibrium composi-
tions, respectively. Open symbols correspond to the work of
Lı́sal et al.,20 and filled symbols correspond to this work.
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eqs 24 and 25 clearly demonstrate the importance of a correct
formulation of the acceptance rule.

To validate the equilibrium molar concentrations calculated
in the present work using eq 24, satisfaction of eq 1 was
tested. The total chemical potential is given by

where µi
ex is the excess chemical potential of species i. The

MTBE synthesis reaction is of the form A + B T C,
therefore a residual value R was defined

Equation 34 inserted into eq 35 yields

where P0 ) 1.0 atm is the standard state pressure and K0 )
1.9823 is the ideal gas equilibrium constant at 360 K. The
ideal gas equilibrium constant is related to molecular partition
functions through eq 4 and the following equation:

The residual in eq 36 was computed at equilibrium
compositions resulting both from using eq 24 as well as eq
25 for two initial conditions: r ) 0.34 in the vapor phase
and r ) 1.0 in the condensed phase. Values for these
calculations are reported in Table 3. In the gas phase, the
excess chemical potential of each species was computed
using the Widom insertion method.31 In condensed phases
the Widom insertion method is known to be inefficient and

at times incorrect.34 Therefore an expanded ensemble method
was used in this case.35,36 During an RxMC simulation, 1000
equilibrium snapshots of the vapor phase were collected.
Postsimulation, four independent sets of Widom insertions
were performed. An independent set consisted of 1 × 105

insertions for each snapshot of the system. To calculate
excess chemical potentials in the liquid-phase, four inde-
pendent expanded ensemble simulations were performed for
each species at the compositions of interest. Each simulation
contained 15 subensembles and was run for 80 × 106 MC
steps. The residuals corresponding to use of eq 24 in both
vapor and liquid phases are 0 to within error, indicating that
the system is in chemical equilibrium. The residuals corre-
sponding to compositions using eq 25 statistically deviate
from 0, which strengthens the argument that eq 25 is not
formulated in a correct and self-consistent manner.

To clear up any lingering doubts in the current method, a
system devoid of any electrostatics interactions that contains
intramolecular degrees of freedom was examined. Keil and
co-workers15,16 modeled propene metathesis using TraPPE-
UA force fields where atomic degrees of freedom are
encapsulated classically through angle and dihedral energy
terms. The authors formulated acceptance rules in a similar
manner to the present work to be used with configurational
bias techniques and were able to reproduce experimental
results with high accuracy. Conversion of propene to cis-
butene, trans-butene, and ethene in bulk gas at 300, 450,
and 600 K and 5 bar of pressure was calculated. The results

Table 2. Vapor- and Liquid-Phase Equilibrium Properties for the MTBE Synthesis Reaction at T ) 360 K and P ) 5 bara

isobutene + methanol T MTBE

r ) 0.337 0.503 0.671 1.0

acc. rule phase gas gas liquid gas liquid liquid

eq 24 zRM
1 0.047317 0.07879 0.00458 0.121737 0.00827 0.042313

eq 25 zLSN
1 0.04421 0.075228 0.031987 0.119347 0.0475104 0.1119145

eq 25 zRM
1 0.125628 0.194322 0.023250 0.256939 0.038640 0.104218

eq 24 zRM
2 0.67916 0.53805 0.50084 0.408725 0.33235 0.042313

eq 25 zLSN
2 0.67147 0.529514 0.507444 0.405332 0.356870 0.1119145

eq 25 zRM
2 0.70559 0.595911 0.510225 0.499826 0.352827 0.104218

eq 24 zRM
3 0.273623 0.383314 0.494712 0.469663 0.659512 0.915327

eq 25 zLSN
3 0.284628 0.395342 0.4607132 0.475478 0.5957174 0.7762290

eq 25 zRM
3 0.168937 0.209933 0.466674 0.243364 0.608667 0.791536

eq 24 VRM -2.0737 -1.6411 -28.5812 -0.616 -28.013 -27.3221

eq 25 VLSN -2.2234 -1.5724 -26.7251 -1.3116 -23.3639 -23.6735

eq 25 VRM -2.6218 -1.599 -28.1017 -1.119 -27.3628 -25.963

eq 24 VRM 5802107 550835 82.8728 5684308 95.008 115.22

eq 25 VLSN 5152243 5209258 87.06144 5413290 99.0414 117.415

eq 25 VRM 4835170 5388103 82.1226 5313247 93.1943 110.32

a Acc. rule, zi, V, and V correspond to the acceptance rule used, equilibrium mol fraction, molar volume, potential energy, and molar
volume, respectively. Subscripts and units are the same as in Table 1.

µi
tot ) -kBT ln( qiV

Λi
3N) + µi

ex (34)

µC
tot - µB

tot - µA
tot ) R (35)

-kBT ln( �P0V
(NC + 1)

�P0V
(NB + 1)

�P0V
(NA + 1)

K0) + µC
ex - µB

ex - µA
ex ) R

(36)

K0 ) exp(- ∑
i)1

s

νiµi
0

RT
) (37)

Table 3. Equilibrium Chemical Potentials for the
Compositions of RM and LSNa

isobutene(A) methanol(B) MTBE(C) prefactor R

r ) 0.337
eq 24 -0.121 -0.312 -0.261 -0.2826 -0.1126

eq 25 -0.121 -0.398 -0.261 -1.885 -1.649

r ) 1.0
eq 24 -2.1116 -2.664 -4.8818 -0.101 -0.2125

eq 25 -3.0713 -3.5619 -6.3318 -2.261 -1.9730

a Each column has units of kBT. The column labeled “prefactor”
corresponds to the first term in eq 36.
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are shown in Figure 3. Results from the present work equal
that of Keil and co-workers to within statistical precision.
That is to say, the acceptance rule in eq 24 is consistent with
the acceptance rule independently derived by Keil and co-
workers. In addition, the system was simulated at 300 K
using eq 25, resulting in an equilibrium mole fraction for
propene of 0.89. By including the energetic penalty of
creating a dihedral angle, the number of products decreased.
The propene metathesis reaction at the temperatures and
pressures examined in this work occurs at very dilute
concentrations where one would expect mostly ideal behav-
ior. At 300 K in an ideal gas solution, the equilibrium mole
fraction of propene would be 0.657, which is very close to
the results using eq 24.

Finally, the continuous fractional component method
within the reaction ensemble was applied to the MTBE
system. Figure 4 displays the computed equilibrium com-
positions using single stage insertions as well as using the
CFC method. Both methods yield the same concentrations
in both the condensed and gas phases. In the gas phase,
though, it is unnecessary to perform gradual insertions and
deletions because of the low density. Single stage reaction
steps in the gas phase had an acceptance rate of ≈60%. In
the liquid phase, though, single stage reaction steps had an
acceptance rate <0.08%. It is for these systems, where high
density causes most single stage reaction moves to be
rejected, that the CFC method is expected to be most
beneficial. Analysis of the efficiency of the CFC method was
therefore conducted on the condensed phase MTBE synthesis
reaction where the initial ratio of isobutene to methanol
equaled, r ) 1.0.

As stated in the Simulation Details Section, λ space was
divided into 10 equal subsections with each given a weight,
η(λ), calculated during the equilibrium simulation using the
Wang-Landau method.29 These weights are inversely
proportional to the free energies of the subsections, which
allows the simulation to push through any free energy barrier
and sample λ space equally. Figure 5 displays -η as a
function of λ for r ) 1.0. The free energy barrier that needed
to be overcome when gradually inserting a molecule was

≈9kBT, which is large enough that gradual insertion without
a bias function would not be possible.

Both a CFC RxMC simulation using this weighting
function and a RxMC simulation using single stage molecule
insertions and deletions were run for the same amount of
time. Figure 6 displays the number of isobutene molecules
in the simulation box as a function of time for both
methods.The averages of the CFC and the integer method
were calculated to be N1

avg ) 0.041 ( 0.007 and 0.044 (
0.010, respectively. Overall both methods gave statistically
equivalent equilibrium concentrations, yet the integer meth-
od’s uncertainty was larger. This is a result of fluctuations
associated with integer molecule insertions and deletions
being larger than those for CFC.

While the use of the CFC method results in the same
equilibrium concentration as single stage molecule insertions
and deletions, the potential benefit of the method is its
efficiency when insertions are difficult. The single stage

Figure 3. Equilibrium compositions for the propene metath-
esis reaction. Closed symbols correspond to the work of Keil
et al.,15 and open symbols correspond to the present work.

Figure 4. Triangular composition simplex for MTBE synthesis
at T ) 360 K and P ) 5 bar. Diamonds and triangles
correspond to liquid- and vapor-phase equilibrium composi-
tions, respectively, for single stage molecule reaction moves.
Plus (+) signs and × symbols correspond to vapor- and liquid-
phase equilibrium compositions, respectively, for the CFC MC
method.

Figure 5. Inverse Wang-Landau weight for the MTBE
synthesis reaction at T ) 360 K,P ) 5 bar, and initial
isobutene to methanol mol ratio r ) 1.0.
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method achieved acceptance rates under 0.1%. Low ac-
ceptance rates mean that much of the time during simulation
the system does not actually change configuration or density.
The slow growth method allowed for the density to change
gradually and thus more frequently. For all CFC simulations
a maximum ∆λ of 0.3 was used. For λ moves of the first
category (no additions or deletions of molecules) the ac-
ceptance rate was ≈35%. For changes in λ that resulted in
new fractional molecules inserted into the system the
acceptance rate was a little lower at ≈15%. These acceptance
rates change the system configuration and density much more
frequently than the integer insertion method, yet still may
not be the best metric to show the efficiency of CFC MC.
Even though reaction moves may be accepted, they may
result in fluctuations about an integer molecule number, i.e.,
from N1 ) 14.9f N1 ) 15.05f N1 ) 14.97. Two accepted
reaction moves of this type are not comparable to two
accepted reaction moves with the integer method. Therefore
whole number molecule changes within CFC MC calcula-
tions were tracked. A whole number change occurred, for
example, for a system starting at N1 ) 14.9 only if the system
changed to N1 < 14.0 or N1 > 16.0. Using this metric for the
simulation corresponding to Figure 6, the integer method
results in 4283 full molecule changes, while the CFC method
results in 5083 (18.7% greater). Please note that no effort to
optimize the parameters associated with the CFC method
(maximum ∆λ, number of subensembles, attempt probability
for λ moves, Vin and p̂ for preferential bias) has been made,
which may further increase its efficiency. Also it is important
to note that the increase of whole number molecule changes
occurred despite changes in λ being attempted 10 times less
often than in reactions using single stage molecule insertions
(see Simulation Details Section).

5. Conclusions

Acceptance rules have been developed for the reaction
ensemble that enables the simulation of molecules of arbitrary
complexity with flexible intramolecular degrees of freedom.
The acceptance rules have been developed using both a single
stage transformation method as well as a “slow growth”

staged deletion and insertion procedure designed to make
transitions more efficient for large complex molecules. The
approach was tested by simulating two systems previously
examined with RxMC: MTBE synthesis and the propene
metathesis reaction.

For the MTBE system, differences in composition were
observed between the present work and that of Lı́sal et al.20,21

It was shown that most of the discrepancies were due to a
small difference in the acceptance rules used in the two
studies. It is argued that the acceptance rule developed in
the present work should be used when molecules with
flexible intramolecular degrees of freedom are simulated.

For the propene metathesis reaction, the results obtained
in the present study agree quantitatively with those of Keil
and coworked.15 Their formulation of acceptance rules within
the configurational bias sampling scheme is formally identical
to those developed in the present work.

The use of the slow growth continuous fractional
component Monte Carlo method improved computational
and sampling efficiency as compared to single stage
molecule insertions and deletions. While in both cases it
was possible to carry out the simulations without the use
of a slow growth method, it is anticipated that for larger
molecules or those in either a highly confined environment
or a very dense phase, this type of slow growth approach
will be essential.
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Abstract: The 1-D diffusion coefficient associated with a charged atom fluctuating in an ion-
channel binding pocket is statistically analyzed. More specifically, unconstrained and constrained
molecular dynamics simulations of potassium in gramicidin A are studied. Time domain transition
density based inference methods are used to fit simple stochastic differential equations and
also to carry out frequentist goodness of fit tests. Particular attention is paid to varying the time
between adjacent time series observations due to the well-known “non-Markovian noise” that
can appear in this system due to inertia and other unresolved coordinates influencing the
dynamics. Different types of non-Markovian noise are shown by the goodness of fit tests to be
statistically significant on vastly different time scales. On intermediate scales, a Markovian model
is not rejected by the tests; models calibrated at these intermediate scales demonstrate a
predictive capability for some physical quantities. However, in this intermediate regime, ergodic
sampling does not occur over the length of a time series, but a local diffusion coefficient is
deemed statistically acceptable for the observed raw data. It is demonstrated that a linear mixed
effects model can be used to summarize the variation induced by slow unresolved degrees of
freedom acting as a non-Markovian noise source. The utility of quantitative criteria for assessing
low-dimensional stochastic models calibrated from time series generated by high-dimensional
biomolecular systems is briefly discussed. Less coarse-grained data summaries of this type
show promise for better understanding the kinetic signature of unresolved degrees of freedom
in time series coming from simulations and single-molecule experiments.

1. Introduction

Computations of the effective diffusion coefficient associated
with a given order parameter are of interest for various
reasons in complex biological systems.1-6 For example, if
the assumptions required by transition state type theories are
met, then this information can be used to estimate mean first
passage times. Another use of the effective (local or global)
diffusion coefficient is in summarizing the statistics of
unresolved forces in simulations and experiments.7 The
ability to quantify unresolved forces is particularly relevant
to single-molecule experiments where interesting events
occur on time scales below the temporal resolution of the

measurement device.7-11 However, in both experiments and
simulations, several factors complicate unambiguous estima-
tion of the diffusion coefficient, e.g., inertial effects,12

measurement apparatus noise,13,15 and nonergodic sampling
of phase space.14,16,17 Artifacts of these types of factors are
sometimes reflected in a dependence of the estimated
diffusion coefficient on the spacing between adjacent
observations.3,12

In this study, simulations of a potassium ion diffusing in
the binding pocket of a narrow ion channel, gramicidin A
(gA), are analyzed. The ion is allowed to fluctuate in the
primary binding pocket of the channel with and without
external forces influencing the dynamics. Stochastic dif-
ferential equation (SDE) models are fit to time series coming
from these simulations using time domain methods.18 The
gA system is well-studied1,4,17,19-22 and is of interest due
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to the fact that a “memory kernel ” is measurable on
O(fs-ps) time scales. However, solvation effects, channel
undulations, and other phenomena occurring at a broad range
of time scales complicate estimating a single global diffusion
coefficient from O(ns) times series.17,18,22 Particular attention
is paid to the dependence of the global diffusion coefficient on
the time between adjacent observations (this time is known
as the “subsampling” or “downsampling” parameter23-25) and
on the dependence of the local diffusion coefficient on initial
conditions. In cases where the latter effect is found to be
statistically significant, mixed effects models26,27 are used
to provide a less coarse-grained description of the data. In
all cases, goodness of fit tests12,28 are used to assess the
suitability of using a 1-D SDE to describe data arising from
a high dimensional complex system. Beyond demonstrating
methods that provide quantitive summaries of noisy trajec-
tories, it is also shown how the goodness of fit tests can be
utilized to help in determining which models will have
predictive power for quantities of interest (such as the sum
of squared displacements vs time). The techniques shown
are also applicable to experimental time series where
“thermal” and instrument noise exist.13,15 The basic motiva-
tion is to efficiently infer information from experimentally
accessible quantities (like force and position time series)
generated by a complex system where many other degrees
of freedom are not directly resolved but their influence may
be detected indirectly by kinetic signatures contained in the
data.12-14,17,29

The remainder of the article is organized as follows:
Section 2 reviews the SDE model, summarizes the salient
features of the statistical tools used, and provides the
molecular dynamics (MD) simulation details. Section 3
presents the results and discussion, and section 4 concludes
the article. Supporting Information containing additional
mathematical details, a descriptive outline of the fitting
procedure, and additional plots are available online.

2. Background and Methods

Computing the asymptotic slope of the mean square dis-
placement of a freely diffusing tagged particle in a homo-
geneous medium plotted against time is one classic approach
to defining the diffusion coefficient. An equation summariz-
ing this idea reads

where D denotes the “classic” global diffusion coefficient, z
represents the order parameter (here, the position of the
molecule evolving in 1-D), angled brackets denote an
ensemble average, and ∆t is the time elapsed since the initial
observation z(0). Ergodic sampling is usually explicitly or
implicitly assumed.24,30 There are several complications
associated with applying this approach to time series coming
from biomolecules; e.g., z is often confined by a nontrivial
potential, there are unresolved degrees of freedom which
make the dynamics “non-Markovian”, the medium is not
homogeneous, ergodic sampling is difficult to ensure, etc.
Several approaches in the physical sciences have attempted

to deal with some of these complications.3,4,30,31 For
example, under the assumption of stationary ergodic sam-
pling of phase space, one can utilize the autocorrelation
function along with an estimate of the “instantaneous
variance” of the observable being monitored to obtain an
estimate of the global diffusion coefficient.3,30,31 However,
rigorous unambiguous statistical methods for testing the
potential sources of model misspecification given time series
data and an assumed continuous time stochastic model are
often not employed;32 this issue will be expanded on in
section 3.

An alternative approach to quantifying the fluctuations and
computing the “local diffusion coefficient” is to use likeli-
hood-based techniques. For simplicity, an Ornstein-Uhlenbeck
SDE is considered in this article as a surrogate for the
dynamics. In statistical physics, this SDE is often written as

where here the local diffusion coefficient is denoted by D̃.
The tilde is used to emphasize that this is a local diffusion
coefficient associated with a given SDE. ηt represents the
value taken by a mean zero Gaussian process drawn at time
t, and δ(...) is the Dirac δ function, which is meant to suggest
that the “random force” increments are statistically uncor-
related. The parameters R and κ can be interpreted as the
process mean and effective spring constant, respectively.
Defining D̃ does not necessarily require one to appeal to
ensemble quantities (such as a stationary autocorrelation
function3,4) of the system observable(s), as is often the case
with D. The value of D̃ can be estimated along individual
trajectories which may not “ergodically” explore phase
space.12,14,17,33,34 However, physically interpreting D̃ can
require care even if the model is judged statistically accept-
able. D̃ can potentially contain signatures of unresolved
degrees of freedom.14,17 Several methods for estimating D̃
and quantitatively assessing various assumptions behind a
proposed 1-D SDE calibrated from time series of more
complex processes (e.g., in our case, the data are generated
by a high-dimensional MD simulation) have recently ap-
peared in the mathematical statistics and stochastic processes
communities; some examples can be found in refs 18, 23,
35, and 36. In this body of literature, the SDE in eq 2 is
often denoted by the following:

where Bt represents the standard Brownian motion process,37

the subscript denotes the time index, and θ ≡ (R,κ,D̃) is a
vector denoting the parameters needed to specify the process.
[All stochastic integrals and SDEs used for modeling are of
the Itô type.] For a given discretely observed time series,
{zi}i)0

N , the maximum likelihood estimate (MLE) of the
parameter, denoted by θ̂, can be found explicitly for the SDE
in eq 3.18 A guideline outlining some basic recommendations
for fitting more general SDEs to trajectories can be found in
the Supporting Information. A major advantage of utilizing
modern SDE inference tools18,23,35-37 is that unambiguous

D ≡ lim
∆tf∞

〈(z(∆t) - z(0))2〉
2∆t

(1)

dz
dt

) κ(R - z) + ηt

〈ηtηs〉 ) δ(t - s)2D̃
(2)

dzt ) κ(R - zt)dt + √2D̃dBt (3)
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statistical quantities can be computed and various assump-
tions behind a proposed surrogate SDE (possibly more
involved than eq 3) evolution equation can be tested given
data arising from a high-dimensional biomolecular system.12-28

To illustrate the relevance of such statistical inference tools,
consider the following: In the narrow gramicidin A channel
studied in this article, it is known that inertial memory can
complicate using a simple SDE like that given in eq 3 for
accurately approximating/summarizing the dynamics of how
an ion diffuses along the axis of the channel. If data are
sampled every femtosecond, the complex statistical (tem-
poral) dependence in the time series {zi}i)0

N would not permit
an SDE driven by a standard Brownian motion to ap-
proximate the dynamics. In an attempt to “average out” short
time non-Markovian noise and attempt to estimate an SDE
a statistically acceptable proxy, one can introduce a param-
eter, n, which subsamples (a.k.a. downsamples) observa-
tions.23-25,33 For example, one can use the series {zi×n}i)0

N×n

to obtain θ̂(n), where the superscript stresses the subsampling
parameter. As n increases, the influence of inertia and other
fast scale motion decreases, and a process driven by
Brownian motion becomes intuitively more plausible.12

One set of results in this article focuses on varying n and
using the data coming from a high-dimensional biomolecular
simulation to determine the goodness of fit of a simple SDE
model. For frequently sampled data (corresponding to low
n), the results are as expected; in the case of “coarsely”
sampled data (corresponding to high n), slow scale unre-
solved motions will be shown to complicate the use of an
SDE of the form given in eq 3 (or 2) to approximate statistics
of the underlying complex system. Note that N × n is
selected to be relatively small compared to the total time
series size generated by the MD simulation. Hypothesis
testing machinery, with adequate power in small samples,
is useful for quantitatively determining when a simple
Markovian SDE governing the dynamics is statistically
acceptable given data coming from a more complex system.

The primary mathematical equations utilized in the statisti-
cal analysis are deferred to the Supporting Information;
however, the basic idea behind the goodness of fit test
statistics is sketched here. The time series arising from the
system of interest, {zi×n}i)0

N×n, likely possess nontrivial
temporal dependencies.14,17,33,34 Carrying out goodness of
fit tests that reliably check for temporal dependencies not
implied by the assumed surrogate model class can be
problematic.28,38,39 However, if the data generating process
is posited explicitly, it is possible to introduce a transforma-
tion utilizing information about all moments assumed by the
proposed model which maps a correlated, stationary or
nonstationary, time series to a new series of random
variables, {Zi×n}i)0

N×n (the transformed series is denoted by a
capital letter). Under correct model specification, the Zi’s are
independent and identically distributed (iid) random variables
with a uniform U[0,1] distribution regardless of the depen-
dence structure.35 The transformation with these properties
does not require asymptotic arguments, and hypothesis tests
can be established which simultaneously check if the
transformed Zi’s are iid and have the U[0,1] shape. [However,
it is emphasized that the transformation requires that the data

generating process be exactly known for the precise results
to hold; if a parameter(s) needs to be estimated from data,
then some technical complications are encountered.35,38].
Deviance from either condition suggests the surrogate SDE
is not faithful to the data. Hong and Li proposed the so-
called “omnibus” Q test statistic (relevant equations reported
in Supporting Information) which jointly checks both the
iid and U[0,1] shape assumption. Such “omnibus” tests can
sacrifice some power,40 but tests which focus more on the
independence assumption (and loosely “focus” on non-
Markovian errors) can be employed. The M test in ref 35 is
one such test. It does not check for the U[0,1] shape but
instead focuses on autocorrelations in moments of the Zi’s.
The utility of both test statistics in analyzing time series
possessing noise coming from many time scales will be
presented.

It should be stressed that increasing n does not necessarily
guarantee that a single SDE of the type given in eq 3 will
provide a statistically acceptable model of the stochastic
dynamics of an ion in a binding pocket. This will be
demonstrated explicitly in the Results and Discussion section.
For cases where ergodic sampling does not occur, but a local
SDE model is deemed appropriate by some criterion at a
given time scale, quantification of the influence of initial
conditions on the estimated local diffusion is of interest. To
accomplish this, the framework of mixed effects models will
be used.26 The setup is as follows:

The more technical details of the model are deferred to
the Supporting Information; the physical motivation for the
terms above is described here. µD̃ denotes a fixed-effect
population mean of the local diffusion coefficients, and bi

D̃

denotes a random-effect specific to initial condition i. NIC

represents the number of initial configurations (ICs) analyzed,
where an IC is defined by the position of all atoms in a
simulation. NRep denotes the number of repeat experiments
for a given fixed IC (the position of all atoms is fixed, but
different initial velocities are used), and εi,j represents
“sampling noise”. The significance of the random term (i.e.,
dependence on initial conditions) is tested using both the
Akaike Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC). Because ergodic sampling may not
occur, the random-effect, i.e., variation due to the initial
conditions, may be statistically significant.

2.1. Simulation Details. The NAMD41 simulation pack-
age with parameters used originally in ref 5 and then in ref
17 is used. The temperature was set to 310 K, the pressure
was maintained at 1 atm. The only significant difference in
the simulations reported here is that the harmonic guiding
potential is not used to “steer” the ion in a time-dependent
fashion. A configuration where a single potassium ion was
located in the binding pocket was used as an initial condition.
This initial configuration was equilibrated for 1 ns of
simulation time (without external force). After this equilibra-
tion, an ensemble of production runs carried out for 6 ns

D̃i,j ) µD̃ + bi
D̃ + εi,j

i ) 1, 2, ..., NIC

j ) 1, 2, ..., NRep

(4)
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was used to generate additional “equilibrated” initial condi-
tions (the tagged ion remained in the binding pocket for this
time period). Every 10 fs, the position of the ion along the
channel was output to disk; this sampling frequency corre-
sponds to the parameter n ) 1 in the expression {zi×n}i)0

N×n.
The constrained runs used the same initial conditions as the
unconstrained runs.

3. Results and Discussion

A representative trajectory obtained while monitoring the
ion’s position along the axis channel is plotted in the top
left panel of Figure 1; the bottom left panel zooms in on a
segment to show the fine temporal structure. The illustration
to the right is a snapshot of the channel (lipid molecules
omitted from the plot for clarity). The center of the dimer
channel defines the zero of the z coordinate. The binding
pocket near z ≈ -1 nm is relatively shallow (it is computed
to be ≈ 5kBT) but deep enough to allow the ion to be trapped
for a substantial amount of MD simulation time. The 1-D
potential of mean force (see Supporting Information Figure
1) used to describe z is clearly not a perfect harmonic
potential nor does the PMF capture all of the information
needed to understand the rich dynamics,17,20,22 but it does
describe the average location of a trapped ion fairly well
over a 1-9 ns window. Note that the primary interest
throughout is in the unconstrained case, but simulations
utilizing a harmonic guiding potential are also studied to
demonstrate that the findings are not solely an artifact of an
anharmonic potential.

Figure 2 plots D̃ as a function of n for time series batches
each consisting of N ) 100 observations (in this plot, a total
of 6 × 105 time series entries were analyzed). If n increases,
while at the same time the number of (uniformly sampled)
time series observations, N, is fixed, this clearly implies that

the time series batches constructed using a larger n are
associated with a larger time between observations (and also
a larger final time horizon). The logarithm of the time
between adjacent entries of the (uniformly spaced) time
series, denoted by ∆t ≡ nδt, serves as the x axis in Figure
2. δt corresponds to the spacing associated with n ) 1 (δt
) 10 fs throughout). The local effective diffusion coefficient,
D̃, estimated in this fashion displays a nontrivial trend with
the “coarse-graining” parameter ∆t. Dependence of D̃ on ∆t

Figure 1. Sample trajectories coming from MD simulation. The bottom panel zooms in on the top panel time series to emphasize
that the local mean changes in a nontrivial fashion (i.e., the potential is not a single harmonic well). In this article, we focus on
the binding pocket near -1 nm. The system snapshot was generated with VMD.48

Figure 2. Estimated local diffusion coefficient for different
“downsampling or subsampling” intervals. The average MLE
computed from a time series appears as a symbol for a given
∆t value. The solid line represents the sample mean (2 times
the sample standard. It should be noted that every observation
was utilized, similar to the approach used in ref 23, but
correlation in the time series does make these confidence
intervals suspect. However, the trends observed in the MLE
confidence bands computed are similar to those expected
asymptotically if the underlying SDE was the data generating
process.18
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can either be a sign of “memory” due to inertial effects4

and/or a sign of a “poor reaction coordinate”.2 Note that for
larger ∆t, D̃ appears to level off to a value of ≈3.0 ( 1.9
Å2/ns (≈ 0.030 ( 0.019 nm2/ns); this “convergence” may
seem to suggest that diffusive motion is an adequate
approximation of the dynamics on this coarser time scale. It
is interesting to also observe that the global diffusion
coefficient estimated using a method3 appealing to an
integration of the empirically measured autocorrelation
(obtained using a 9 ns MD trajectory sampled every 10 fs)
and an empirical estimate of the variance is 2.7 Å2/ns. This
is in agreement with the range predicted by the MLE estimate
of D̃ obtained using a simple Ornstein-Uhlenbeck SDE.
Autocorrelation and/or memory is used traditionally in
molecular dynamics.3,4,32 Such methods usually implicitly
assume that various moments are stationary and adequately
sampled.

The apparent convergence of D̃ at larger ∆t and the
consistency of the local diffusion coefficient and the global
diffusion coefficient (estimated using vastly different meth-
ods) might lead one to conclude that this diffusion coefficient
is a reasonable summary of the dynamics which can be used
for predictive purposes (such as computing the sum of
squares of increments or a mean first passage time). The
strong dependence of D̃ on the ∆t for ∆t in the ≈0.05-0.20
ps range would also seem to suggest that this diffusion
coefficient is physically meaningless (or at least nontrivial
to interpret in terms of classical statistical mechanics).

However, the results shown in Figure 3 provide results
suggesting that the above intuition is misleading. Here, results
obtained by computing the “Q” and “M” goodness of fit tests
reported in ref 35 (the relevant equations are reproduced in
the Supporting Information) are plotted using the MLE
obtained using observational data and the assumed SDE
model hoping to approximate the high dimensional process
generating the time series. If the model is correct, then it
can be shown that both statistics asymptotically converge to
mean zero standard normals.35 Some simple finite sample
size correction to the test statistic distribution28 can be made
(one is discussed in the caption of Figure 3); more sophis-
ticated approaches are discussed in ref 38. Models incon-
sistent with the observed data (i.e., model mis-specification)
will result in large values of the test statistic if there is enough
statistical evidence of model inadequacy. Recall that the
omnibus Q test aims to simultaneously check that the
increments of the discretely observed time series follow
the expected distribution shape and have the correlation
structure consistent with the assumed model. In the surrogate
SDEs considered in this paper, the dynamics of z need to be
approximately Markovian for the assumed proxy to be
statistically acceptable. Somewhat surprisingly, the most
plausible Markovian SDE (as judged by both the M and Q)
test statistic occurs at an intermediate ∆t. Various items
related to this observation are explored in the results that
follow.

Figure 4 plots the empirically determined autocorrelation
(AC) function of the force and position taken from three
different MD simulations each spanning 3 ns. The force AC
demonstrates an oscillatory behavior that decays after a fairly

short MD timespan (≈ 0.5 ps). This nontrivial, but quickly
decaying, AC in the force is the motivation for introducing
a “memory kernel” in studies analyzing this channel, e.g.,
ref 4. It is worth noting that in each of the ACs there is a
point near 0.1 ps corresponding to zero temporal correlation.
This point also corresponds to the ∆t (or n) where a
Markovian SDE provides the best fit in regards to the
goodness of fit test statistics studied. Loosely speaking, the
assumptions that inertia can be ignored and the net effect of
unresolved degrees of freedom can be modeled as a mean
zero “random bath force” which can be approximated by a
Brownian motion process become most plausible in this
regime. This also might explain why the Q test has less power
than the M test in this situation: the former focuses on the
shape and statistical dependence between the generalized
residuals computed from zi and zi×n, whereas the M statistic
focuses on the full AC of moments of the generalized
residuals computed from the observed data and the assumed
model. If inertia and other unresolved forces were truly

Figure 3. Goodness of fit tests. Similar to the previous figure
except the corresponding M and Q statistics are plotted. The
dotted lines denote the sample mean (2 times the sample
standard deviation of the test statistic one can expect under
a correctly specified model. The dotted lines were generated
using an iid U[0,1] random variable sequence possessing the
same size as the time series and evaluating Q and M with
this reference sequence; the iid U[0,1] reference sequence
used the same nonparametric estimators as the MD data and
the corresponding computed generalized residuals.
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unimportant and a first order Markovian SDE generated the
observed noisy time series {zi×n}i)0

N×n, then the random force
would need to have all of the statistical properties of a
Brownian motion, namely, iid mean zero increments (not
just uncorrelated increments). In this study, we know a priori
that the zt’s are generated by a dynamical system where many
degrees of freedom are not observed. The force ACs all die
off relatively quickly and also give rise to very similar ACs,
suggesting that the temporal correlation in the force is similar
in each case analyzed. However, the channel has other
unresolved slow degrees of freedom. Note how in Figure 1
the mean level changes after after 10-50 ps. The ion channel
is flexible;17 undulations of the protein and interactions of
the tracked ion with the water chain and other ions in this
narrow channel give rise to a more complex noise source.
Artifacts of the non-Markovian (in 1-D) slow scale motion
are reflected in the position autocorrelation. The three
trajectories analyzed gave similar force ACs but very
different ACs for the position. The shape of the position AC
explains why a simple diffusive SDE is statistically rejected
even at fairly large ∆t values. Note that subdiffusive
processes, e.g., fractional Brownian motion,42 have been
intentionally not considered as surrogates. [The fine structure
apparent in the representative trajectory in Figure 1 suggests
that a mathematically tractable subdiffusive process would

not likely be able pass trajectorywise a goodness of fit test
making full use of the implied conditional density of the
assumed subdiffusive model. This author prefers the use of
physically interpretable Markovian SDEs in part because
measurement noise and other relevant physical features can
be readily accounted for and powerful hypothesis testing
machinery exists in this setting; recall that these tools check
both the conditional distribution shape and assumed temporal
correlations. If one can develop reliable tests checking
various assumptions behind a particular non-Markovian
surrogate and/or can demonstrate that such approaches make
new useful physical predictions in a given system, these
models should certainly be considered as potential surrogates,
but model class selection is not the focus of this article.]

One might inspect the position ACs in the unconstrained
case and argue that the diffusion constant should be obtained
using biased simulations where a harmonic guiding potential
is employed in an attempt to constrain the dynamics close
to a point of interest.3,4 A physical motivation for this
approach is to make the system’s effective drift more closely
resemble that associated with a 1-D harmonic potential and
focus attention on the resulting effective diffusion.4 Results
using kharmonic ) 40 kcal/mol/Å2 and adding the biasing
potential Ubias(z) ) kharmonic/2(z + 11 Å)2 to the MD evolution
equations are reported to demonstrate that many of the
previous complications observed before do not go away. The
constrained results are qualitatively similar to those observed
in the unconstrained case (see the Supporting Information);
the one notable difference is in the position ACs. When three
separate 3 ns constrained runs are analyzed, the resulting
ACs obtained demonstrate “better” ergodic sampling in the
sense that now the position ACs overlap substantially (see
Figure 5). The global diffusion coefficient estimated using
the method in ref 3 (using a 9 ns trajectory) was found to be
13.88 Å2/ns and that obtained using the OU model was D̃
) 10.53 ( 3.64. Both diffusion coefficient values reported
here are in close agreement with those reported in refs 4
and 17, computed using different computational methods also
utilizing constrained simulations. Reference 4 used a memory
kernel, whereas the values estimated here employed a

Figure 4. The measured force (top) and position (bottom)
autocorrelation (AC) functions. Three different trajectories (one
AC corresponding to each) were used to compute the various
ACs. Note that the time lag units are different on each x axis.

Figure 5. The position AC measured from three different 3
ns runs carried out in the presence of a constraining potential
(see text). The inset shows the long time behavior, and the
main portion of the figure zooms in only on early times.
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Markovian SDE with downsampling (using n ) 100) in one
approach. The other computational method3 reported in this
paragraph utilized information extracted from the “con-
verged” position AC.

Although these formal methods provide diffusion coef-
ficients which are in agreement with one another, this does
not imply that the computed quantity is consistent with
observed trajectories. The Supporting Information shows that
even for fairly large n or ∆t even Markovian SDEs with the
“correct” diffusion coefficient are still rejected using the M
and Q tests in the constrained case. The agreement between
formal methods for computing the effective diffusion coef-
ficient does not imply predictive ability either. Furthermore,
one is usually interested in computing the diffusion coef-
ficient of the unconstrained system and using this result for
predicting various physical quantities; so the artifacts ob-
served in the unconstrained simulations should be dealt with
in a surrogate model. That is, nontrivial fluctuations (or their
damping rate) can make important contributions to forecasted
events. One theme advocated in this article is that formal
methods for computing the diffusion coefficient should be
consistent with observation in some quantifiable sense and/
or be able to make predictions (outside of the fitting criteria)
of events occurring over time scales of interest. If neither
criteria can be met, one should consider “non-traditional”

approaches to computing the diffusion coefficient. For
example, recent studies43,44 demonstrated that the effective
friction (which was related explicitly to the diffusion through
the fluctuation dissipation theorem) of a coarse-grained model
calibrated from observational data coming from high dimen-
sional steered molecular dynamics simulations of a grami-
cidin channel could be used to predict mean first passage
times under zero external force; the success of this approach
relied on inferring the effective friction and force from a
physically motivated fitting criterion different than formal
procedures typically used in classic chemical physics com-
putations.44 Consequences of the fact that intermediate ∆t’s
(in the 0.1-0.2 ps range) yield the best SDE proxy in the
unconstrained case in the gA system studied here, in regards
to both goodness of fit to the observed data and the predictive
ability of statistics of the complex systems, for the regimes
studied is the focus of the next two set of results. These
findings also demonstrate that classic formal definitions of
the diffusion coefficient should be reconsidered in low
dimensional models or summaries of complex dynamical
systems.

In order to demonstrate that simple SDE models calibrated
at intermediate ∆t values possess some predictive ability,
Figure 6 plots the sum of squared displacements, SSD(t;n):
) 1/2∑i)0

Nsim(t) (z(i+1)×n - zi×n)2, coming from the MD simula-

Figure 6. The percent error in the sum of squared displacements (top) and the raw observed and predicted sum of squared
displacements (bottom). “In-sample” and “out-of-sample” data were analyzed (see text). The percent error was computed using
(SSDobserved(t) - SSDpredicted(t))/SSDpredicted(t) × 100.
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tions and the straight line predicted by using the estimated
D̃; Nsim(t) corresponds to the number of time ordered
observations generated by the MD simulation up to time
t. Two regimes are studied, the intermediate regime
providing the best fit, as judged by the Q and M statistics,
and the larger ∆t ≈ 1.0 ps where the observed effective
drift is low but the Q and M suggest something is askew.
The complex unresolved slow-scale motion prevents a
diffusion model from being statistically acceptable even
for fairly large n (equivalently ∆t). Said differently, the
structured exploration of phase space (see the bottom panel
of Figure 1) cannot be approximated by a process driven
by Brownian motion. In order to demonstrate how these
artifacts influence D̃’s ability to predict SSD, a 3 ns
trajectory of simulation data was used to calibrate the
parameters of the Ornstein-Uhlenbeck model. These
calibration data are labeled as “in-sample”, and another 3
ns of data (not used for parameter estimation) were labeled
“out-of-sample”. The ∆t corresponding to the the lowest
goodness of fit test statistics also provides the best
predictive model. It is worth noting that the “best”
prediction is judged in terms of percent error in the
empirically in and out of sample SSD. In a parametric
MLE estimate, drift and diffusion are both explicitly
accounted for by the likelihood function (and also by the
goodness of fit tests used), but in the SSD, the influence
of the drift can adversely affect the SSD for larger ∆t.
However, the SSD plots suggest that these effects are not
too dramatic. The rejection of the Ornstein-Uhlenbeck
SDE calibrated using n ) 10 with a moderately small
sample size (N ) 100) may be due to subjecting the model
to an overly stringent hypothesis test; i.e., the errors in
the SSD may be acceptable for a practical approximation
in the physical sciences. However, it is nonetheless useful
to know that the errors observed when using a diffusion
approximation to describe increments of a more complex
process are systematic and not simply sampling errors.
Admittedly, predicting the SSD associated with the ∆t
yielding the best classic diffusion approximation may not
be of interest in chemical applications per se. However,
knowledge of the time scale where random forces can be
approximated by a diffusion type processes has proven
useful in making predictions relevant to nonequilibrium
potential of mean force computations.17

It should be explicitly pointed out that the statistician’s
tenet of “thou shalt not waste data” was adhered to; i.e., even
though subsampling occurred, each observation was eventu-
ally used for parameter estimation, e.g., see ref 23. In Figure
6, the slope of the line was predicted using the population
average parameter observed using every observation in a
single trajectory. The physical intuition behind using the
population average implicitly assumes ergodic sampling (i.e.,
time averages are close to ensemble averages16,45). However,
given that larger n eventually results in a rejected model, it
would be interesting to see if there is enough statistical
evidence to suggest that the estimated D̃ depends significantly
on the full set of initial conditions for intermediate n. In in
attempt to quantify this effect, sometimes referred to as
“dynamic disorder”,45 the mixed effect model given in eq 4

was fit to the inferred local diffusion coefficient data. More
specifically, an attempt was made to quantify if the variability
induced by different initial conditions (drawn from a Boltz-
mann distribution) can be detected in the presence of
sampling uncertainty. NIC ) 20 common position initial
conditions were taken from the equilibrated initial condition,
and the position coordinates were recorded every 100 ps in
unconstrained simulations. From these multiple IC position
files, NRep ) 10 different random number streams and
velocities’ ICs were used to generate NRep short MD
trajectories (i.e., a total of NRep × NIC ) 200 trajectories of
size N ) 100 were analyzed). The subsampling parameter
used here was n ) 10 (corresponding to the “best” models
as determined by the goodness of fit analysis presented
earlier), and observations were recorded for each IC. The
previous set of results demonstrated that quantities depending
only on intermediate spacing between adjacent time series
entries (recall that this spacing was quantified by ∆t ) nδt)
had predictive ability. For these sampling parameters, there
was sufficient evidence indicating the statistical significance
of the random effect. The p value obtained when testing a
mixed effect model versus a pure fixed effect reference model
(bi

D̃ was forced to be zero) was 0.043 (suggesting that the
fixed effect model was suspect). The AIC and BIC also
suggested that the random effect in the mixed effect model
was statistically significant. In terms of statistical mechanics,
this translates into the statement that variation induced by
the different ICs is statistically significant; the distribution
observed in the estimated local diffusion coefficients cannot
be attributed to sampling uncertainty alone. A more intuitive
demonstration is presented in the box plots of Figure 7 where
NIC ) 20 different box plots are displayed. This lack of
ergodic sampling might cause one to claim that this is “the
sign of a bad reaction coordinate.” However, it is important
to attempt to make full use of time series information
available; e.g., in single-molecule experiments, the ob-
servables available will likely be “imperfect” reaction
coordinates.

Only fairly simple Ornstein-Uhlenbeck models were
considered in the “practically stationary” regime in this
article. This regime was studied mainly to facilitate the
statistical analysis and demonstrate that nontrivial features
can be detected even in this regime. The transition density,
MLE, and associated limiting distribution can be computed
in this case for the OU model without having to appeal to
additional numerical approximations.18 However, the tools
presented can handle the addition of other features, such as
time dependent external forces13,15,17,29,33,34 and/or position
dependent diffusion in a continuous time nonlinear SDE
model.12,16 The basic findings reported here come through
even on SDE models with additional features. For example,
box plots obtained by estimating the parameters of a
continuous (time and state space) SDE taking position
dependent “overdamped” noise into account12 are shown to
demonstrate that the mixed model analysis did not contain
artifacts of missing position dependence in the local diffusion
coefficient (the p value in the corresponding mixed effects
analysis was 0.0033, and both the AIC and BIC favored the
random effects model).
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4. Conclusions and Outlook

Time domain maximum likelihood (transition density
based) inference methods were demonstrated to be useful
for fitting and assessing the statistical validity of a 1-D
SDE model approximating the dynamics associated with
gramicidin A simulations. Unresolved degrees of freedom
were shown to be detectable on a “fast time scale” (time
series observations were uniformly separated by time
intervals < 0.1ps) where force correlations were found to
be statistically significant4 and also at “slow time scales”
studied (time between adjacent observations ranging from
0.8 to 60 ps). At intermediate time scales, a collection of
local SDEs was shown (1) to be a better statistical
summary of the data as measured by goodness of fit tests
which made use of the entire assumed conditional
distribution and time correlations, (2) to contain enough
statistical evidence to indicate that nonergodic sampling
was occurring (the mixed effects model approach was also

shown useful in quantifying the degree of the initial
condition dependence), and (3) to have predictive capabil-
ity for out-of-sample data; it should be noted that the
predicted quantity was not used as a fitting criterion.

It is not too surprising that solely monitoring the axial
location of a tagged ion is problematic in defining a 1-D
diffusion coefficient in an ion channel where channel
undulations, nontrivial solvation effects, and other unresolved
factors modulate the dynamics.2,17,20,45 These factors can
significantly complicate estimation of the system’s position
autocorrelation (as shown here and in ref 16) and prediction
of more complex long-term events (such as mean first
passage times). However, assessing the validity of various
simplifying assumptions, such as the suitability of an
assumed Markovian model on a specified time scale35,36

given time ordered observations, will assist in better under-
standing/summarizing the rich information coming from
all-atom computer simulations and single-molecule experi-
ments.12,14,28 The utility of frequentist inferential methods
employing transition density information in analyzing the
effective diffusive noise as opposed to fitting an autocorre-
lation function or only focusing on some other low order
stationary moments was also demonstrated (aspects of this
issue are discussed more extensively in ref 32). In regard to
some traditional chemical physics computations, such as
mean first passage time computations,3,6,46 often computa-
tions of both the effective diffusion coefficient and free
energy differences are required. In such cases, it is possible
that systematic errors in both the classic diffusion coefficient
and free energy estimates can cancel to provide the same
mean first passage time (“rate”) prediction. It is useful to
have reliable criteria for checking various model assumptions
with hypothesis testing machinery.28 The methods presented
here can be used to determine if the implicit assumptions
behind a given coarse system description3,6,46 are appropriate
given observational data. Careful statistical analysis of the
diffusion coefficient can potentially help in assessing the
accuracy of estimated free energy or PMF differences
(indirectly) if one is only given experimental flux measure-
ments. Such analyses can potentially identify factors that may
be confounded in traditional mean first passage time analyses.
If formal definitions for the diffusion coefficient are not
consistent with data and/or unable to make useful predictions,
one should consider alternate approaches for quantifying
“thermal noise”, as demonstrated here and in refs 44 and
45.

With the advent of single-molecule experiments and ever
increasing MD simulation power, it is important to consider
physically interpretable data summaries that possess predic-
tive ability if we hope to fully utilize the wealth of information
coming from these new data sources. The need for models that
have testable criteria which can be applied to both experimental
and simulation time series poses new and exciting challenges
in describing biological systems.12,14,44,47 For simplicity, the
focus here was on a roughly stationary signal [that is, the
moments of the time series were roughly time independent4]
approximated by an SDE with a constant diffusion coef-
ficient, variants of the MLE type of approach are applicable
to nonergodic cases where time dependent external forces

Figure 7. Box plots of D̃. Each box plot corresponds to a
different initial condition drawn from an equilibrated MD
simulation. The top plot corresponds to the Ornstein Uhlen-
beck estimate and the bottom to a position dependent
“overdamped” SDE (see text for additional details).
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are added into the system and the local diffusion coefficient
depends on the value of the order parameter.33,34 Similar
approaches have been demonstrated to be useful in under-
standing experimental data where measurement noise (on top
of thermal noise) is also present.13-15 The magnitude of the
thermal and measurement noise can both be fit from
observational data (these quantities do not need to be guessed
or assumed a priori), and the goodness of fit tests can be
used to determine if a proposed model is appropriate given
the data. For example, one can explicitly test if thermal noise
dominates measurement noise without requiring an implicit
stationarity assumption.14 Fourier transform based methods,
popular in statistical physics, often require such stationary
assumptions, but these can be hard to satisfy in single-
molecule data.13,15 With time domain likelihood based
approaches, dynamic signatures of unresolved degrees of
freedom have been suggested by the estimated position
dependent diffusion coefficient in studies analyzing experi-
mental data where time-dependent forces are added, e.g., see
refs 13 and 14. The type of data summary presented here,
where the entire distribution implied by an assumed surrogate
model is used to assess the fit and a mixed effects model is
used to respect the variability induced by a lack of ergodic
sampling shows promise in understanding complex data sets
arising from future simulations and experiments. Attempts
were made to avoid appealing to “memory kernels”4 or long
memory processes in order to facilitate the physical inter-
pretation of the surrogate SDEs and utilize information that
is experimentally accessible (e.g., force or position). Regard-
less of the type of surrogate model used (i.e., one with or
without memory), mixed effect modeling techniques show
promise as tools for quantitatively summarizing the dynamics
observed when unresolved degrees of freedom are believed
to be important but not directly measurable.34
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Abstract: We present an extended and improved version of our recently published database
for general main group thermochemistry, kinetics, and noncovalent interactions [J. Chem. Theory
Comput. 2010, 6, 107], which is dubbed GMTKN30. Furthermore, we suggest and investigate
two new double-hybrid-meta-GGA density functionals called PTPSS-D3 and PWPB95-D3.
PTPSS-D3 is based on reparameterized TPSS exchange and correlation contributions; PWPB95-
D3 contains reparameterized PW exchange and B95 parts. Both functionals contain fixed
amounts of 50% Fock-exchange. Furthermore, they include a spin-opposite scaled perturbative
contribution and are combined with our latest atom-pairwise London-dispersion correction
[J. Chem. Phys. 2010, 132, 154104]. When evaluated with the help of the Laplace transformation
algorithm, both methods scale as N4 with system size. The functionals are compared with the
double hybrids B2PLYP-D3, B2GPPLYP-D3, DSD-BLYP-D3, and XYG3 for GMTKN30 with a
quadruple-� basis set. PWPB95-D3 and DSD-BLYP-D3 are the best functionals in our study
and turned out to be more robust than B2PLYP-D3 and XYG3. Furthermore, PWPB95-D3 is
the least basis set dependent and the best functional at the triple-� level. For the example of
transition metal carbonyls, it is shown that, mainly due to the lower amount of Fock-exchange,
PWPB95-D3 and PTPSS-D3 are better applicable than the other double hybrids. Finally, we
discuss in some detail the XYG3 functional [Proc. Nat. Acad. Sci. U.S.A. 2009, 106, 4963],
which makes use of B3LYP orbitals and electron densities. We show that it is basically a highly
nonlocal variant of B2PLYP and that its partially good performance is mainly due to a larger
effective amount of perturbative correlation compared to other double hybrids. We finally
recommend the PWPB95-D3 functional in general chemistry applications.

1. Introduction

Kohn-Sham density functional theory (KS-DFT)1-5 has
become the “work-horse” of modern quantum chemistry. It
represents a good compromise between computational effort
and accuracy. Whenever costly wave function based methods

are not applicable to a certain kind of chemical problem,
DFT provides a valuable alternative. However, the huge
number of developed density functionals (DFs) to date shows
that current approximate DFT still suffers from several flaws
and that the quest for finding a functional, which comes close
to the “true one”, is still ongoing. In this context, we want
to particularly focus on the fact that not every DF is equally
applicable to every problem (see, e.g., ref 6 for further
information). This makes choosing the right functional for
the right problem a tough task, even for experienced
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researchers in this field. Therefore, we think that the
development of highly accurate and concomitantly robust,
i.e., broadly applicable, DFs is very desirable.

In 2006, an important step toward this aim was the
development of the B2PLYP double-hybrid density func-
tional (DHDF),7 which has its roots in the Görling-Levy
Kohn-Sham perturbation theory.8,9 It combines a standard
hybrid-GGA DFT calculation with a second-order pertur-
bative treatment based on KS orbitals, thus introducing
nonlocal correlation effects or, in other words, information
about virtual KS orbitals. For related precursors of this
method, that mix wave function (WF) and DFT parts, see
refs 10-12. Soon after, several variants of the double-hybrid
idea were published.13-23 The superior performance of
double hybrids compared to common DFs was proven in
many applications.24-40

The most recent study, showing the accuracy and
robustness of B2PLYP, was at the same time the most
thorough one. It was based on the so-called GMTKN24
database, which is a collection of 24 previously published
or newly developed benchmark sets for general main group
thermochemistry, kinetics, and noncovalent interactions.35

It covers atomization energies, electron affinities, ioniza-
tion potentials, proton affinities, self-interaction error (SIE)
related problems, barrier heights, various reaction energies,
particularly difficult cases for DFT methods, relative
energies between conformers, and inter- and intramolecu-
lar noncovalent interactions. We pointed out that the range
of properties covered by the GMTKN24 data set outper-
forms, to the best of our knowledge, all other combinations
of databases that had been previously proposed. The
GMTKN24 database’s composition reflects many years
of experience in benchmarking and in the application of
DFT methods to “real-life” chemical problems. Our further
positive experience with GMTKN24, since its publication,
encouraged and confirmed our first impression that it is
highly representative for chemistry (excluding transition
metal compounds). Any quantum chemical method, that
performs well for the entire database, can be really
regarded as an accurate, robust, and useful method.

Since the publication of GMTKN24, we regarded six
newly published benchmark sets as useful for giving further
insight into a functional’s applicability and performance.41-43

Furthermore, recent developments and findings made it
necessary to modify three of the original subsets.44,45 Herein,
we present the extended and modified version of GMTKN24,
which is from now on called GMTKN30 and is recom-
mended as a replacement.

With the help of GMTKN30, we want to re-evaluate the
B2PLYP functional and want to compare the results with
the recently published double hybrids B2GPPLYP,15 DSD-
BLYP,20 and XYG3.21 Furthermore, we also present two new
DHDFs, called PTPSS and PWPB95, which are not based
on hybrid-GGA but on hybrid-meta-GGA ingredients. For
these two DHDFs, the perturbative treatment is carried out
within a spin-opposite scaled (SOS) scheme.46,47 When
combined with a Laplace transformation algorithm,48 this
reduces the formal computational cost from N5, with N being
the system size, to N4, which is then formally the same as

the scaling of common hybrid DFs. Similar ideas have
recently been proposed by Scuseria et al. in the framework
of a truncated random phase approximation ansatz combined
with long-range corrected DFT parts (LC-ωLDA+JMP2).49

This manuscript is structured as follows. First, the extended
GMTKN30 database is presented. Second, the background
of double-hybrid density functional theory will be discussed,
with an emphasis on the XYG3 variant, and the new PTPSS
and PWPB95 methods. Together with B2PLYP, B2GPPLYP,
and DSD-BLYP, these methods are then benchmarked
against GMTKN30. Moreover, we want to give an impres-
sion of the functionals’ performance for transition metal
chemistry with the example of carbonyl dissociation reac-
tions. Furthermore, we will suggest a new scheme with which
to determine the s6 scale parameter of the DFT-D3 cor-
rection for DHDFs. We will also study basis set effects,
address critical points recently raised against the DHDF
formalism,45,21,22,50 and shed some light on the XYG3
approach.

2. The GMTKN30 Data Set

The recently presented GMTKN24 database for general main
group thermochemistry, kinetics, and noncovalent interac-
tions covers a large variety of 24 different, chemically
relevant subsets.35 Here, we present an extended version with
six new and three modified subsets. This extended database
is called GMTKN30. In Table 1, short descriptions for each
part of the GMTKN30 database are given, including the
number of entries, a specification of the reference values,
and the relevant citations. Note that none of the reference
data include zero point vibrational energies (ZPVEs) or
thermal (enthalpic) corrections. The type and source of
reference data are given separately for each subset. In total,
the GMTKN30 database comprises 1218 single point cal-
culations and 841 data points (relative energy values). In
Figure 1, an overview of the six additional subsets is given.
For each set, the, on average, easiest and most difficult
reactions (for GGA functionals) are shown. The reference
values and the optimized coordinates of all systems are
available for download from our Web site.51 A detailed
description of the original GMTKN24 subsets is given in
ref 35. In the following, only the changes and additions to
the original database are described.

2.1. The Modified NBPRC Subset. For the GMTKN24
database, a completely new benchmark set, called NBRC,
was introduced.35 It contained six oligomerization and
dihydrogen fragmentation reactions of ammonia/borane
systems. The reason for creating such a set was previous
evidence of poor performance for similar reactions for some
popular density functionals like B3LYP (see, e.g., ref 52).
Recently, we investigated the mechanism of H2 activation
by frustrated Lewis pairs (FLPs).44 In order to validate the
theoretical methods used in that study, a small benchmark
set for H2 activation by three FLP-like model systems was
developed:

PR3
1 + BR3

2 f R3
1P - BR3

2 (A)
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Reaction A describes the formation of the Lewis pairs,
whereas B is their reaction with H2. We considered three
reactions A and B with R1 ) H/R2 ) H, R1 ) CH3/R2 ) F,
and R1 ) CH3/R2 ) Cl. Geometries for these model reactions
were obtained at the B3LYP-D/TZVP level of theory.
Estimated CCSD(T)/CBS reference values for these reactions
were obtained as proposed by Jurecka and Hobza.53 MP2/
CBS54 values (based on cc-pVTZ and cc-pVQZ results) were
corrected by the difference of CCSD(T)/cc-pVTZ and MP2/
cc-pVTZ correlation energies. We added these reactions to
the original set and dubbed the new set NBPRC. In order to
calculate all reaction energies of NBPRC, 21 single point
calculations have to be carried out. The energy range is from
-48.3 to +40.4 kcal/mol. The average absolute reaction
energy is 27.3 kcal/mol.

2.2. Changes to the IDISP Subset. The original IDISP
subset for intramolecular London-dispersion effects of six
large organic systems involves 13 single point calculations
and has an average relative energy of 14.1 kcal/mol.35 In
three cases, we felt it necessary to recalculate the reference

values. The original reference value of 9.4 kcal/mol for the
isomerization of n-undecane to 2,2,3,3,4,4-hexamethyl-
pentane was based on the SCS-MP2/cQZV3P//MP2/TZVP
level of theory.55 We found significant differences between
MP2/CBS (3.9 kcal/mol) and SCS-MP2/CBS (10.0 kcal/mol)
treatments (based on aug-cc-pVTZf aug-cc-pVQZ extrapo-
lations). Thus, we decided to base the new value on MP2.5;
i.e., an MP2/CBS energy is combined with one-half of the
third-order contribution of MP3/aug-cc-pVDZ (carried out
with the group’s own program RICC56). MP2.5 had been
shown to yield accurate results that are in some cases even
comparable to a CCSD(T)/CBS treatment.57 The new refer-
ence value is 8.2 kcal/mol. Furthermore, the reference values
for the folding of the C14H30 and C22H46 hydrocarbons were
recalculated. Originally, the values of -2.2 and +3.6 kcal/
mol were based on MP2/aug-cc-pVTZ//BLYP-D/TZV(p,d)
calculations.24 However, according to MP2/CBS results,
convergence to about 0.5 kcal/mol accuracy is only obtained
after aug-cc-pVTZf aug-cc-pVQZ extrapolations. The new
values are -3.1 and +0.4 kcal/mol, respectively. Because
of the new reference values, the average relative energy for

Table 1. Description of the Subsets within the GMTKN30 Database (New or Modified Subsets Are Emphasized in Italics)

set description # av. |∆E|a ref method reference

MB08-165 decomposition energies of artificial molecules 165 117.2 est. CCSD(T)/CBS b
W4-08 atomization energies of small molecules 99 237.5 W4 c
W4-08woMR W4-08 without multireference cases 83 261.5 W4 c
G21IP adiabatic ionization potentials 36 250.8 exp. d
G21EA adiabatic electron affinities 25 33.6 exp. d
PA adiabatic proton affinities 12 174.9 est. CCSD(T)/CBS

and W1
e, f

SIE11 self-interaction error related problems 11 34.0 est. CCSD(T)/CBS g
BHPERI barrier heights of pericyclic reactions 26 19.4 W1 and CBS-QB3 c, h, i, j, k
BH76 barrier heights of hydrogen transfer, heavy atom transfer,

nucleophilic substitution, unimolecular, and association reactions
76 18.5 W1 and theor. est. l, m

BH76RC reaction energies of the BH76 set 30 21.5 W1 and theor. est. l, m
RSE43 radical stabilization energies 43 7.5 est. CCSD(T)/CBS n
O3ADD6 reaction energies, barrier heights, association energies for addition

of O3 to C2H4 and C2H2

6 22.7 est. CCSD(T)/CBS o

G2RC reaction energies of selected G2/97 systems 25 50.6 exp. p
AL2X dimerization energies of AlX3 compounds 7 33.9 exp. q
NBPRC oligomerizations and H2 fragmentations of NH3/BH3 systems;

H2 activation reactions with PH3/BH3 systems
12 27.3 est. CCSD(T)/CBS g, r

ISO34 isomerization energies of small and medium-sized organic
molecules

34 14.3 exp. s

ISOL22 isomerization energies of large organic molecules 22 18.3 SCS-MP3/CBS t
DC9 nine difficult cases for DFT 9 35.7 theor. and exp. g, j, u, v, w, x, y, z
DARC reaction energies of Diels-Alder reactions 14 32.2 est. CCSDT/CBS q
ALK6 fragmentation and dissociation reactions of alkaline and

alkaline-cation-benzene complexes
6 44.6 est. CCSD(T)/CBS aa

BSR36 bond separation reactions of saturated hydrocarbons 36 16.7 est. CCSD(T)/CBS bb
IDISP intramolecular dispersion interactions 6 13.5 theor. and exp. s, cc, dd, this work
WATER27 binding energies of water, H+(H2O)n and OH-(H2O)n clusters 27 82.0 est. CCSD(T)/CBS;

MP2/CBS
ee

S22 binding energies of noncovalently bound dimers 22 7.3 est. CCSD(T)/CBS ff, gg
ADIM6 interaction energies of n-alkane dimers 6 3.3 est. CCSD(T)/CBS aa
RG6 interaction energies of rare gas dimers 6 0.46 exp. aa, hh, ii, jj, kk
HEAVY28 noncovalent interaction energies between heavy element hydrides 28 1.3 est. CCSD(T)/CBS aa
PCONF relative energies of phenylalanyl-glycyl-glycine tripeptide

conformers
10 1.5 est. CCSD(T)/CBS ll

ACONF relative energies of alkane conformers 15 1.8 W1h-val mm
SCONF relative energies of sugar conformers 17 4.9 est. CCSD(T)/CBS g, nn
CYCONF relative energies of cysteine conformers 10 2.1 est. CCSD(T)/CBS oo

a Averaged absolute energies in kcal mol-1, excluding ZPVEs. b Ref 31. c Ref 15. d Ref 116. e Ref 117. f Ref 118. g Ref 34. h Ref 119.
i Ref 120. j Ref 25. k Ref 121. l Ref 122. m Ref 123. n Ref 124. o Ref 125. p Ref 126. q Ref 127. r Ref 43. s Ref 60. t Ref 40. u Ref 128. v Ref
129. w Ref 130. x Ref 131. y Ref 132. z Ref 7. aa Ref 42. bb Ref 41. cc Ref 23. dd Ref 55. ee Ref 133. ff Ref 58. gg Ref 44. hh Ref 66. ii Ref 67.
jj Ref 68. kk Ref 69. ll Ref 134. mm Ref 135. nn Ref 136. oo Ref 137.

R3
1P - BR3

2 + H2 f [PR3
1H]+[BR3

2H]- (B)

Double-Hybrid-Meta-GGA Density Functionals J. Chem. Theory Comput., Vol. 7, No. 2, 2011 293



the complete subset changes to 13.5 kcal/mol. The energy
range is from -58.5 to +8.2 kcal/mol.

2.3. New Reference Values for the S22 Set. Hobza and
co-workers derived the reference values for the 22 interaction
energies of noncovalently bound complexes (S22 set) within
an estimated CCSD(T)/CBS scheme.58 However, as Sherrill
and co-workers argued, both MP2/CBS values and the
differences between CCSD(T) and MP2 correlation energies
were based on various basis sets for different systems and,
thus, are not consistent throughout the set. Therefore, they
recently estimated new CCSD(T)/CBS data.45 Shortly after
that publication, Podeszwa et al. also proposed new reference
values.59 We considered both proposals carefully and found
the two sets of new reference values to be almost identical.
We will use the energies published by Sherrill and co-
workers. With these revised values, the S22 set has an
average absolute interaction energy of 7.3 kcal/mol. The
energy range is from 0.5 to 20.7 kcal/mol.

2.4. The ISOL22 Subset. Very recently, Huenerbein et
al. published a new benchmark set containing 24 isomer-
ization reactions (ISOL41) of large molecules covering a wide
range of different compounds, like, e.g., a sugar, a steroid,
an organic dye, hydrocarbons, and large molecules containing
heteroatoms. In contrast to the popular ISO34 set,60 which
is also a part of GMTKN24 and GMTKN30, the large size
of the molecules casts an additional light on effects that are
important in “real life” organic chemistry. These are, in
particular, intramolecular London-dispersion effects. Fur-
thermore, charged systems are also considered. Reference
values are based on the SCS-MP3/CBS//B97-D/TZVP levels
of theory. For the present study, we excluded reactions 1
and 4 (see ref 41 for more details) as treating them is very
time-consuming and not feasible in an extensive benchmark
study. Thus, the subset presented herein contains only 22
reactions (44 single point calculations) and is called ISOL22.
The energy range is from 0.5 to 38.1 kcal/mol. The average
reaction energy is 18.3 kcal/mol.

2.5. ALK6. For the development of the new London-
dispersion correction termed DFT-D3, Grimme et al. intro-
duced the so-called ALK6 benchmark set that includes three

decomposition reactions of alkaline metal complexes M8 (M
) Li, Na, K) into their dimers and three dissociation reactions
of alkaline-cation-benzene complexes M+-Bz.43 Reference
values are based on estimated CCSD(T)/CBS calculations.
The complete set comprises 13 single point calculations, and
its average reaction energy is 44.6 kcal/mol. The energy
range is from 19.2 to 83.2 kcal/mol.

2.6. The BSR36 Subset. Recently, Steinmann et al.61

carried out a dispersion corrected density functional study
on 36 bond separation reactions (as introduced by Pople and
co-workers62,63 and also recently investigated by Wodrich
et al.64). These are reactions of different saturated hydro-
carbons [15 (partially branched) chains, five cages, and 16
rings] with methane to yield ethane. As reference values,
experimental heats of formation were taken. However, Krieg
and Grimme revealed that usage of these reference values
led to misleading interpretations regarding different density
functionals.42 They concluded that a theoretical reference is
more appropriate for this test set and computed reaction
energies on the estimated CCSD(T)/CBS//MP2/cc-pVTZ
level of theory. The complete test set was dubbed BSR36.
The set comprises 38 single point calculations and has an
average reaction energy of 16.7 kcal/mol. The energy range
is from 2.4 to 51.4 kcal/mol.

2.7. The ADIM6 Subset. Tsuzuki et al. published esti-
mated CCSD(T)/CBS reference values for the interaction
energies of n-alkane dimers (n ) 1-10).65 Grimme et al.
took the systems with n ) 2-7 for their study of the new
London-dispersion correction and called this benchmark set
ADIM6.42 ADIM6 involves 12 single point calculations and
has an average interaction energy of 3.3 kcal/mol. The energy
range is from 1.3 to 5.6 kcal/mol.

2.8. The RG6 Subset. Grimme et al. used (partially
theoretically corrected) experimental66-69 dissociation ener-
gies of five homonuclear and one heteronuclear rare gas
dimer for the development of DFT-D3.43 This subset was
denoted RG6. It involves 11 single point calculations and
has an average dissociation energy of 0.46 kcal/mol. The
energy range is from 0.08 to 0.79 kcal/mol.

Figure 1. The six new subsets of the GMTKN30 database. For each set, the, on average, easiest (top) and most difficult
(bottom in each box) reactions (for GGAs) are shown.
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2.9. The HEAVY28 Subset. The HEAVY28 benchmark
set by Grimme et al. comprises 28 noncovalent interaction
energies of different heavy element hydrides (e.g., including
hydrides of Sb, Te, I, Pb, and Bi).43 Reference values are
based on estimated CCSD(T)/CBS calculations. Thirty-eight
single point calculations are carried out for the evaluation
of HEAVY28. The energy range is from 0.44 to 3.29 kcal/
mol. Its average interaction energy is 1.31 kcal/mol.

2.10. Weighted Total Mean Absolute Deviation. In our
recent study, we completed the analysis of the GMTKN24
database using an overall statistical evaluation. In the spirit
of the work by Truhlar and co-workers (see, e.g., ref 70),
we defined a weighted total mean absolute deviation (WT-
MAD) to combine all obtained mean absolute deviations
(MADs) for each subset into one final number for a tested
method. We also discussed that such a procedure can be
defined in several ways and that there is no real right or
wrong. After having tested several schemes, we found that
the overall ranking of methods was not altered. In the
scheme, which we finally presented (see eq 1), each of 24
MAD values was weighted by the number of entries (Ni) of
each subset to take into account its size. Furthermore, each
subset was weighted by an additional factor that was
calculated as the ratio between the MADs of BLYP and
B2PLYP-D [i.e., MAD(BLYP)/MAD(B2PLYP-D)] to take
into account the difficulty of a certain subset.

In order to be consistent, and although we will apply the
new DFT-D3 correction in the present study, we decided to
define the WTMAD for GMTKN30 in the same way, i.e.,
with the older version DFT-D. The only difference is that
we introduced the additional constraint that the product of
system size and scale factor of a certain set should not be
larger than one-half of the corresponding value for MB08-
165, i.e., 222.75. Therefore, it is guaranteed that smaller sets
with a large scale factor enter not too strongly. The actual
values for the weighting factors of all 30 subsets are given
in the Supporting Information.

3. Double-Hybrid Density Functional Theory

Double-hybrid density functionals (DHDFs) are situated on
the fifth rung in Perdew’s scheme of “Jacob’s ladder”71 as
they include virtual Kohn-Sham orbitals (here, we also want
to acknowledge that the closely related term “doubly hybrid”
originated from Truhlar and co-workers’ multicoefficient
methods10,11). Compared to hybrid-GGA functionals (fourth
rung), where some part of the exchange functional is
substituted by “exact” (HF) exchange, DHDFs additionally
substitute some part of the correlation functional by mixing
in a nonlocal perturbative correlation. This correlation part
is basically obtained by a second-order Møller-Plesset
(MP2) type treatment based on KS orbitals and eigenvalues.
The first DHDF following this idea is the B2PLYP functional
of Grimme,7 which was soon followed by the mPW2PLYP
functional of Schwabe and Grimme.13 B2PLYP is nowadays

a widely recognized functional, which, in combination with
an empirical London-dispersion term (DFT-D72/DFT-D343),
resulted in being very accurate and robust in several ground-
and excited-state studies.24-40,43 This stimulated further
works, and several modifications of B2PLYP were proposed
in recent years. These are the B2KPLYP, B2TPLYP, and
B2GPPLYP variants by Martin and co-workers, specifically
designed as functionals working well for kinetics, thermo-
chemistry, and general purpose applications.14,15 The repa-
rameterized B2π-PLYP functional of Sancho-Garcı́a and
Péréz-Jimenéz was developed to work particularly well in
π-conjugated systems.16 Head-Gordon and co-workers pro-
posed a distance-dependent scaling of the perturbative
correlation part and developed the variants B2P3LYP and
B2OS3LYP.17 The latter functional includes perturbative
contributions of electron pairs with opposite spins only (in
the spirit of the SOS-MP247 method). Radom and co-workers
proposed a reparameterized restricted open-shell version,
dubbed RO-B2PLYP, for the treatment of open-shell sys-
tems.18 The very recently published DSD-BLYP functional
by Kozuch et al. is a spin-component-scaled variant of the
B2(GP)PLYP approaches, including the DFT-D dispersion
correction.20 Other recently developed DHDFs are the long-
range corrected ωB97X-2 of Chai and Head-Gordon,19 the
XYG3 method of Zhang et al.,21 and its modified versions
XYG3s22 and XYG3o.23 An overview of the different
double-hybrid approaches is given in Table 2.

In this study, we will investigate the B2PLYP, B2GPPLYP,
DSD-BLYP, and XYG3 DHDFs together with our newly
proposed methods PTPSS and PWPB95.

3.1. The B2PLYP and B2GPPLYP Functionals.
B2PLYP and B2GPPLYP follow the same idea and just
differ by amounts of Fock-exchange and perturbative cor-
relation mixing. The first step in a B2(GP)-PLYP calculation
is the generation of Kohn-Sham orbitals from the hybrid-
GGA portion of the DHDF, which is denoted B2LYP or
B2GPLYP (eq 2).

The hybrid-GGA part contains the Becke 1988 (B88)73

exchange EX
B88 combined with nonlocal Fock-exchange EX

HF

and Lee-Yang-Parr (LYP)74,75 correlation EC
LYP. The

aX and aC are mixing parameters for the “exact” Fock-
exchange and perturbative correlation, respectively. A second-
order perturbation treatment (PT2), based on the KS orbitals
and eigenvalues resulting from the B2(GP)LYP calculation,
is carried out yielding the correlation energy EC

PT2 that is
scaled by the mixing parameter aC. Although Brillouin’s
theorem is not valid, only double excitations from the KS
determinant are considered. Single contributions are ne-
glected and indirectly accounted for by the fitted scaling
parameters. Thus, the final form of the B2(GP)PLYP
exchange correlation energy is given by

In the case of B2PLYP, the two mixing parameters were
fitted to the heats of formation (HOFs) of the G2/97 set by

WTMAD ) 1
3091.4

× ∑
i

30

Ni ×
MADi

BLYP

MADi
B2PLYP-D

× MADi

(1)

EXC
B2(GP)LYP ) (1 - aX)EX

B88 + aXEX
HF + (1 - aC)EC

LYP

(2)

EXC
B2(GP)PLYP ) EXC

B2(GP)-LYP + aCEC
PT2 (3)
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using a basis of quadruple-� quality (QZV3P). The param-
eters are aX ) 0.53 and aC ) 0.27. The parameters of
B2GPPLYP were determined after taking into consideration
atomization energies and reaction barrier heights by using
the aug-pc2 and aug-pc3 basis sets. B2GPPLYP contains
larger amounts of Fock-exchange (aX ) 0.65) and pertur-
bative correlation (aC ) 0.36) than B2PLYP. It has been
noted that these two double hybrids still lack an asymptoti-
cally correct description of long-range London-dispersion
effects (aC < 1), although the inclusion of the nonlocal PT2
part already leads to a qualitatively better description
compared to common DFs. Therefore, it was suggested to
combine the functionals with an empirical London-dispersion
correction (DFT-D).24

Very recently, our group proposed a new version of this
correction called DFT-D3, and we will make use of it in the
present study.43 Compared to the previously published
versions,72,76 DFT-D3 contains more “ab initio” ingredients
and is characterized by less empiricism. It also contains
system-specific C6 and C8 parameters, depending on the
coordination sphere of each atom within a molecule. More
details about this correction can be found in ref 43. In the
present context, it is only necessary to mention that the
dispersion correction Edisp includes two atom-pairwise terms:

where RAB is the distance between two atoms A and B in a
chemical system. The asymptotically relevant dipole-dipole
term is scaled by a parameter s6 and additionally contains a
second parameter sr,6, which scales cutoff radii within the
damping function fd,6. The second term is proportional to
RAB
-8 and scaled by a factor s8. For common DFs, s6 is set to

unity to ensure that the DFT-D3 correction has a physically
correct asymptotic behavior. The other two parameters are
fitted to a set of 130 noncovalent interaction energies. For
double hybrids, an s6 value smaller than unity has to be
chosen, because of the presence of the nonlocal PT2
contribution. For B2PLYP, s6 was originally set to 0.5.77

However, herein, we introduce a new scheme to estimate
the s6 value. We consider the three rare gas dimers Ne2, Ar2,

and Kr2 at large distances at which only long-range dispersion
plays a role (7 Å for the neon dimer and 10 Å for the other
two systems). The dispersion energies [i.e., Edisp

CCSD(T) )
Ecorr

CCSD(T)(dimer) - 2Ecorr
CCSD(T)(monomer)] for these systems

were then estimated at the CCSD(T)78/aug-cc-pVTZ79 level
of theory (carried out with Molpro 2009.180), for which an
asymptotically correct RAB

-6 behavior is expected. With the
same basis set, the scaled perturbative dispersion energy of
the considered DHDF (Edisp

PT2) is computed and compared to
that of the coupled cluster treatment as the ratio between
both dispersion energies (Edisp

PT2/Edisp
CCSD(T)). Finally, the average

is taken over the three systems. To obtain the actual s6 value,
this average is subtracted from unity. Thus, an ideal method
that correctly describes long-range dispersion interactions
should have an s6 of zero.

To validate our approach, we made some preliminary
checks with the MP2, SCS-MP2, and SOS-MP2 methods.
The MP2 method underestimates the CCSD(T) energy by
15% for Ne2 but overestimated it by 10 and 18% for Ar2

and Kr2 (see Table S1 in the Supporting Information). On
average, it gives a slight overestimation in the asymptotic
limit, and thus the s6 value is by -0.04 slightly negative.
This overestimation is in accordance with previous observa-
tions (see, e.g., refs 20, 81, 82). The SCS-MP2 and SOS-
MP2 methods underestimate the dispersion energies for all
dimers and have s6 values of 0.18 and 0.30, respectively. If
the spin-opposite scale parameter of SOS-MP2 is set to unity,
we obtain s6 ) 0.47, which is close to the expected value of
one-half (in the asymptotic range, both the same and opposite
spin parts have the same contributions).

After validating our approach, the s6 value of B2PLYP was
determined to be 0.64, which is larger than originally proposed.
The other two parameters sr,6 and s8 were then refitted as
described above and in the DFT-D3 paper. Following the same
procedure, the s6 value of B2GPPLYP turned out to be 0.56.
The resulting values for sr,6 and s8 for both functionals are given
in Table 3. More information about the results for the fit set
used to determine the parameters can be found on our Web
site.51 It is recommended to use these revised parameters in
future B2(GP)PLYP-D3 applications.

3.2. The DSD-BLYP Functional. The very recently
published DSD-BLYP20 functional is closely related to the

Table 2. Overview of Various Double-Hybrid Density Functionals

functional description ref

B2PLYP B88 exchange; LYP correlation; PT2 correlation based on hybrid-GGA part ref 7
mPW2PLYP like B2PLYP, but with mPW exchange ref 13
B2KPLYP reparameterized B2PLYP version for kinetics ref 14
B2TPLYP reparameterized B2PLYP version for thermochemistry ref 14
B2GPPLYP reparameterized B2PLYP version for general purpose applications ref 15
B2πPLYP reparameterized B2PLYP version for conjugated π-systems ref 16
B2P3LYP modified B2PLYP version with long-range PT2 correction

ref 17
B2OS3LYP similar to B2P3LYP, but with SOS-PT2 correlation
ROB2PLYP reparameterized B2PLYP version within an ROKS formalism for treating open-shell systems ref 18
ωB97X-2 ingredients of the B97 functional; long-range corrected; SCS-PT2 correlation ref 19
XYG3 B88 exchange; LYP correlation; evaluated with B3LYP orbitals and densities ref 21
XYG3s/XYG3o modified XYG3 versions to account for basis set incompleteness refs 22 and 23
DSD-BLYP modified B2PLYP version with SCS-PT2 correction; fitted together with DFT-D dispersion correction ref 20
PTPSS reoptimized TPSS exchange and correlation; SOS-PT2 correlation; fitted together with DFT-D3

dispersion correction
this work

PWPB95 reoptimized PW exchange and B95 correlation; SOS-PT2 correlation; fitted together with DFT-D3
dispersion correction

this work

Edisp ) -∑
AB

(s6 fd,6(RAB, sr,6)
C6

AB

RAB
6

+ s8fd,8(RAB)
C8

AB

RAB
8 ) (4)
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B2(GP)PLYP approaches. It also contains B88 exchange and
LYP correlation. However, the perturbative part is now based
on the spin-component scaling idea (SCS-PT2).46 The two
scaling parameters (cO and cS) for the opposite (EC

OS-PT2) and
same-spin contributions (EC

SS-PT2) are, moreover, independent
from the scaling parameter (cC) of the LYP correlation
portion:

The three correlation scaling parameters and the amount
of Fock-exchange were determined with a training set
covering atomization energies, reaction barriers, nonco-
valently bound systems, transition metal compounds, and the
MB08-186 set, which is also part of GMTKN30. Various
basis sets of triple- and quadruple-� quality were used for
this purpose. With an aX value of 0.69, DSD-BLYP contains
even more Fock-exchange than B2GPPLYP. The three
correlation scale parameters are cC ) 0.54, cO ) 0.46, and
cS ) 0.37. During the fitting procedure, the old DFT-D
correction was applied, and the s6 value was also fitted. In
this work, we will make use of the DSD-BLYP functional,
without changing the parameters. However, we will apply
the new DFT-D3 correction and will refer to this combination
as DSD-BLYP-D3. The three parameters were determined
as described above for B2(GP)PLYP and are given in
Table 3.

3.3. The XYG3 Functional. The XYG3 functional rep-
resents a different kind of B2PLYP variant. Instead of self-
consistently creating the KS orbitals from the DHDF’s
hybrid-GGA part, the authors proposed to carry out first a
normal B3LYP calculation. The resulting orbitals and density
are used to evaluate both the empirically adjusted hybrid-
GGA part (nonself-consistently) and the PT2 energy. When
starting to work with the XYG3 functional, we had some
problems with its implementation. We followed the author’s
description in the XYG3 paper.21 According to them, the
XYG3 formula reads

where EX
Slater stands for Slater exchange,83 EC

VWN for the
VWN-LDA correlation,84 ∆EX

B88 for the gradient correction
part of the B88 functional, and ∆EC

LYP for the gradient
correction part of LYP [note that in later publications the
factor (1 - aC) is missing before ∆ELYP].22,23,50 The reason
for our problems seems to be the 100% of VWN correlation
that is mixed in. In fact, we were not able to reproduce the
results published in the XYG3 paper. However, we found

another description of the XYG3 functional in a recent study
by Vázquez-Mayagoitia et al.85 that does not include VWN
correlation. With that description, we were able to reproduce
the results of the original XYG3 paper. This, apparently
correct, formula reads

In principle, XYG3 contains the same ingredients as
B2PLYP and B2GPPLYP, with the exception that a different
scaling of the LDA and semilocal exchange parts is applied.
The three scale parameters aX, a0, and aC were determined
by a fit to the thermochemical data in the G3/99 set by
applying the 6-311+G(3df,2p) basis (aX ) 0.8033, a0 )
0.2107, and aC ) 0.3211). Thus, XYG3 is the DHDF with
the largest amount of Fock-exchange (80.33%). We will later
comment on the magnitude of the PT2 part in XYG3.
Because the orbitals and density result from a different
functional (e.g., B3LYP in XYG3) than the final semilocal
exchange-correlation parts, XYG3 also contains an additional
empirical degree of freedom compared to the other DHDFs.

3.4. The PTPSS Functional. The herein proposed PTPSS
density functional (“P” stands for “perturbative”) differs
basically in four ways from B2PLYP and related methods.
First of all, the key ingredients, i.e., the semilocal DFT parts,
are changed from B88 exchange and LYP correlation to
TPSS86 exchange and correlation. Thus, PTPSS is a double-
hybrid-meta-GGA functional given by

The second major difference is that only contributions of
electron pairs with opposite spin (OS) are included for the
perturbative part EC

OS-PT2, similar to the B2OS3LYP func-
tional. This brings the formal scaling of N5 with system size
down to N4, due to a Laplace transformation algorithm,48 as
first shown for the SOS-MP2 method.47 We observed that
by just neglecting the same spin (SS) terms, the errors for
our fit set (see below) were reduced drastically. It is important
to note here that PTPSS is only competitive at this SOS-
PT2 level, while this is different with the B88/LYP parts
where the same spin part must be included. This observation
is consistent with the fact that (a) LYP does not contain any
same-spin correlation, meaning that it must be considered
by PT2 in a LYP-based DHDF, and (b) the same-spin
correlation energy is not as accurate as the OS contribution
at second order, as indicated by the success of SCS-MP2.46

Thus, when the same spin part is already described well at
the semilocal level by, e.g., TPSS, it seems better to neglect
it in the PT2 treatment also to avoid double-counting effects
entirely.

The third difference is that in previously published DHDFs
only the scale factors for the Fock-exchange and perturbative
correlation were fitted, whereas the semilocal DF parameters
(e.g., � in B88) remained unchanged. Very recently, we
discovered that the results with the TPSS ansatz improve
significantly and become comparable to some results of

Table 3. Parameters for the DFT-D3 Correction

method s6 sr,6 s8

B2PLYP 0.64 1.427 1.022
B2GPPLYP 0.56 1.586 0.760
DSD-BLYP 0.50 1.569 0.705
PTPSS 0.75 1.541 0.879
PWPB95 0.82 1.557 0.705

EXC
DSD-BLYP ) EX

B88 + aXEX
HF + cCEC

LYP + cOEC
OS-PT2 +

cSEC
SS-PT2 (5)

EXC
XYG3 ) EX

S + EC
VWN + aX(EX

HF - EX
S ) + a0∆EX

B88 +

aC(EC
PT2 - EC

LYP) + (1 - aC)∆EC
LYP (6)

EXC
XYG3 ) aXEX

HF + (1 - aX)EX
S + a0∆EX

B88 +

(1 - aC)EC
LYP + aCEC

PT2 (7)

EXC
PTPSS ) (1 - aX)EX

TPSS + aXEX
HF + (1 - aC)EC

TPSS +

aCEC
OS-PT2 (8)
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hybrid-GGA DFs when the seven parameters are refitted
(termed oTPSS, where the prefix “o” stands for “opti-
mized”).35 This observation inspired us in the first place to
develop a double-hybrid based on TPSS, for which also these
seven parameters are adjusted.

The TPSS exchange functional has the following form:

in which εX
LDA is the LDA exchange energy density, σ is the

spin variable (for R and � spin, respectively), and FX
TPSS is

the TPSS enhancement factor

κ is the first functional parameter that is adjusted for PTPSS.
The variable x is given as

where

F is the electron density, p is the square of the reduced spin
variable s, τ is the kinetic energy density, τW is the von
Weizsäcker kinetic energy density, and τUEG is the uniform
gas kinetic energy density. µ, b, c, and e are four additional
functional parameters that were adjusted for PTPSS.

The TPSS correlation functional is a modification of the
correlation part of the Perdew-Kurth-Zapan-Blaha (PKZB)
meta-GGA functional87 and defined as follows

with

and where

Here, � ) (FR - F�)/F is the relative spin polarization. The
TPSS correlation part depends on two parameters. These are
d, as given in eq 13, and �, which is part of the PBE
correlation functional88 εC

PBE and the modified ε̃C (ref 86 gives
a detailed description of all the necessary variables in the
TPSS functional).

The values of the seven parameters of the original TPSS
functional are given in Table 4 in comparison with the refitted
values of oTPSS. We note in passing that, in 2007, Perdew
et al. also published a reparameterized version of TPSS with
different values for µ, c, and e89 (for a redesigned version
termed revTPSS, see ref 90).

The fourth major difference between PTPSS and most of
the preceding DHDFs regards the fitting procedure. Like for
oTPSS, B97-D,72 or DSD-BLYP, PTPSS is fitted in com-
bination with an empirical London-dispersion correction.
Here, we applied the new DFT-D3 scheme.

The fitting procedure was carried out as follows: First of
all, the amount of Fock-exchange was set to aX ) 0.5 and
kept constant. We regard this value as a reasonable com-
promise for both main group and transition metal chemistry.
We think that a too high fraction of Fock-exchange (e.g.,
69% or about 80%, as in DSD-BLYP and XYG3, respec-
tively) makes any DHDF unstable in electronically compli-
cated situations. Evidence for this was already provided for
the B2KPLYP functional in ref 15. The seven TPSS
parameters and the SOS-PT2 parameter aC were fitted in a
standard least-squares procedure. The fit set (dubbed DFT
fit set) is a modified version of the one we already used for
oTPSS.35 It is comprised of a total of 112 energies. These
are 49 atomization energies (47 of the G2/97 set and
additionally the adamantane and anthracene molecules, which
are of a similar size but whose uniformly accurate description
is difficult to achieve with DFs), five total atomic energies,
eight atomic ionization potentials, and seven atomic electron
affinities (taken from the G2-1 set), six noncovalently bound
systems from the S22 set, the (H2O)6 cyclic cluster taken
from WATER27, four rare gas dimers from RG6, and 29
decomposition energies from the MB08-165 benchmark set.
Furthermore, the isomerization reaction from iso- to n-octane,
the Diels-Alder reaction between furane and maleic anhy-
dride to form the endo product, and the decomposition of
Li8 into lithium dimers (from ALK6) were included. The
systems were weighted with different factors for the statistical
analysis. The full set and the weight factors are listed in Table
S2 in the Supporting Information.

During the fitting procedure, the DFT-D3 parameters were
also adjusted. In a prescreening process, we used an s6 value
of 0.5. Later, we readjusted it, as described in section 3.1.
The resulting value is 0.75, which is expected, as the
functional contains less perturbative correlation than others,
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due to the neglect of the same spin part. The sr,6 and s8

parameters were determined as described in the DFT-D3
paper (least-squares fit of a special van-der-Waals (vdW) fit
set). Technically, we performed some fitting cycles for the
electronic PTPSS parameters, then adjusted the DFT-D3
parameters and repeated this several times. The finally
obtained parameter values are given in Tables 3 and 4. For
these values, PTPSS-D3 yielded a root-mean-square devia-
tion (RMSD) of 3.1 kcal/mol for the DFT fit set and 0.50
kcal/mol for the vdW fit set. More information about results
for subsets of the vdW set are shown on our Web site.51

Compared to TPSS and oTPSS, the parameters significantly
change. Also, there are no obvious trends seen when
comparing TPSS to oTPSS and TPSS to PTPSS. Particularly,
the parameters b and e become very small, whereas d shows
a large increase. The SOS-PT2 contribution in PTPSS is aC

) 0.375.
3.5. The PWPB95 Functional. A second new DHDF

approach is dubbed PWPB95-D3. It is based on the
Perdew-Wang (PW) GGA-exchange91 and the Becke95
(B95) meta-GGA-correlation92 functionals (inspired by Zhao
and Truhlar’s PW6B95 hybrid-meta-GGA93). PW exchange
(EX

PW) contains three adjustable parameters bPW, cPW, and dPW.

with

The original parameter values for PW, the modified mPW,94

and the reparameterized PW6B95 functional are shown in
Table 5.

The B95 correlation functional can be divided into one
part treating electron pairs of opposite spin (EC

opp) and another
one for those of same spin (EC

σσ):

with

where EC
PW is Perdew and Wang’s correlation LSDA

functional.95 B95 correlation depends on two adjustable
parameters copp and cσσ. The original B95 and the reparam-
eterized PW6B95 values are also shown in Table 5.

Similar as in PTPSS-D3, the inherent functional parameters
were refitted for PWPB95. PWPB95 also includes an SOS-
PT2 correlation term. Due to the fact that B95 differs between
a same and an opposite spin contribution, two different
approaches for the PWPB95 functional are possible.

In the first one, the entire reparameterized B95 functional
is scaled down by 1 - aC, where aC is the scale parameter
for the opposite spin perturbative contribution:

This approach is in complete analogy with the PTPSS
functional.

A second possibility is to include 100% of reparameter-
ized, same-spin B95 correlation and to just scale down the
opposite spin part by 1 - aC:

We considered both approaches and thoroughly compared
them with each other. Our findings showed that the first
approach yielded much better results for GMTKN30 than
the second one. Thus, we will from now on refer to eq 21
whenever we discuss PWPB95.

PWPB95-D3 contains two adjustable parameters less than
PTPSS-D3. Preliminary tests made it necessary to modify
the fitting procedure compared to PTPSS-D3. Only one fit
set was used with higher weights on noncovalently bound
complexes. The DFT-D3 parameters (sr,6, s8) were fitted at
the same time as the five functional parameters and the scale
parameter aC. Details about the fit set can be found in Table
S3 of the Supporting Information. The amount of Fock-
exchange was also fixed to 50%. The resulting RMSD value
is 2.6 kcal/mol for the fit set compared to 3.6 kcal/mol for
the alternative PWPB95-D3 approach according to eq 22.
The finally obtained parameter values are given in Tables 3

Table 4. Parameters of the TPSS,86 oTPSS,34 and PTPSS Methods

b c e µ κ � d aX aC

TPSS 0.40 1.59096 1.537 0.21952 0.804 0.06672 2.8
oTPSS 3.43 0.75896 0.165 0.41567 0.778 0.08861 0.7
PTPSS 0.15 0.88491 0.047 0.16952 0.872 0.06080 6.3 0.50 0.375

Table 5. Parameters of the PW,91 mPW,94 B95,92

PW6B95,93 and PWPB95 Methods

bPW cPW dPW copp cσσ aX aC

PW 0.0042 1.6455 4
mPW 0.00426 1.6455 3.72
B95 0.0031 0.038
PW6B95 0.00538 1.7382 3.8901 0.00262 0.03668 0.28
PWPB95 0.00444 0.3262 3.7868 0.00250 0.03241 0.50 0.269
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and 5. All DFT parameters are smaller than for PW6B95.
The parameter bPW is significantly smaller than for all other
functionals based on PW exchange (note that this was also
observed for the reparameterized oPWLYP GGA-functional
in ref 35). The SOS-PT2 contribution is, with aC ) 0.269,
smaller than for PTPSS-D3. The s6 value was adjusted as
for the other DHDFs and is, as expected, larger than for
PTPSS-D3 (s6 ) 0.82).

4. Computational Details

All calculations were carried out with a modified version of
TURBOMOLE 5.9 and the original version of TURBO-
MOLE 6.0.96-99 For the GMTKN30 analysis and the fitting
procedures, the large Ahlrichs’ type quadruple-� basis sets
def2-QZVP were applied,100 which yield results quite close
to the Kohn-Sham limit. For the calculations of electron
affinities, diffuse s and p functions (for hydrogen, only an s
function) were added from the Dunning aug-cc-pVQZ basis
sets;79 the resulting set is denoted by aug-def2-QZVP. As
discussed previously,35 one diffuse s and one diffuse p
function (taken from aug-cc-pVQZ) was added to oxygen
in the case of WATER27. We also carried out calculations
for GMTKN30 with the def2-TZVPP set and used diffuse
functions from aug-cc-pVTZ where necessary. To account
for scalar relativistic effects, the heavy atoms in HEAVY28
and RG6 were treated with the effective core potentials ECP-
28 (for Sb-Xe) and ECP-60 (for Pb, Bi, and Rn),101,102

which were slightly modified by Weigend and Ahlrichs and
called “def2-ecp” in Turbomole.100

For all hybrid-(meta-)GGA parts of the DHDFs and for
general hybrid functionals, the resolution of the identity (RI-
JK) approximation was applied.103 For the perturbative parts
of the DHDFs, the RI approximation was used as well.99

Auxiliary basis functions were taken from the TURBO-
MOLE basis set library.104,105 In all cases, SCF convergence
criteria were set to 10-7 Eh. For GMTKN30 calculations,
the TURBOMOLE grid m4 was used, whereas the larger
m5 grid was chosen in the fitting procedure.105 All open-
shell calculations were done within the unrestricted Kohn-
Sham formalism (UKS). The study of GMTKN30 was
carried out with the DHDFs B2PLYP,7 B2GPPLYP,15 DSD-
BLYP,20 XYG3,21 PTPSS, and PWPB95 and as a compari-
son with the hybrids B3LYP106,107 and PW6B95.93 In all
cases except for XYG3, the new empirical London dispersion
correction (DFT-D3)43 was applied, for which a separate
program was used, which is available for download from
our Web site.51

The study of dissociation reactions of transition metal
carbonyls is based on a publication by Hyla-Kryspin and
Grimme.108 To make our evaluation consistent with this
previous publication, we followed the same technical pro-
cedures. All calculations were carried out with a triple-�
Gaussian basis augmented with polarization functions:
(17s11p6d1f)/[6s4p3d1] for the transition metal and (11s6p2d)/
[5s3p2d] for C and O.109 Geometry optimizations were
carried out with the BP86 functional.73,110 Reaction enthal-
pies for the dissociation reactions (for more details, see
section 5.25) were calculated as

where Eelec is the electronic energy, ZPVE is the zero point
vibrational energy, H0f298 is the thermal correction for a
temperature of 298.15 K, and ∆(PV) is the (ideal gas) volume
work. ∆ZPVE and ∆H0f298 were calculated with the BP86
functional by using the SNF111 program and applied for all
tested functionals.

5. Results and Discussion

5.1. The GMTKN30 Database. 5.1.1. Results for
(aug-)def2-QZVP. The MADs and RMSDs for all functionals
obtained with (aug-)def2-QZVP are shown in Tables S4-S11
in the Supporting Information. As both values provide the
same conclusions, only MADs will be discussed in the
following. First of all, the DHDFs are compared with
functionals on the hybrid level. In our study, these are the
B3LYP-D3 and PW6B95-D3 methods. We note in passing
that the latter clearly outperforms B3LYP-D3 and is,
according to our experience, overall one of the best hybrid
functionals on the market.

The graphs in Figure 2 show the ratios between the MADs
of the double-hybrids and the hybrids. This comparison
confirms that all DHDFs outperform the hybrids. The only
exceptions are the noncovalent interactions, for which
B3LYP-D3 is significantly better than XYG3 for S22,
ADIM6, RG6 (factor of 3), HEAVY28, PCONF, and
ACONF. PTPSS-D3 is slightly worse than B3LYP-D3 for
RG6, PCONF, and ACONF. B3LYP-D3 is better than
PWPB95-D3 for HEAVY28. However, in these last four
cases, the PTPSS-D3, PWPB95-D3, and B3LYP-D3 methods
are already within the errors of the reference values, and
thus, this comparison should be interpreted with care. The
comparison between the DHDFs and PW6B95-D3 shows
again that PW6B95-D3 is outperformed in most of the cases
but that the ratios are closer to unity and in a narrower range
than for B3LYP-D3. PW6B95-D3 is, like B3LYP-D3, better
than XYG3 for noncovalent interactions. The high ratios for
the RG6 set, though, are a bit misleading, as all DHDFs,
except XYG3, yield excellent MADs for that set: 0.06
(B2PLYP-D3), 0.05 (B2GPPLYP-D3), 0.07 (DSD-BLYP-
D3), 0.09 (PTPSS-D3), 0.05 (PWPB95-D3), and 0.20 kcal/
mol (XYG3) compared to 0.03 kcal/mol (PW6B95-D3).

After having seen that mixing in a perturbative correlation
generally improves the results compared to fourth-rung
functionals, we concentrate now on a comparison of the
results for the DHDFs. All MADs based on (aug-)-def2-
QZVP calculations can be found in the left column of Figure
3. The MB08-165 set contains very difficult, randomly
created molecular systems and is a very good indicator for
the robustness of a quantum chemical method. B2PLYP-
D3, B2GPPLYP-D3, and PTPSS-D3 are in a same range,
with MADs of about 4 kcal/mol. XYG3 is significantly
worse, with 5.2 kcal/mol (even the PW6B95-D3 hybrid is
better with 4.7 kcal/mol). DSD-BLYP-D3 is a clear im-
provement, with 3.4 kcal/mol. PWPB95-D3 yields the best
MAD ever reported for this test set (2.5 kcal/mol). This value
is in the range of CCSD(T)/cc-pVQZ, that was reported to
yield an MAD of 2.6 kcal/mol.32 This finding can be

∆HR
298 ) ∆Eelec + ∆ZPVE + ∆H0f298 + ∆(PV) (23)
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interpreted as a first hint on the robustness of this functional.
PWPB95-D3 also gives the best MAD for the atomization
energy test set (1.9 kcal/mol). The other five DHDFs are
within a range of 2.4-3.0 kcal/mol and quite similar to each
other. This similarity is in contrast to frequent claims in favor
of XYG3 over B2PLYP, which are based on the calculations
of HOFs.41 Because theoretical HOFs are basically atomi-
zation energies, this discrepancy is at present not understand-
able for us. For ionization potentials, XYG3 yields the best
MAD (1.4 kcal/mol), whereas the other DHDFs are in the
range of about 2.0-2.3 kcal/mol. Electron affinities are
almost equally well described by XYG3, B2PLYP-D3, and
PTPSS-D3, whereas the description is slightly worse for
B2GPPLYP-D3, DSD-BLYP-D3, and PWPB95-D3. A simi-
lar trend can also be seen for proton affinities, with the
exception that PTPSS-D3 and PWPB95-D3 are slightly
worse than the other four methods (note that here delocalized
systems also play a role and that the delocalization error is
expected to be larger the less Fock-exchange is included).

Larger differences in the MADs are observed for SIE-
related problems. The SIE11 set is best described by XYG3
and DSD-BLYP-D3, with 3.1 kcal/mol, followed closely by
B2GPPLYP-D3, with 3.4 kcal/mol. B2PLYP-D3 shows the
worst MAD of the DHDFs, with 4.9 kcal/mol. This trend
follows qualitatively the amount of Fock-exchange that
decreases when going from XYG3 to DSD-BLYP, to
B2GPPLYP, and to B2PLYP. However, PTPSS-D3 and
PWPB95-D3 have the lowest amount of Fock-exchange of
all DHDFs, and their MADs are, with 3.9 and 4.3 kcal/mol,
better than for B2PLYP-D3. A possible explanation might
be the single-electron SIE correction within the TPSS and
B95 parts. The result for the barrier heights of the substitu-
tion, association, and unimolecular and transfer reactions
within BH76 shows a slightly different picture. Here, XYG3,
DSD-BLYP-D3, and B2GPPLYP-D3 are the best functionals
with MADs of 1.1, 1.2, and 1.3 kcal/mol. This time, though,
B2PLYP-D3 and PTPSS-D3 have the same MADs, with 2.5
kcal/mol. PWPB95-D3 gives 1.8 kcal/mol. However, this
picture cannot be generalized to other barriers, particularly
when larger (closed-shell) systems are involved. This is seen

from the results for BHPERI, where XYG3 and PWPB95-
D3 are the worst functionals, with 1.9 kcal/mol, followed
by PTPSS-D3, with 1.7 kcal/mol, by B2PLYP-D3 (1.6 kcal/
mol), by B2GPPLYP-D3 (1.3 kcal/mol), and by DSD-BLYP-
D3 (1.2 kcal/mol).

The evaluation of reaction energies shows a heterogeneous
picture, however, at a generally high level of accuracy. In
some cases, the MADs of all six functionals are close to
each other (e.g., for BH76RC), and in other cases, they differ
significantly (for O3ADD6, AL2X, ISOL22, DC9, DARC,
ALK6, and BSR36). However, no single DHDF is consis-
tently the best one. XYG3 is the best functional in the case
of AL2X and together with DSD-BLYP-D3 for NBPRC.
DSD-BLYP-D3 is, moreover, the best method for DC9 and
BSR36. B2GPPLYP-D3, PTPSS-D3, and PWPB95-D3 re-
sults are often very close, though. Sometimes, XYG3 can
be also the worst functional, and it is comparable to
B2PLYP-D3. The new PTPSS-D3 performs best for ISO34
(MAD ) 0.9 kcal/mol). PWPB95-D3 is the best functional
for O3ADD6 (1.7 kcal/mol, together with B2GPPLYP-D3),
ISOL22 (2.9 kcal/mol), and DARC (1.5 kcal/mol). However,
it has an outlier for ALK6 (4.6 kcal/mol), which is almost
the same value as for B3LYP-D3 and PW6B95-D3 (4.7 kcal/
mol).

The results for the noncovalent interactions test sets are
more uniform. Intramolecular dispersion interactions within
IDISP are best described by PWPB95-D3 (MAD ) 1.2 kcal/
mol), followed by DSD-BLYP-D3 (MAD ) 1.4 kcal/mol),
PTPSS-D3 (MAD ) 1.7 kcal/mol), and B2GPPLYP-D3 (2.1
kcal/mol). B2PLYP-D3 and XYG3 have larger MADs with
3.0 and 3.1 kcal/mol. The water clusters in WATER27 are
best described by XYG3, DSD-BLYP-D3, and PTPSS-D3
with 1.4, 1.5, and 1.6 kcal/mol. PWPB95-D3, B2GPPLYP-
D,3 and B2PLYP-D3 have MADs of 2.4, 2.6, and 2.8 kcal/
mol. The S22 set is best described by PTPSS-D3 with a very
low MAD of 0.25 kcal/mol. It is followed by B2PLYP-D3
(0.27 kcal/mol), DSD-BLYP-D3 (0.28 kcal/mol), B2GPPLYP-
D3 (0.30 kcal/mol), PWPB95-D3 (0.32 kcal/mol), and XYG3
(0.45 kcal/mol). Note that we did not use any London-
dispersion correction for XYG3, as in recent publications it

Figure 2. Ratios of the MADs of different functionals: comparisons between the DHDFs and PW6B95-D3 (left); comparisons
between the DHDFs and B3LYP-D3 (right). All calculations were carried out with (aug)-def2-QZVP. To make the curves better
distinguishable from each other, the curves for the DSD-BLYP functional were left out. The results are in qualitative agreement
with those shown in the figures, though.
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was argued that XYG3 works also very well for dispersion
dominated interactions on its own.21-23,50,85 Indeed, the
overall behavior is not bad at first glance, but the comparison
with the results for the other functionals shows that dispersion
interactions are not fully considered in XYG3. A very
prominent example is the ADIM6 test set, for which XYG3
yields a large MAD of 1.1 kcal/mol, whereas the other MADs
are <0.15 kcal/mol, which is within the accuracy of the
reference method (except for PWPB95-D3, with 0.36 kcal/
mol). Also, for the other subsets (except for PCONF, where
PTPSS-D3 and PWPB95-D3 have MADs of 0.40 and 0.62
kcal/mol), it can be seen that all DHDFs, except XYG3, are
close to the accuracy of the estimated CCSD(T)/CBS

reference values. Therefore, a direct comparison between
these five functionals and a ranking of them is not appropri-
ate. Dispersion corrections for XYG3 in its present form
make no sense because double-counting effects cannot be
avoided for such a highly nonlocal functional that has been
parametrized without such corrections.

To better rationalize the results discussed above, one can
simply count how many times a certain DHDF yields the
best MAD or RMSD for a subset. The results are depicted
in Figure 4. B2PLYP-D3 yields the best MAD in three,
B2GPPLYP-D3 in five, DSD-BLYP-D3 in nine, XYG3 in
eight, PTPSS-D3 in three, and PWPB95-D3 in seven cases.
This picture allows a conclusion that strongly favors the

Figure 3. MADs for PTPSS-D3, PWPB95-D3, B2PLYP-D3, B2GPPLYP-D3, DSD-BLYP-D3, and XYG3 in kcal/mol for the
complete GMTKN30 database with (aug-)def2-QZVP (left column) and (aug-)def2-TZVPP (right column). For the sets to the
right of the dashed lines, the right MAD axes apply.
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DSD-BLYP-D3 and XYG3 functionals. However, if one also
counts how many times a certain DHDF is the worst
compared to the other DHDFs, one obtains a different picture.
B2PLYP-D3 and XYG3 yield the worst MADs in 10 cases
each. PWPB95-D3 follows with eight cases. PTPSS-D3 is
the worst functional in only four cases, B2GPPLYP-D3 and
DSD-BLYP-D3 in one case each. Thus, on the one hand,
XYG3 seems to compete with the DSD-BLYP-D3 method,
but on the other hand, it is also by far outperformed by DSD-
BLYP-D3, B2GPPLYP-D3, and PTPSS-D3 and as bad as
B2PLYP-D3. PWPB95-D3 shows a similar trend but is
slightly better than XYG3 in this analysis. We think that,
besides always obtaining the best MAD for a certain subset,
it is also important that a functional is robust and shows a
uniform accuracy for a whole range of different properties.
Testing for robustness is the main reason why we created
the GMTKN24/30 databases. Particularly, when being chal-
lenged by new chemical problems, it is in our opinion wiser
to use a functional that is more robust. The results shown in
Figure 4 give a hint on this property. The RMSDs on the
right-hand side of Figure 4 allow the same conclusions.
Besides just counting how many times the best or the worst
MAD/RMSD is obtained, we also analyzed how many times
a functional is within a 5% range of the best and worst result.
These trends are comparable to the ones discussed above.

A third statistical evaluation of the results is carried out
by considering the WTMADs (Figure 5). All six double
hybrids have lower WTMADs than PW6B95-D3, the best
hybrid. Again, we observe that the London-dispersion
correction improves the results. B2PLYP-D3 has a WTMAD
of 2.0 kcal/mol, which is the worst, compared to the other
DHDFs. XYG3 is, by 0.1 kcal/mol, better (WTMAD ) 1.9
kcal/mol). PTPSS-D3 yields the same WTMAD. B2GPPLYP-
D3 is, with 1.7 kcal/mol, the third best; PWPB95-D3, with
1.6 kcal/mol, the second best; and DSD-BLYP-D3, with 1.5
kcal/mol, the best DHDF. This again indicates the better
overall performance of DSD-BLYP-D3 and PWPB95-D3.
The new PWPB95-D3 functional is thus a significant
improvement over B2PLYP, XYG3 and B2GPPLYP and a

good alternative to DSD-BLYP-D3, at a much lower
computational cost for large systems and employing less
nonlocality.

5.1.2. Basis Set Dependance. In section 3, it was discussed
that the different DHDFs were developed by applying basis
sets of different quality. The basis set dependances of the
Fock-exchange and perturbative correlation parameters were
already studied.14,15,18 Furthermore, also, a justified question
was raised as to whether a functional fitted with a triple-�
basis set works better in practice with a basis set of similar
quality than a functional developed with a quadruple-�
basis.21-23,50 This is particularly important, as in common
applications, basis sets of quadruple-� quality, as used here,
are not always feasible.

The GMTKN30 database allows us to answer this question
on very solid ground. The right column of Figure 3 shows
the MADs of all 30 subsets obtained with the (aug-)-def2-
TZVPP basis (see also Tables S12-S19, Supporting Infor-
mation). Figure 5 shows the WTMADs with and without
dispersion correction for all tested methods. It can be seen
that the basis set effect for the hybrid functionals is very
small. The WTMADs increase by merely 0.2 and 0.1 kcal/
mol for B3LYP-D3 and PW6B95-D3 (to 3.9 and 2.6 kcal/
mol), and we can conclude that for these functionals the
Kohn-Sham limit is almost reached with the (aug-)def2-
TZVPP basis. The basis set dependence for most of the
DHDFs is stronger, though. Usually, the MADs for
the subsets worsen; sometimes they become slightly better.
The stronger effect can be explained by the presence of the
WF-based perturbative correction. Interestingly, DSD-BLYP-
D3 and B2GPPLYP-D3 results lie closer to each other than
on the quadruple-� level. This can, for example, be seen for
MB08-165, where both functionals yield the same MADs
of 5.1 kcal/mol.

The WTMADs of B2PLYP-D3 and XYG3 worsen by 0.4
kcal/mol compared to the quadruple-� level. B2GPPLYP-
D3 and DSD-BLYP-D3 are even more affected (increase of
0.5 kcal/mol), which is in line with their large PT2 contribu-
tions. PTPSS-D3 gets worse by 0.4 kcal/mol. PWPB95-D3
shows the least basis set dependence (increase from 1.6 to

Figure 4. Analysis of how many times a certain double-hybrid
yields the best and the worst MAD (left) or RMSD (right) for
all subsets of GMTKN30 and how many times a functional is
within a 5% range of the best/worst MAD or RMSD.

Figure 5. Weighted total mean absolute deviations (WT-
MADs) in kcal/mol for all tested methods with and without
dispersion correction. The values are based on (aug-)def2-
TZVPP and (aug-)def2-QZVP calculations.
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1.8 kcal/mol) and is, thus, the only DF that has a WTMAD
below 2 kcal/mol at this basis set level. Thus, at the triple-�
level, the order of accuracy changes. B2PLYP-D3 still has
the largest WTMAD compared to the other DHDFs (2.4 kcal/
mol). XYG3 and PTPSS-D3 have WTMADs of 2.3 kcal/
mol and are followed closely by B2GPPLYP-D3 with 2.2
kcal/mol. DSD-BLYP-D3 is the second best method, with
2.0 kcal/mol. PWPB95-D3 is the best method, with 1.8 kcal/
mol, although it was fitted with a quadruple-� basis. In fact,
this also indicates a higher robustness of PWPB95-D3
compared to the other DHDFs. According to these results,
the answer to the question, whether a functional fitted with
a triple-� basis set gives relatively better results when applied
with such a basis set, is clearly no and thus contrary to claims
in the literature.21-23,50 The WTMADs are just shifted, and
the differences between XYG3 and B2PLYP-D3 are still the
same compared to the quadruple-� results. Our findings, also
contradict recent claims that the basis set dependence of
XYG3 is similar to that of B3LYP.23

5.2. Performance for Transition Metal Carbonyls. In
the theoretical section about the DHDFs, we argued, that
we have chosen the Fock-exchange parameter to be one-
half, so that both, main group and transition metal chemistry,
can be described adequately. As a test of this hypothesis,
we studied the dissociation of one CO ligand in the Cr(CO)6,
Fe(CO)5, and Ni(CO)4 isoelectronic series, which is sensitive
to details of the correlation treatment. Reaction enthalpies
were calculated as described in the computational details
section and are shown in Figure 6. Experimental and MP2
values,108 which were obtained with the same basis set and
the same vibrational and thermal corrections as for the
DHDFs, are also given (see also Table S20, Supporting
Information).

All theoretical methods overestimate the experimental
values. PWPB95, though, is closest to the reference, followed
by PTPSS, B2PLYP, B2GPPLYP, DSD-BLYP, XYG3, and

MP2. As anticipated, the amount of Fock-exchange and the
size of the error are strongly related. Interestingly, the values
for all methods, except for XYG3, are just shifted with
respect to the experiment (the connecting lines in Figure 6
are almost parallel to the experimental reference). This,
however, is not observed for XYG3, for which the chromium
compound is relatively better described than the other two
compounds and the dissociation energy of Ni(CO)4 is
incorrectly computed to be higher than for Cr(CO)6.

5.3. A Comment on the XYG3 Functional. We have
discussed many results for main group chemistry and given
some insight into the functionals’ performance for an
exemplary transition metal reaction. We concluded that
PWPB95 and PTPSS seem to be rather robust functionals
and that also XYG3 seems to perform reasonably well,
yielding good MADs in many cases. In this section, we
further want to comment on XYG3 and give a new
explanation for its good performance.

In their original XYG3 paper, the authors argue that the
hybrid-GGA part of B2PLYP (i.e., B2LYP) does not employ
100% of DFT correlation and that this “truncated DFT”
method yields densities and orbitals “that are dramatically
different from the real ones.” They argue that using B3LYP
densities and orbitals for the evaluation of XYG3 is the key
ingredient for the functional’s good performance, because
B3LYP densities had been shown to be “similar to those
from CCSD(T) wave functions” and because B3LYP has
100% DFT correlation.

We do not agree with this interpretation. Of course, e.g.,
for thermochemical properties, some correlation is missing
in B2LYP. This can be seen, when, e.g., the WTMADs for
the GMTKN30 set for BHLYP112 and B2LYP are compared
with each other (6.7 vs 9.4 kcal/mol). However, the missing
27% LYP correlation does not affect significantly either the
shape of the orbitals or the electron density. On the contrary,
the results for electronic excited states (vertical excitation
energies, oscillator and rotational strengths) are practically
the same for TD-B2LYP and TD-BHLYP, as discussed by
us several times.36-38 The reason for this is the comparable
one-particle spectrum for both methods. BHLYP has the
same ingredients as B2LYP, including similar amounts of
Fock-exchange, and in principle the two methods just differ
by the amounts of LYP correlation. In our context, it is the
amount of Fock-exchange that is the decisive factor for the
orbital energies. In fact, the occupied part for normal
molecules is rather similar for different functionals (and even
overlaps to HF are large).113 The reason for this is the
exchange and not the correlation part! In fact, large differ-
ences are found for the virtual spectrum, which is worse with
B3LYP due to the wrong asymptotic behavior of the larger
(compared to B2LYP) GGA part. This can be also seen from
theoretical electronic spectra, particularly including excita-
tions into (diffuse) Rydberg orbitals.114 Thus, we do not think
that excitations to B3LYP virtual orbitals lead to better results
in a perturbation theory because B3LYP has 100% DFT
correlation. Instead, we tentatively assign part of the
relatively high accuracy of XYG3 for main group problems
to the small amount of Fock-exchange in the orbital
generation step, which improves, e.g., spin-contaminated

Figure 6. Reaction enthalpies (∆HR
298) in kcal/mol for the first

CO dissociation reaction of three transition metal carbonyls.
The values were obtained with the PWPB95, PTPSS, B2PLYP,
B2GPPLYP, DSD-BLYP, and XYG3 methods. Vibrational and
thermal corrections are based on BP86 calculations. A triple-�
basis was applied in all cases [(17s11p6d1f)/[6s4p3d1] for the
transition metal and (11s6p2d)/[5s3p2d] for C and O]. The
experimental and MP2 values are taken from ref 108.
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problems (see also ref 115 for a recent investigation that
also compares orbital energies with the amount of Fock-
exchange).

In the following, we would like to underline the similarities
between BHLYP and B2LYP and would like to support the
above statements by solid data. Therefore, we carried out
SCF calculations for five examples (Ne, CH4, H2O, C6H6,
and C6H12) with BLYP, B3LYP, BHLYP, B2LYP, B2GPLYP,
and HF (def2-QZVP basis). We then calculated an average
occupied-virtual orbital gap ∆εav for each method. We
created for each system and each method all possible single
excitations from the occupied valence orbitals into the cor-
responding valence virtual orbitals and then took the average
over all excitation energies.

The actual energy values can be found in Table S21
(Supporting Information). We then related the ∆εav(DFT)
values obtained for the Kohn-Sham methods to ∆εav(HF)
obtained at the HF level. This is shown in the lower half of
Figure 7. All average DF gaps are smaller than for HF. For
each method, this underestimation seems to be rather system-
independent. An inverse relation between the amount of
Fock-exchange and ∆εav can be seen. BLYP yields only
about 60% of the HF gap, and B2GPLYP gives the highest
ratio of 87%. The results for B2LYP and BHLYP are very
similar, proving the above statement, that only the amount
of Fock-exchange is important for the one-particle spectrum
and not the portion of LYP correlation. B3LYP has a lower
average gap than B2LYP (68% vs 81%).

Furthermore, we carried out a standard second-order
perturbative calculation based on the different KS orbitals
and eigenvalues and related the resulting unscaled correlation
energies to the canonical MP2 result (top part of Figure 7).
As expected, the absolute correlation energies based on KS
orbitals are higher than for MP2. The values obtained with
BHLYP and B2LYP are very similar. The PT2 correlation
energy is found to be inversely proportional to the amount
of Fock-exchange as expected from the orbital energy
differences entering the denominator of the PT2 energy
expression.

As B3LYP yields a lower gap, a PT2 calculation with
B3LYP orbitals yields a higher absolute correlation energy
than for B2LYP orbitals. Consequently, the XYG3 functional
includes a higher amount of “effective” PT2 correlation than
B2LYP and B2GPLYP. This can be quantified by scaling
the actual parameters aC (which are 0.27, 0.36, and 0.3211
for the three functionals) by the average factor by which the
MP2 correlation is overestimated, i.e., 1.169 for B2PLYP,
1.120 for B2GPPLYP, and 1.335 for XYG3 (Figure 7). These
“effective” PT2 contributions are 32% for B2PLYP, 40%
for B2GPPLYP, and 43% for XYG3. Thus, part of the
explanation for the good behavior of XYG3 is not the fact
that B3LYP orbitals are “better” than B2LYP ones due to
100% DFT correlation but that a PT2 treatment with B3LYP
orbitals introduces an effectively higher amount of nonlocal
correlation.

Furthermore, compared to the B2PLYP and B2GPPLYP,
XYG3 has a very reduced amount of repulsive gradient
corrected exchange contribution (∆EX

B88). This, in combina-
tion with the higher effective nonlocality, explains why in
some studies on noncovalent interactions XYG3 yielded
reasonable results.21,22,50,85 Note, however, that this only
holds for small- and medium-sized complexes as XYG3
misses asymptotically about 57% of the dispersion energy
due to an effective aC of 0.43.

Although decoupling the orbital/density generation and the
actual functional evaluation seems to give reasonable results
for ground state related problems, we are not sure whether
this argument also holds for other properties. A time-
dependent treatment of excited states within a TD-XYG3
formalism, for example, would lead to a not well-defined
RPA-type matrix because of the different treatments of orbital
energies and the functional’s kernel. This is not the case for
TD-B2PLYP and TD-B2GPPLYP.36,38

6. Conclusions

We presented an extension and modification of the recently
published GMTKN24 database35 for applications to general
main group thermochemistry, kinetics, and noncovalent
interactions. This extended and improved version is called
GMTKN30 and comprises 30 different benchmark sets. In
total, 1218 single point calculations have to be carried out
to evaluate 841 data points (relative energies). In this study,
we particularly focused on the analysis of double-hybrid
density functionals (DHDFs) and presented two new DHDFs
called PTPSS and PWPB95. PTPSS consists of semilocal
TPSS exchange and correlation parts, for which seven
inherent functional parameters were refitted. PWPB95 con-
tains reparameterized PW exchange and B95 parts (five
parameters). Both functionals mix in 50% of nonlocal Fock-
exchange, which is less than for other DHDFs. PTPSS
includes 37.5% and PWPB95 includes 26.9% of spin-
opposite scaled second-order perturbative correlation (SOS-
PT2). When combined with a Laplace transformation type
algorithm, they scale only as O(N4) with system size.
Furthermore, both methods are combined with the latest
version of the empirical London-dispersion correction (DFT-
D3),43 for which we also presented a new scheme with which
to estimate a DHDF’s s6 scaling parameter. PTPSS-D3 and

Figure 7. Percentage ratios of the averaged orbital energy
gap (∆εav) of five molecules for different KS-DFT methods
and HF theory (lower part) and ratios between unscaled PT2
correlation energies based on KS and HF orbitals (upper part).
All calculations were carried out with def2-QZVP.
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PWPB95-D3 were studied for the complete GMTKN30
database and dissociation reactions of three prototypical
transition metal carbonyls. The results were compared with
the hybrids B3LYP and PW6B95 and with the double
hybrids B2PLYP, B2GPPLYP, DSD-BLYP, and XYG3. The
analyses led to the following conclusions:

(1) All double hybrids clearly outperform the hybrid
functionals. B2PLYP-D3, B2GPPLYP-D3, and PTPSS-
D3 yield very good MADs (about 4 kcal/mol) for the
difficult MB08-165 subset, for which XYG3 is even
worse than the hybrid PW6B95-D3. DSD-BLYP-D3
is better with 3.4 kcal/mol. PWPB95-D3 yields an
excellent result of 2.5 kcal/mol, which is better than
CCSD(T)/cc-pVQZ results (2.6 kcal/mol). XYG3 is
also worse for noncovalent interactions than the other
dispersion-corrected DHDFs, and the errors can reach
up to 1 kcal/mol (MAD for alkane dimers). The other
five methods usually have errors, which are already
within the accuracy of the respective reference data
(MADs of less than about 0.2 kcal/mol). Over the
whole GMTKN30 database, DSD-BLYP-D3 yields in
nine cases the best MAD compared with the other
double hybrids (eight for XYG3, seven for PWPB95-
D3, five for B2GPPLYP-D3, and three for B2PLYP-
D3 and PTPSS-D3). On the other hand, XYG3 and
B2PLYP-D3 yield in 10 cases the worst MAD.
PWPB95-D3 is slightly better (eight cases). PTPSS-
D3 gives in four cases the worst MADs; B2GPPLYP-
D3 and DSD-BLYP-D3 in one case each. For the
application to new, hitherto unexplored chemical
problems, the DSD-BLYP-D3 and PWPB95-D3 func-
tionals seem to be a good choice. The WTMADs [for
an (aug-)-def2-QZVP basis] underline the general
applicability of PWPB95-D3 and DSD-BLYP-D3: 1.6
kcal/mol for PWPB95-D3 and 1.5 kcal/mol for DSD-
BLYP-D3. B2GPPLYP-D3 has a WTMAD of 1.7
kcal/mol. PTPSS-D3 and XYG3 have a WTMAD of
1.9 kcal/mol. B2PLYP-D3 follows with 2.0 kcal/mol.

(2) Further studies of GMTKN30 with the (aug-)def2-
TZVPP basis reveal that, except for PWPB95-D3,
DHDFs are (due to the perturbative correction) more
basis set dependent than hybrids. The WTMADs are
still better than for hybrids but also closer to them
than for (aug-)def2-QZVP. Although fitted with a
quadruple-� basis set, PWPB95-D3 is the best DHDF
at the triple-� level, the least basis set dependent one
(the dependence is similar to that of hybrids) and the
only functional yielding a WTMAD below 2 kcal/mol.
The WTMAD for PWPB95-D3 is 1.8 kcal/mol. It is
followed by DSD-BLYP-D3 with 2.0 kcal/mol and
by B2GPPLYP-D3 with 2.2 kcal/mol. PTPSS-D3 and
XYG3 yield 2.3 kcal/mol. B2PLYP has a WTMAD
of 2.4 kcal/mol.

(3) Calculated reaction enthalpies for the first CO dis-
sociation in transition metal carbonyls by DHDFs and
MP2 are larger than the experimental reference values.
However, PWPB95-D3 is closest to experimental
values with an error of about 3 kcal/mol (about
5-10% of De). This is attributed to the smallest

amount of Fock-exchange compared to the other
DHDFs. Only XYG3 fails to reproduce the trend of
the dissociation enthalpies in the series of compounds.

(4) The good performance of XYG3 for main group
compounds can be explained by a large effective local
correlation contribution. In contrast to claims in the
literature,21-23,50 we find that the “better orbitals” that
are used for the evaluation of XYG3 are more
influenced by the smaller Fock-exchange in B3LYP
and not by a full semilocal correlation part as claimed
in refs 21-23 and 50. A study of different functionals
and comparisons with HF proved that functionals with
less Fock-exchange have lower average single-particle
gaps. This leads to higher correlation energies if the
resulting orbitals are used in the perturbative treatment.
Thus, XYG3 has effectively a higher perturbative
contribution than, e.g., B2PLYP and B2GPPLYP. This
higher nonlocality and a reduced amount of the over-
repulsive Becke 1988 gradient correction explains the
good behavior of XYG3 for noncovalent interactions
in previous studies, in which only medium-sized
systems were considered.21-23,50,85 Asymptotically, it
misses about 57% of the dispersion energy and is thus
not recommended in its present form for the calcula-
tion of van der Waals interactions in large systems.

In summary, our investigations revealed that PTPSS-D3
and PWPB95-D3 are valuable new functionals. They have
a better formal scaling with system size than other DHDFs.
They are robust for main group chemistry and seem to
perform better than other DHDFs for transition metal
compounds. PWPB95-D3 is the best DHDF for applications
at a triple-� level. It is also relatively straightforward to
implement these functionals in standard electronic structure
codes (for checking purposes, see the absolute energies of
three systems in Table S22 in the Supporting Information)
and to derive the corresponding analytical derivatives. A
comparison of the two new proposals finally shows that
PWPB95-D3 clearly outperforms PTPSS-D3 in four out of
five different statistical analyses. Many times, it has better
MADs for the GMTKN30 set. The WTMADs are signifi-
cantly lower, particularly at the triple-� level. The PTPSS
error for the dissociation enthalpies of transition metal
carbonyls is almost halved by PWPB95. Furthermore,
PWPB95-D3 is mathematically less complicated and depends
on fewer parameters. Moreover, only PWPB95-D3 can
compete with the recently proposed DSD-BLYP functional.
It is expected to also be useful for cases in which LYP
correlation is known to fail. We therefore suggest general
usage of PWPB95-D3 for future applications. The GMT-
KN30 database proved to be a useful tool for evaluating DFT
methods, and further investigations along these lines are
currently undertaken in our laboratories.

Acknowledgment. This work was supported by the
“Fonds der Chemischen Industrie” with a scholarship to L.G.
and by the Deutsche Forschungsgemeinschaft in the frame-
work of the SFB 858 (“Synergetische Effekte in der
ChemiesVon der Additivität zur Kooperativität”). We thank
C. Mück-Lichtenfeld for his technical assistance.

306 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Goerigk and Grimme



Supporting Information Available: The formula for
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Abstract: DFT and multireference methods were used to investigate the electronic structure
of FeO3 and FeO3

- clusters. Geometries of different spin multiplicities and conformations were
optimized without any symmetry restrictions at the BP/QZVP level and further refined with the
CASPT2 method. Although the latter type of calculations were performed by using the C2v point
group, all low-lying states relevant to the photoelectron spectrum were found to correspond to
or to resemble closely a planar D3h iron trioxide with no bonds between the oxygen atoms.
Depending on the computational method used, the ground state of the FeO3

- anion can be
either 2E′′ or 4A1′. The two lowest binding energy bands of the photoelectron spectrum of FeO3

-

can only be ascribed to electron detachments from the 2E′′ state. The first band is the result of
a transition to the 1A1′ ground state of FeO3, whereas the second band originates from the first
excited 3E′′ state. A harmonic vibrational analysis of the symmetric stretch shows that the
observed vibrational progressions of these two bands in the photoelectron spectrum of FeO3

-

are also in line with the assignment. A molecular orbital analysis led to the conclusion that the
electronic structures of the anionic and neutral clusters can formally be described by an oxidation
state of iron of +5 and +6, respectively. A population analysis, on the contrary, points to an
ionization that takes place on the oxygen atoms.

Introduction

Iron oxide clusters FeOn can serve as basic models for
numerous biological systems1,2 that play important roles,
such as oxygen transportation. In an industrial context, they
are also of importance because they bear relevance to the
main factor in redox processes like iron corrosion3 and as a
model for various catalysts.4-8 To understand the electronic
structures of FeOn/FeOn

-, Wang and co-workers synthesized
FeOn

- (n ) 1-4) in the gas phase and investigated their
photoelectron spectroscopy (PES) experimentally by using
lasers with photon energies of 3.49 and 4.66 eV.9-12 More
than a decade ago, Chertihin and co-workers also observed
the neutral systems of these clusters by infrared spectroscopy
as products of the reaction of laser-ablated Fe atoms with
oxygen molecules in a condensing argon stream.13 By

analyzing their infrared spectra in detail and with the aid of
calculations, the authors proposed and confirmed the exist-
ence for various stable conformations of iron-oxygen
clusters. Their theoretical work comprised geometry opti-
mizations and harmonic frequency calculations at the BP/
DZVP level. Also, results obtained by the B3LYP hybrid
technique with a (15s12p6d1f)/[9s7p4d1f] basis set for iron
and 6-311+G(2df) basis set for oxygen were given. A few
years later, density functional theory (DFT) calculations
employing the 6-311+G* basis sets and the BPW91 func-
tional were performed by Gutsev et al.,14 mainly with the
purpose of calculating the electron affinities of FeOn. Rather
recently, a combined experimental and theoretical study on
the neutral FeO3 was carried out by Yu et al.15 by using
matrix infrared spectroscopy combined with DFT calcula-
tions. To date, all experimental and computational works
agree on a stable η2-O2FeO complex that is characterized
by a quintet lowest state of planar C2v symmetry and a more
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stable iron trioxide possessing a planar singlet ground state
of D3h symmetry. A detailed description of the electronic
structure of the monoiron oxide molecules is however still
needed.

Unsaturated complexes of the type at hand are known
to possess many low-lying states of different spin
multiplicities.14,16-24 As a consequence, for the identifica-
tion of their ground states and all possible low-lying
excited states, a multireference wave function method
turns out to be a very convenient tool. Indeed, these
methods, such as CASPT2 (complete active space second-
order perturbation theory) or MRCI (multireference con-
figuration interaction), were applied successfully for the
description of the electronic structures of FeO/FeO- 25,26

and FeO2/FeO2
-.27 It is very surprising that the electronic

structures of the higher monoiron oxides clusters, such
as FeO3

-/0, are still not studied at any of these compu-
tational levels and, therefore, remain a bit of a mystery.
More specifically, the additional electron was found to
be delocalized over the three oxygen atoms,13 whereas in
recent CASPT2 studies it was argued that these clusters
can be described as transition metal complexes, implying
that the valence orbitals have predominantly 3d metal
character.17,19,25 In this contribution, we present a mul-
tireference wave function study on the basis of the
CASPT2 method for FeO3 and FeO3

-, containing a
detailed picture for their electronic structures. The ac-
curacy of the presented results are tested against the
experimental photoelectron spectrum of FeO3

-.

Computational Details

In the first step of our study, the geometries of different spin
multiplicities from singlet to sextet of FeO3 and FeO3

- are
optimized by an unrestricted DFT technique with the QZVP
basis sets28 and the BP86 functional29 as implemented in
the TURBOMOLE 5.10 suite of programs.30 The geometry
optimizations were done without symmetry restrictions so
that all structural parameters are allowed to relax and the
lowest energy electronic states of either of the two molecules
are serious candidates for their actual ground states. At all
of these optimized geometries, a harmonic vibrational
frequency calculation is carried out to ensure that the
structures found are true minima and not saddle points.

In the second step, we utilized the efficient MOLCAS 7.4
package31 to perform CASPT2 calculations. Since only
Abelain point groups are implemented in this computational
package, all of the calculations were carried out using C2v

symmetry, although some optimized DFT geometries exhibit
a higher D3h symmetry. As illustrated in Figure 1, the
molecule is placed in the yz plane with one oxygen atom
along the z axis. The basis sets used are [8s,7p,5d,4f,2g] and
[6s,5p,4d,2f] ANO-RCC, for iron and oxygen, respectively.32

Scalar relativistic effects are included by the Douglas-
Kroll formalism.33,34 The orbitals for the CASPT2 calcula-
tions are obtained from complete active space self-consistent
field (CASSCF) calculations, for which the active spaces
include the 2p orbitals of oxygen and the 3d and 4s orbitals
of iron. Corresponding to either the neutral or anionic system,
we have a total of 20 or 21 electrons in 15 orbitals. The

CASPT2 calculations correlated the 3p, 3d, and 4s orbitals
of iron and 2s and 2p orbitals of oxygen, whereas at this
level the intruder states problem was addressed by applying
an imaginary shift. The BP/QZVP structures were refined
using numerical gradient CASPT2 optimization. From these
structures, adiabatic detachment energies (ADEs) and vertical
detachment energies (VDEs) for FeO3

- were evaluated. In
order to improve our results, single point calculations with
the larger ANO-RCC basis set [8s,7p,6d,4f,2 g,1 h] for iron
and [7s,6p,4d,3f,1 g] for oxygen were performed.

Results and Discussion

Both previous DFT studies14,15 showed that the FeO3 systems
can have two relatively low-lying conformations. One that
does not possess any O-O bonds is denoted as O3Fe,
whereas another has one O-O bond and corresponds to η2-
O2FeO. Linear structures of the type O-Fe-O-O were
calculated at energies 50 kcal/mol higher than the ground
state.13 With the purpose of investigating the photoelectron
spectrum of FeO3

-, we therefore do not need to consider
them in our study. In order to be sure about the low-lying
states of both anion and neutral systems, we reoptimized
various spin multiplicities of O3Fe and η2-O2FeO at the BP/
QZVP level. The results are summarized in Figure 2, which
contains the structural parameters for the various conforma-
tions and their relative energies. For the O3Fe conformation,
the ground state of the neutral system clearly turns out to be
a singlet state with D3h symmetry, while the ground state of
the anion can be either a doublet possessing C2v symmetry
or a quartet with D3h symmetry. Indeed, the quartet is
predicted at this computational level to be just 0.02 eV higher
in energy than the doublet. Our DFT calculations predict a
value 1023 cm-1 for the antisymmetric stretching modes of
the singlet ground state, see Table 1, which is in fairly good
agreement with the experimental values of 975.8 cm-1 and
950 cm-1 obtained from the infrared spectrum in a argon
matrix.13,15 For the η2-O2FeO conformation and in ac-
cordance with previous theoretical work, we could identify
a quintet of Cs symmetry and a quartet of C2v symmetry as
the lowest states of the neutral and anionic systems,
respectively. Our predicted vibrational frequencies of 933
cm-1 and 1052 cm-1 for this quintet are in good agreement
with the infrared bands at 1148 cm-1 and 928 cm-1 of ref

Figure 1. (a) Choice of the coordination system for the
CASPT2 calculations. (b) Qualitative orbital energy scheme
for the valence d orbitals.
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13 and the corresponding 1002 cm-1 band of ref 15 as well
as with the DFT values mentioned in both papers. The
predicted quintet lowest energy state of η2-O2FeO is,
energetically, 1.3 eV higher than the singlet ground state of
the O3Fe conformation. For the anionic conformations, the
quartet of η2-O2FeO- is 2.11 eV higher than the doublet
state of O3Fe, which was calculated as the ground state of
the FeO3

- anion. Because of this large energy difference, it
is safe to base our assignment of the photoelectron spec-
troscopy of FeO3

- only on the O3Fe conformation. With this
information at hand, we only investigated the O3Fe-/0

conformations in our subsequent CASPT2 calculations,
which we will simply denote as FeO3

-/0.
Starting from the optimized geometries of the previous

DFT calculations, we first performed for each specific spin
multiplicity CASPT2 single point calculations for the purpose
of finding the lowest energy state for each irreducible
representation of the C2v point group. In a next step, all
possible low lying states were reoptimized at the CASPT2
level by employing the small ANO-RCC basis set as
mentioned in the Computational Details. In Figure 3, we
present the optimized structures of the 1A1, 3A2, 3B1, 2A2,
2B1, and 4B2 states. The structural parameters of these states

were found to be nearly unchanged from the DFT geometries
of the same multiplicity. To a certain extent, this confirms
that we have found the lowest energy states. For the neutral
FeO3, there can be little doubt about its ground state. This
is clearly the 1A1, while at 0.34 eV higher in energy we
calculated the first excited state as 3A2. This result is more
or less coherent with the DFT calculations. For FeO3

-, there
is a contradiction between CASPT2 and DFT concerning
the prediction of the ground state. The 4B2 state is now 0.27
eV lower than the 2A2 state. However, this energy difference
is only just outside the believed error margin of the CASPT2
method. Furthermore, by taking into account that at the
employed computational level it is likely to overestimate the
relative stability of the higher spin state, we cannot make
an absolute statement about the true ground state of FeO3

-.
We believe that a more secure statement about the ground
state of FeO3

- most likely needs a more accurate treatment
of the electronic dynamic correlation energy.

The CASPT2 geometry optimization shows that the
symmetry of 4B2 and 1A1 is actually D3h while the symmetry
of 2A2 and 3A2 is C2v. These C2v structures exhibit only a
slight distortion from D3h symmetry as a result of weak
Jahn-Teller effects. From single point CASPT2 calculations,

Figure 2. Structures (bond distances in Ångstroms and bond angles in degrees) and relative energies (eV) of FeO3 and FeO3
-

as obtained by BP/QZVP calculations.

312 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Tran and Hendrickx



as given in Tables 2 and 4, we know that 4B2 and 1A1 are
nondegenerate states, while 2A2 and 2B1 and 3A2 and 3B1

are degenerate D3h states. In both cases, they are the two
components of E′′ states. A graphical representation for the
potential energy curves of the low-lying states is given in
Figure 4. Here, a geometry optimization for the low lying
states within D3h symmetry is performed by carrying out
CASPT2 single point calculations for a number of Fe-O
bond distances, around the respective equilibrium bond
distances. Although the calculations were carried out within
the broken symmetry approach, the A2 and B1 curves are
shown to be nearly degenerated; the scale used on the
ordinate axis places the states at the same points on the two
graphs of the 2E′′ and 3E′′ states. The energetic Jahn-Teller
effects on both states were further examined by performing
a CASPT2 geometry optimization for their B1 components,
a procedure that takes full account of these effects as applied
previously on the related FeO4

-/0 clusters at the DFT
level.35,36 The results are given Table 2 and are depicted in
Figure 3 and show only small changes in geometry. Indeed,
the bond distances between two E′′ components vary about
1/100 of an Ångstrom. Bond angles between the A2 and B1

components differ only by a few degrees. There is here
however a systematic trend that can be observed. The B1

component has two bond angles smaller than the D3h value
of 120° and consequently a third bond angle that has
increased from this high symmetry value. The opposite is
found for the A2 components. As a result of having two larger
bond angles, the remaining angle decreases noticeably further
from 120° in these components. The equilibrium distances
of the bonds that are involved in the smaller bond angles
are partly larger due to the increased electrostatic repulsion
between the negatively charged oxygens. A further explana-
tion for these geometric differences will be discussed after
a detailed molecular orbital analysis of the electronic structure

of the states in the following paragraph. As Jahn-Teller
effects decrease the energy, the A2 states are stabilized more
since they possess the largest distortions. This causes 2A2

and 3A2 to become the lowest excited CASPT2 states of
FeO3

- and FeO3, respectively. Energetically, the effects are
indeed very small. The difference between the two compo-
nents is calculated to be on the order of a few hundredths of
an electronvolt in Table 2. These values are by far too small
to induce any effect on the experimental photoelectron
spectra or to have a measurable effect on the electron affinity.

As mentioned in the previous paragraph, there is a need
for an in-depth description of the electronic structure of
FeO3

-. In view of the intended assignment of the photo-
electron spectrum, this is best done in relationship with its
neutral counterpart. For doing so, we made plots of the
molecular orbitals of the active spaces for all relevant states.
These plots for the 4B2 CASPT2 ground state, classified
according to the irreducible representation of the C2v point
group and accompanied by their CASSCF natural occupation
numbers, are depicted in Figure 5. A comparison with similar
orbitals obtained with the CASSCF calculations on all
mentioned states shows that the valence orbitals of the
studied molecules, i.e., the orbitals with occupation numbers
in the vicinity of one, have always a predominant iron 3d
character. Further observation shows that they are of an
antibonding nature between iron and the adjacent oxygen
atoms. From the entry for the leading configuration of 4B2

in Table 4, we learn that the three unpaired electrons of this
quartet state are indeed occupying the iron 3d type orbitals.
More specifically, one electron occupies a nearly pure dx2

orbital in the 13a1 orbital. A second unpaired electron can
be found in the 5b1 orbital with predominant dxz character,
while 2a2 as a similar dxy orbital hosts the third unpaired
electron. For D3h geometries, dx2 is totally symmetric (a1′),
whereas the latter two d orbitals form a basis for the e′′
irreducible representation. The remaining two d orbitals are
depicted as 14a1 (dy2-z2) and 8b2 (dyz). They are not occupied
in any of the states relevant to the photoelectron spectrum
because they are positioned at much higher energies. These
d orbitals belong to an antibonding 2-fold degenerate e′ level.
Molecular orbitals with predominant oxygen contributions
are without any exception doubly occupied. Pure σ binding
interaction between iron and oxygen is present in the 10a1,
12a1, and 5b2 orbitals. The other predominant oxygen orbitals
are either pure π bonding orbitals, i.e., 3b1, 4b1, 7b2, and
1a2, or a mixture of the two types of bonding: 11a1 and 6b2.
All of these orbitals are to an extremely large extent
constructed from the 2p orbitals of the oxygen atoms. Since
the 2s orbitals of these atoms are all in the inactive space,
the electronic structure picture emerging from the above
orbitals puts a formal charge of +5 on iron and -2 on each
oxygen center. All of the other low-lying states of the anionic
cluster were found to agree with this picture. A similar orbital
analysis for the relevant FeO3 states agrees completely with
the above orbital picture for FeO3

-, which therefore renders
a formal oxidation state of +6 for the metal atom in the
neutral cluster. For the neutral iron trioxide cluster, the same
conclusion regarding the oxidation state of iron was put
forward by Gong and Zhou after analyzing their DFT

Table 1. Relative Energies (RE), Harmonic Unscaled
Vibrational Frequencies (cm-1), and Intensities (km/mol)
for the Two Studied Conformations of FeO3 and FeO3

- at
the BP/QZVP Level

cluster
spin

multiplicity RE (eV) frequency (intensity)

O3Fe- 2 0.00 195 (50), 237 (3), 335 (0),
817 (407), 856 (0), 969 (197)

4 0.02 178 (52), 310 (0), 311 (0),
819 (0), 913 (204), 914 (204)

6 1.83 120 (7), 143 (47), 217 (0),
689 (4), 732 (6), 811 (148)

O3Fe 1 3.33 147 (11), 332 (0), 333 (0),
920 (0), 1023 (101), 1023 (101)

3 3.70 99 (41), 200 (22), 345 (0),
864 (1), 865 (175), 995 (92)

5 4.58 80 (33), 219 (0) 223 (0),
605 (2), 606 (2), 837 (2)

η2-O2FeO- 2 2.60 86 (1), 126 (1), 438 (7),
561 (6), 882 (13), 936 (288)

4 2.11 130 (11), 165 (9), 537 (6),
549 (10), 869 (30), 918 (317)

η2-O2FeO 1 5.78 158 (7), 234 (18), 526 (3),
637 (1), 967 (101), 1023 (166)

3 4.92 122 (19), 187 (16), 394 (16),
571 (4), 938 (15), 1002 (200)

5 4.63 44 (15), 146 (24), 506 (1),
611 (2), 933 (16), 1052 (174)
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results.15 Formally, the ionization processes that lie beneath
the photoelectron spectrum of FeO3

- involve the removal
of an iron 3d electron, a result that is apparently in sharp
contrast to the previous DFT study.14 Compared to FeO3 and
on the basis of a natural bond analysis of the DFT orbitals,
the extra electron of FeO3

- was found by these authors to
be delocalized over the oxygens. So, at first sight, a formal
description of the electronic structure and an analysis of the

distribution of the electrons over the constituent atoms lead
to opposing underlying electron detachment processes. An
explanation for this discrepancy is given by a Mulliken

Figure 3. Structures (bond distances in Ångstroms and bond angles in degrees) and relative energies (eV) for the low lying
states of FeO3 and FeO3

- as obtained by CASPT2 geometry optimizations.

Table 2. Relative CASPT2 Energies for the Iron Trioxides
FeO3 and FeO3

-

relative energy (eV)

cluster state a b c

FeO3
- 2A2 0.00 0.00 0.00

2B1 0.00 0.02
4B2 -0.26 -0.27 -0.25

FeO3
1A1 3.40 3.37 3.44
3A2 3.74 3.71 3.77
3B1 3.71 3.77

a ASPT2 single point calculations with small ANO-RCC basis
sets at BP/QZVP geometries. b CASPT2 geometry optimizations
with small ANO-RCC basis sets. c CASPT2 single point calculation
with large ANO-RCC basis sets at geometries b.

Table 3. Mulliken Population Analysis Charges for
Low-Lying States of the FeO3 and FeO3

- Clusters As
Obtained from the CASPT2 Wave Functions

Mulliken charge (e-)

state Fe O(1) O(2) O(3)
2A2 +0.91 -0.59 -0.66 -0.66
2B1 +0.97 -0.70 -0.63 -0.63
4B2 +1.13 -0.71 -0.71 -0.71
1A1 +1.10 -0.37 -0.37 -0.37
3A2 +1.24 -0.40 -0.42 -0.42
3B1 +1.29 -0.45 -0.42 -0.42

Table 4. Vertical Detachment Energies (VDE) from the 4B2

State As Calculated by CASPT2 with Small ANO-RCC
Basis Sets

Cluster State
Leading

Configuration CASSCFa VDE (eV)

FeO3
- 4A1 11a1

212a1
213a1

214a1
0 4b1

25b1
1

6b2
17b2

28b2
0 2a2

1
1.74

4A2 11a1
212a1

213a1
114a1

1 4b1
25b1

0

6b2
27b2

28b2
0 2a2

1
3.14

4B1 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
27b2

28b2
1 2a2

1
1.69

4B2 11a1
212a1

213a1
114a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

1
0.00

FeO3
3A1 11a1

212a1
213a1

114a1
0 4b1

25b1
1

6b2
17b2

28b2
0 2a2

1
4.93

3A2 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
27b2

28b2
0 2a2

1
4.06

3B1 11a1
212a1

213a1
114a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

0
4.06

3B2 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
27b2

28b2
1 2a2

0
5.64

5A1 11a1
212a1

213a1
114a1

0 4b1
25b1

1

6b2
17b2

28b2
0 2a2

1
4.82

5A2 11a1
212a1

213a1
114a1

0 4b1
15b1

1

6b2
27b2

28b2
0 2a2

1
5.47

5B1 11a1
212a1

213a1
114a1

1 4b1
25b1

0

6b2
17b2

28b2
0 2a2

1
6.29

5B2 11a1
212a1

113a1
114a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

1
5.89

13B2 11a1
212a1

213a1
014a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

1
5.57

23B2 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
27b2

28b2
1 2a2

0
5.82

a In the leading configuration, the 10a1, 3b1, 5b2, and 1a1

orbitals are always doubly occupied; the 15a1 orbital is always
unoccupied.
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population analysis of the CASPT2 wave functions, which
is given in Table 3. In agreement with the DFT description,
the charge on the iron atom is hardly different between the
anionic and neutral states. The formal removal of an electron
for either three-occupied d orbital is compensated by small
but effective relaxations in the underlying closed shell oxygen
orbitals, which increase the σ and π ligand to metal donation
of electronic charge. For a localization of charges within the
molecules, a population analysis is therefore more trustwor-
thy. The formal description of the electronic structure
however has its merits in the sense that it provides a
qualitative understanding of the relative position of the low-
lying states of both species, as we will illustrate in the next
paragraph.

The above description of the electronic structure closely
resembles that of the classical and well-known transition
metal complexes. For this type of compound, the electronic
structure has, for decades, very successfully been described
by qualitative ligand field theory. Within this model, the
lower lying ligand (O2- ions in present case) valence orbitals
interact with the higher positioned d orbitals of the metal
and become bonding molecular orbitals. For planar D3h

complexes, the ligand field model leads to the characteristic
energy pattern in which the higher energy antibonding d
orbitals are split into three levels (Figure 1). A lowest almost
nonbonding orbital is only weakly σ antibonding, as il-
lustrated for 13a1 in Figure 5. In the middle, we find an
exclusively π antibonding e′′ level (5b1 and 2a2 orbitals in
Figure 5). The highest d level corresponds to the 14a1 and
8b2 orbitals of the mainly σ antibonding e′ shell. For FeO3

-,
the remaining three metal valence electrons are to be
distributed among the lowest d orbitals. For the anion, the
first candidate ground state is found by placing two electrons
in the lowest 13a1 orbital and the remaining electron in either
one of the two dπ (5b1 or 2a2) orbitals, giving rise to a so-
called low-spin 2E′′ state, which is Jahn-Teller active. The
occupation of the antibonding dxy (2a2) orbital induces an
increase in two O-Fe-O bond angles and an increase in
two Fe-O bond distances, to which this orbital is oriented.

This is the result of the increased electrostatic interactions
between the approaching oxygen atoms and the antibonding
nature of the 2a2 orbital. The entry for the 2A2 of Figure 3
is in accordance with this analysis. The occupation, on the
other hand, of dxz (5b1) causes one bond angle to increase,
which stabilizes the 2B1 component. Opening up two bonds
is apparently more favorable, which makes the 2A2 compo-
nent the lowest in energy. The second candidate ground state
is found by distributing the three valence metal electrons
equally among the three lowest orbitals with the same spin.
The resulting 4B2 (4A1′ in D3h) has a high-spin state with a
lower electron repulsion and is predicted by CASPT2 as the
ground state of FeO3

-. For the neutral cluster, we expect
two low lying states. The first one places two valence
electrons in the lowest dx2 orbital, giving a 1A1′ state, which
is always predicted as the ground state. The first excited state
is a 3E′′ with an occupation of (dx2)1(dxy, dyz)1. Quintets are
expected at much higher energies because they involve an
ionization process from one of the low-lying oxygen 2p
orbitals. Thus, we suppose that they have no relevance to
the low-energy part of the photoelectron spectrum. In this
context, the above ligand field picture for these complexes
attributes important roles to the 1A1′ and the 3E′′ states of
the neutral complex.

The photoelectron spectrum of FeO3
- measured with 4.66

eV laser photon energy, shown in Figure 6, has two low-
lying bands.9-12 The first band starts at 3.26 eV (X band),
and the second band is located at higher binding energies
(A band). The structure of the X band is composed of three
sharp peaks of more or less equal intensity. Together, they
are proposed to form a vibrational progression. The A band
consists of two peaks, of which the first one at 3.81 eV has
a much larger intensity than the higher energy peak. Both
states of FeO3 are measured to have a vibrational frequency
of 850 cm-1. These two simple vibrational structures
indicate, according to the authors, that the geometries of FeO3

and FeO3
- possess a high level of symmetry like D3h.

Further, it was argued that the observed electron detachment
processes induce only very slight geometry changes along
the Fe-O stretching coordinate. On a qualitative basis, our
DFT and CASPT2 geometry optimizations confirm these
conclusions. Indeed, due to the extremely small Jahn-Teller
effects, all of the states of the neutral and the anionic iron
trioxide species that are relevant to the photoelectron either
possess a D3h structure (spacial nondegenerate states) or only
slightly deviate from it (spacial degenerate states). In the
latter case, the energy barriers that connect the two minima
of a Jahn-Teller active state of D3h symmetry are evaluated
by CASPT2 as being very small. In regard to vibrational
considerations, these states can be seen as having the higher
D3h symmetry, and therefore the assignment of the photo-
electron spectrum should be carried out on these grounds.
To answer the question of which state of FeO3

- is respon-
sible for its photoelectron spectrum, we calculated the one
electron ADEs and VDEs from the 2E′′ and 4A1′ states.

According to the CASPT2 results, 4A1′ has the lowest
energy of FeO3

-, so we need to explore the ionizations from
this state first. Following the one-electron detachment
selection rule, we only need to consider triplet and quintet

Figure 4. CASPT2 (using small ANO-RCC basis sets)
potential energy curves of the symmetric Fe-O bond stretch
(D3h symmetry).
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states. Table 4 summarizes the lowest VDEs for each
irreducible representation of C2v and relevant spin multiplici-
ties. As a first conclusion, we note that the VDEs needed to
reach the quintets are much higher than those for the triplets,
a finding that already could be made from our DFT
calculations and in agreement with the previous computa-
tional study.14 Our results point out that removing one
electron from the configuration of 4A1′ (or 4B2 in C2v) can
give only the following low-lying C2v triplet states: 3A2 and
3B1. The removal of an electron from the 5b1 orbital of 4B2

creates 3A2, whereas an ionization from the 2a2 orbital results
in the 3B1 state of the neutral system. As a consequence of
the small energetic Jahn-Teller effects, both transitions occur
with a VDE value of 4.06 eV, and they could correspond to
the A band in photoelectron spectrum of FeO3

-. The quintet
states 5A1, 5A2, and 5B2 can also be formed by a one-electron

Figure 5. Pseudonatural molecular orbital plots and their occupation numbers for the 4B2 state (FeO3
-) as calculated by CASSCF

(small ANO-RCC basis sets).

Figure 6. Photoelectron spectrum of FeO3
- taken from ref

10. Abscissa: binding energies in electronvolts. Ordinate:
relative electron intensities.
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detachment out of the 6b2, 4b1, and 12a1 orbitals of 4B2,
respectively. However, the corresponding VDEs for these
ionizations are 4.82, 5.47, and 5.89 eV, and therefore they
are much too high to explain the low-energy part of the
photoelectron spectrum. Clearly, the X band cannot be
explained by a one-electron ionization process from the 4B2

state of FeO3
-, and we need to explore other states of the

anion.
Obviously, the next states of FeO3

- that can be at the
origin of its photoelectron spectroscopy are the nearly
degenerate 2A2 and 2B1 components of the D3h

2E′′ state.
Both the C2v states have a slightly different equilibrium
geometry, which explains the 0.12 eV vertical energy
difference for 2B1 in Table 5, which contains the CASPT2
energies from single point calculations on the geometry
of the lower 2A2 component. This contrasts with Table 4,
which was obtained from the single point D3h calculation
using the Jahn-Teller inactive 4B2 geometry. Starting from
the 2A2 and 2B1 states, we can obtain the ground state
1A1 of FeO3 through a one-electron removal from the 2a2

and 5b1 orbitals, respectively. As advocated in a previous
paragraph, the small energy barrier connecting the 2A2

and 2B1 states and the resulting vibronic coupling will
give rise to a single band in the experimental spectrum,
which we could describe as the D3h transition 2E′′ f 1A1′.
Solely for computational convenience, we only included
VDEs from the 2A2 lowest energy component, which has

certainly no bearing whatsoever on the proposed conclu-
sions. The corresponding ADE and VDE values for this
process are 3.37 and 3.46 eV, and we believe this
transition is at the origin of the X band at 3.26 eV of the
experimental spectrum. Moreover, if we remove one
electron from the 13a1 orbital of 2A2, we arrive at the 3A2

state, for which the ADE and VDE values are 3.71 and
3.73 eV. These energies correspond very well with the A
band at 3.81 eV. Judging from Table 5, we strongly
believe that we could have drawn exactly the same
conclusion from VDEs obtained for ionizations from the
2B1 component. On the basis of all of the above arguments,
we are inclined to make the following proposition about
the photoelectron spectrum of FeO3

-. The two low-lying
bands should be assigned as originating from the 2E′′ (2A2

and 2B1) state of FeO3
-, although our CASPT2 places this

state at a higher energy of about 0.27 eV than 4A1′. In
order to get better values for the ADEs and VDEs, we
performed single point CASPT2 calculations with larger
ANO-RCC [8s,7p,6d,4f,2 g,1 h] and [7s,6p,4d,3f,1 g] basis
sets for iron and oxygen, respectively. At this computa-
tional level, the VDE for the X feature is 3.54 eV, while
for the A feature, we find 3.80 eV. 4A1′ remains the ground
state at this level, and the energy gap of 0.25 eV with
2A2 (2E′′) is hardly affected.

Further evidence for the above proposed assignment can
be obtained from the observed peak intensities in the
vibrational progressions. As mentioned, the X feature is
a broad progression of four peaks of relatively low
intensity, which implies that there is a relatively larger
difference between the geometries of the anionic FeO3

-

state and the final FeO3 state. Otherwise, the A feature
has a high-intensity sharp peak and a much lower second
one, indicative of a smaller geometric difference between
the geometries of two states that are responsible for this
band. Also, the distinct vibrational progressions in the
experimental spectrum strongly suggest that just one
vibration mode lies at their origin. The rather large values
of the associated vibrational frequencies of 850 cm-1

suggest a Fe-O stretching mode as observed for the
diatomic FeO.9-12,14,15,25 On this premise and using the
potential energy curves of Figure 4, we can perform a
harmonic vibration analysis for the symmetric stretching
mode of the various low-lying states incorporated in this
figure. The calculated Franck-Condon factors are depicted
in Figure 7. For the lowest electron detachment, a
vibrational frequency of 927 cm-1 was obtained for the
1A1′ ground state of the neutral system, which corresponds
well with the DFT value of 920 cm-1 from Table 1.
Compared to the experimental 850 cm-1 from the pho-
toelectron spectrum, it lies just outside the proposed error
margin of 50 cm-1. Further on, Figure 7a shows three
Franck-Condon factors of more than 0.1, which agrees
with the observed vibrational progression of the X band.
Taking into account that our result is just a first estimate
for the frequency, we interpret these results as a confirma-
tion of the proposed assignment for this band. An even
better correspondence was found for the A band. The
calculated frequency of 881 cm-1 for the 3A2 state is in

Table 5. Vertical Detachment Energies (VDE) from the 2A2

State As Calculated by (a) CASPT2 with Small ANO-RCC
Basis Sets and (b) CASPT2 with Large ANO-RCC Basis
Setsa

VDE (eV)

cluster state
leading

configuration CASSCF a b
exp
(eV)

FeO3
- 2A1 11a1

212a1
213a1

114a1
0 4b1

25b1
0

6b2
27b2

28b2
0 2a2

2
1.03

2A2 11a1
212a1

213a1
214a1

0 4b1
25b1

0

6b2
27b2

28b2
0 2a2

1
0.00

2B1 11a1
212a1

213a1
214a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

0
0.12

2B2 11a1
212a1

213a1
114a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

1
0.75

FeO3
1A1 11a1

212a1
213a1

214a1
0 4b1

25b1
0

6b2
27b2

28b2
0 2a2

0
3.46 3.54 3.26

1A2 11a1
212a1

213a1
214a1

0 4b1
25b1

1

6b2
17b2

28b2
0 2a2

0
5.17

1B1 11a1
212a1

213a1
214a1

0 4b1
25b1

0

6b2
17b2

28b2
0 2a2

1
5.05

1B2 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
17b2

28b2
0 2a2

2
5.69

3A1 11a1
212a1

213a1
114a1

0 4b1
25b1

1

6b2
17b2

28b2
0 2a2

1
4.73

3A2 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
27b2

28b2
0 2a2

1
3.73 3.80 3.81

3B1 11a1
212a1

213a1
114a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

0
3.85 3.81

3B2 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
27b2

28b2
1 2a2

0
5.57

13B2 11a1
212a1

213a1
014a1

0 4b1
25b1

1

6b2
27b2

28b2
0 2a2

1
5.30

23B2 11a1
212a1

213a1
114a1

0 4b1
25b1

0

6b2
27b2

28b2
1 2a2

0
5.75

a In the leading configuration, the 10a1, 3b1, 5b2, and 1a1

orbitals are always doubly occupied; the 15a1 orbital is always
unoccupied.
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complete agreement with the experimental value of 850
(50) cm-1 but somewhat at variance with the DFT result
of 995 cm-1. According to Figure 7b, the Franck-Condon
factors for this band indicate just two observable peaks,
in which the low energy one is about 10 times more
intensive, a good match with the experimental spectrum
of Figure 6. By studying the shapes of low-lying bands
as above, we conclude that only the 2E′′ lies at the origin
of the photoelectron spectrum of FeO3

-, and that detach-

ments to the 1A1′ and 3E′′ states of the neutral complex
are responsible for the X and A bands, respectively.

Conclusion

For the first time, the electronic structures of FeO3 stoichi-
ometry have been investigated at a multireference level of
theory. We have found several stable geometries for both
the singly charged anionic and neutral structures with
different spin multiplicities. Regardless of the charge of these
complexes, the η2-O2FeO conformations with O-O bonding
are much higher in energy than the corresponding lowest
iron triioxide conformations without any direct O-O bond-
ing. Due to small Jahn-Teller effects, all of the equilibrium
geometries of the latter conformation and the resulting
photoelectron spectrum can effectively be described by using
the planar D3h symmetry. The computed CASSCF molecular
orbitals as well as a qualitative interpretation of the relative
CASPT2 energies unambiguously point to a formal oxidation
state of +6 and +5 of iron in the neutral and anionic species,
respectively. These oxidation states for both species imply
that the ionization processes that underlie the bands observed
in the experimental photoelectron spectrum correspond
formally to a detachment of a metal electron. However, a
population analysis of the ab initio wave functions shows
that, most likely, the observed ionization processes involve
the removal of electron density from the oxygen atoms. Quite
remarkable, a general analysis in terms of a simply ligand
field description of the splitting pattern of the valence iron
3d orbitals is effective to describe the electronic structure
of the clusters and their studied spectroscopy. The ground
state of the neutral cluster is the closed shell 1A1′, but the
lowest state of the anion can be either the strong-field ground
state or low-spin 2E′′ (2A2, 2B1) or the weak-field ground
state or high-spin 4A1′. A 0.25 eV energy gap between them
is judged to be too small to conclude unequivocally which
is the true ground state of the anion, although the latter state
should be seen as a serious candidate. From our CASPT2
calculations, we are inclined to assign the low-lying bands
of the photoelectron spectrum of FeO3

- as electron detach-
ment processes from the low-spin 2E′′ state. Our best VDEs
(ADEs) values are 3.54 (3.44) eV and 3.80 (3.77) eV, which
compare convincingly well with the start position of the X
band at 3.26 eV and of the A band at 3.81 eV. The closed
shell ground state 1A1′ and the first excited state 3E′′ of the
neutral cluster lie at the origin of these two bands. Analyzing
the vibrational progression of these transitions further
substantiates our proposed assignment.
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Abstract: In the present work, we show the feasibility of using single precision in quantum
chemistry, especially regarding the computation of electron correlation energy. On the example
of the MP2 method, we clearly demonstrate that single precision arithmetic is sufficient for
evaluating the molecular two-electron integrals by the use of the Cholesky decomposition method.
The evaluation of integrals with single precision arithmetic introduces a negligible error into the
computed MP2 correlation energy. In particular, the corresponding error in the MP2 correlation
energy amounts to only 10-7Eh for the 113-atom taxol molecule in double-valence basis set
(1099 basis functions). The practical relevance of our result is that 50% performance gain and
50% reduction in memory demands can be achieved by only minor changes in the existing
codes. Our finding opens intriguing perspectives for doing accurate correlated quantum chemistry
on specialized floating-point mathematical coprocessors.

1. Introduction

The use of double precision is the most common convention
in quantum chemistry.1 This programming rule is biased by
the believed paradigm that higher precision automatically
yields more accurate results. The interrelation between the
precision and the accuracy of the final results is not
straightforward, however.2,3 Indeed, the accuracy of the final
results depends not only on the precision used but also on
many factors like, e.g., the algorithm utilized, intermediate
data generated, compilers and math libraries employed, the
hardware architecture, and so forth.

In computational quantum chemistry, the use of double
precision is essential at the stages of the implementation and
validation of a new theoretical method or computational
scheme. Once the method is approved and the code is
verified, usually by examples of small and medium-sized
systems, further modifications are necessary to enable large
scale (many atoms and many basis functions) ab initio
calculations. At the present time, there exists a wide choice
of powerfull methods which can help here: three-index
factorization of two-electron repulsion integrals (ERIs), local

schemes, the fragmented molecular orbital (FMO) method,
and many others.4-7 These accelerating methods have to
provide an optimal balance between the accuracy of the
computed quantities and the computational effort required.

Since the formal scaling of the number of ERIs is quartic
with respect to the number of basis functions, the evaluation
of ERIs is the major computational obstacle in all advanced
quantum chemistry calculations. A three-index factorization
of the ERIs is known to be a very efficient technique for
reducing the computational prefactor and to speed up ab initio
calculation. Such a factorization is the cornerstone of the
Density Fitting or Resolution of Identity (DF/RI) and
Cholesky Decomposition (CD) methods.8-14 In the frame-
work of this factorization, an ERI is approximated by the
inner product of two intermediate vectors (ERI is expressed
in terms of three-indexed intermediates). According to
published results, the absolute error in an ERI caused by
the approximation lies within the range of 10-2 to 10-16

Eh, depending on the method used.13,15-17

By applying the DF/RI and CD methods, one can
accelerate ab initio calculations up to a few hundred times
and thereby simulate large quantum systems in a reasonable
time.18,19 This acceleration comes, of course, at the cost of
accuracy: using approximated ERIs leads to deterioration of
the numerical accuracy of the final results (energies, proper-
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ties), even though calculations are carried out using double
precision. In other words, all of the above-mentioned
approximation methods introduce a systematic error to the
computed quantities. According to the present standard, this
approximation error must not exceed the so-called chemical
accuracy, which is defined to be 1 kcal/mol or, equivalently,
1.593 × 10-3 Eh.20,21

From the numerical point of view, the factorization might
be effectively interpreted as rounding an exact ERI from
double to some intermediate precision. The loss of numerical
accuracy resulting from integral approximation opens up the
possibility for the use of single precision during the internal
intermediate calculations. One might speculate that an energy
error caused by working with three-index intermediates in
single precision mode (storage and computation) is compa-
rable to the approximation error or is even smaller. The
computational benefits of using single precision are enor-
mous. First of all, it automatically halves the memory
demands and doubles memory and network bandwidths.
Second, single precision arithmetic (32-bit arithmetic) is at
least 2× times faster on conventional processors (x86,
x86-64, Intel 64, IA-64, IBM Power) and 10× times faster
(!) on specially designed mathematical coprocessors (Nvid-
ia’s and AMD/ATI’s General Purpose Graphics Processing
Unit, IBM’s Cell BE) than double precision arithmetic (64-
bit arithmetic).22-24

It is thus not surprising that in recent years the use of single
precision in quantum chemistry has attracted considerable
attention, especially regarding the evaluation of ERIs. Two
computational schemes have been already implemented and
assessed: computation of ERIs in an atomic orbital basis for
direct HF and DFT calculations25-30 and evaluation of ERIs
in a molecular orbital basis with the DF/RI method for
calculating the so-called RI-MP2 correlation energy.31-33 At
present, the prevailing opinion concerning the evaluation of
ERIs in single precision arithmetic is that “single precision
is generally insufficient to achieve ‘chemical accuracy’ of 1
kcal/mol in calculations on anything but the smallest and
simplest systems, since the errors quickly accumulate for
large molecules.”33

Indeed, the accumulated error in the total Hartree-Fock
(HF) and correlation energies grows rapidly with system size
and becomes unacceptable (g1.593 × 10-3 Eh) for moderate-
sized molecules (∼102 atoms and ∼103 basis functions).26,31

In order to overcome this problem, a mixed precision
computational model was developed. This model utilizes both
the host CPU (for evaluating large ERIs with 64-bit
arithmetic) and an attached GPGPU (for the evaluation of
the remaining of ERIs with 32-bit arithmetic).28,32 By using
this CPU-GPU heterogeneous model, the required accuracy
of 1 kcal/mol has been achieved.27,33 In particular, Aspuru-
Guzik and co-workers, by using this mixed-precision com-
putational model, have reduced the absolute error in the RI-
MP2 correlation energy from 9.980 × 10-3 to 7.986 × 10-4

Eh for the 113-atom taxol molecule in a double-� valence
basis set (1123 basis functions).32,33

The aim of the present study is to demonstrate the
particular feasibility and practicability of using single preci-
sion in conjunction with three-indexed intermediates gener-

ated via the CD method. In contrast to the DF/RI method,
the potential of the CD method for generating ERIs within
single precision arithmetic has never been investigated
before. Our computational strategy is to focus here on the
correlated level of theory.

2. Theoretical Background

2.1. The Three-Index Factorization of Two-Electron
Repulsion Integrals. Generally, an ERI in the framework
of a three-index factorization can be represented as the inner
product of two intermediate vectors:

where µ, ν, λ, and σ label atomic orbitals; (µν|λσ) and
(µV|λσ̃) are the exact ERI and its approximation in Mul-
liken notation, respectively; Lλσ

K are three-indexed intermedi-
ates. In the particular case of the CD method, Lµν is called
the Cholesky Vector in the AO basis and M is the number of
Cholesky vectors.

The main advantage of the CD method is that the accuracy
of the approximation (eq 1) can be rigorously controlled.
By construction, the accuracy control is accomplished by
varying only one parameter, the so-called CD threshold δ:

where ∆ is the approximation error of an ERI. Depending
on the decomposition scheme, the strict error bound (eq 2)
holds for all ERIs or only for certain types. In the case of
the full-CD scheme, the introduced error can be made as
small as needed for all ERIs:

or equivalently

where ε is the machine epsilon (2.220 × 10-16). In finite
precision arithmetic, this limit is reached when δ e 10-10.
In the case of the recently developed atomic CD (aCD) or
its compact form (acCD), this inequality (eq 2) is valid only
for the one-center and two-center “Coulomb” ERIs, but three-
and four-center integrals as well as “exchange” two-center
integrals may be subject to large errors.15,16,34 In other words,
within the framework of the aCD/acCD schemes, the
accuracy of the approximation (eq 1) for a part of ERIs
cannot be improved beyond a certain limit no matter what
CD threshold is used.

In practice, a CD threshold in the range of 10-4 to 10-6

is being used in most applications, and the corresponding
number of the Cholesky vectors (M) is 5-7 times larger
than the number of the basis functions (N). These CD
thresholds guarantee the chemical accuracy of the final
results and accelerate the calculation up to a few hundred
times. By taking into account eq 2 and these CD
thresholds, one might claim that the actual precision of
the approximated ERIs used is numerically close to single

(µV|λσ) ≈ (µV|λσ̃) ) Lµν · Lλσ ) ∑
K)1

M

Lµν
K Lλσ

K (1)

∆ ) |(µV|λσ) - (µV|λσ̃)| e δ (2)

lim
δf∞

∆ ) ε

lim
δf∞

(µV|λσ̃) ) (µV|λσ) (3)
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(8 significant decimal digits) rather than double (16
significant decimal digits) precision.

Another concern related to using the CD method is the
final error in the computed energies. As rule of thumb,
the absolute error of computed total energies and other
properties caused by using the CD method is proportional
to δ and becomes virtually equal to zero for δ e 10-10.
Relative energies like, e.g., electron propagator poles
(ionization potentials and electron affinities) or excitation
energies are very robust with respect to the CD threshold
and converge rapidly to the numerically exact ones (δ g
10-5 is more than enough to achieve millielectronvolt
accuracy).35,36

Before we leave this section, let us briefly discuss some
technical aspects of the factorization. For correlated methods,
an important feature of this factorization is that it holds also
in the case of the molecular orbital (MO) representation. If
C is the MO expansion coefficients matrix, then an ERI in
MO representation can be calculated by exploiting the same
factorization (eq 1):

where p, q, r, and s denote MO indices and a MO
transformed Cholesky vector Lpq

K :

reduces the scaling of the atomic orbital (AO) to molecular
orbital (MO) transformation from O(N5) to O(N4). The CD
factorization substantially reduces storage demands (by factor
∼N2/M) and I/O overheads and thus converts the problem
of determining electron correlation energies from a memory-
bound one to a compute-bound one.37,38 The time needed
to complete a compute-bound task depends mostly on the
performance of an execution unit (CPUs core, GPUs core)
and can be significally reduced by using single precision
arithmetic.

2.2. A Priori Error Estimation Caused by Using
Single Precision Arithmetic. In MP2 theory, only the
(oV|oV) class of molecular ERIs is needed to compute the
electron correlation energy E(2):

where a and b denote virtual orbitals, and i and j denote
occupied HF orbitals; No and Nv are the total number of
ocuppied and virtual orbitals, respectively. Let us estimate
the error introduced by using single precision arithmetic for
generating an approximated ERI via formula eq 4.

The error introduced in the inner product due to single
precision arithmetic can be estimated as follows:39,40

where

fl(ai|bj̃) means that an approximated ERI is computed with
single precision arithmetic via eq 4, and u ) 2-24 ≈ 5.960
× 10-8 is named unit roundoff.41 The prefactor γM depends
hyperbolically on M. However, as long as M e 106, this
dependency is essentially linear. Since the number of
Cholesky vectors M typically grows linearly with system size,
the prefactor γM should scale linearly with the system size.
By looking at the square root in eq 7, one can easily
recognize the so-called Schwarz upper bound to an ERI.
Figure 1 shows the distribution of the upper bounds of the
ERIs relevant to the MP2 correlation energy for the illustra-
tive example of the water dimer (H2O)2 according to eq 7.
We notice that this distribution is in the range from 10-5 to
10-8 and peaks at 10-6.

According to our empirical experience, this is a typical
distribution. A relevant reason for this well behaved distribu-
tion is that the Cholesky vectors are free from large
components (see Figure S1 in the Supporting Information).
The CD method is numerically well conditioned, and
available implementations are very robust.14,19,42 CD meth-
ods have other appealing features related to the structure of
the Cholesky vectors which we do not discuss here, and we
refer the interested reader to refs 16, 34, and 43 for more
details.

A particularly relevant point is that the upper bounds of
the ERIs shown in Figure 1 significally overestimate the true
error induced by the use of single precision arithmetic. For
this purpose, we also show in Figure 1 the distribution of
the true errors of the ERIs, i.e., of |fl(ai|bj̃) - (ai|bj̃)|. As
clearly seen, the true errors range from 10-8 to 10-14, and
the distribution peaks at about 10-11.

In summary, we expect that the evaluation of the ERIs in
single precision arithmetic has only a slight impact on the
MP2 correlation energies. To be more precise, we claim that
the error caused by single-precision arithmetic is expected
to be comparable to the error introduced by the CD method
in common practical computations.

3. Computational Details

For test calculations, we used a set of water clusters (H2O)n

(n ) 2, ..., 20)44,45 and the taxol molecule (C47H51NO14).46

In the present study, we employed Roos’s ANO-L-VXZP
(X ) D, T) basis sets.47,48

The MP2 method in single precision was implemented
in the development version of the P-RICDΣ program.35

As input data, P-RICDΣ uses the integral tables in the
AO representation (Lµν) and the SCF MO LCAO coef-
ficients which are generated with the MOLCAS ab initio
package.19,49

Within P-RICDΣ, the computation of the MP2 correlation
energy proceeds in two steps: a stepwise parallel transforma-
tion of integral tables from the AO to MO representation
and subsequent calculation of the E(2) energy correction via
eq 6. The transformed Cholesky vectors in the MO basis
(Lai) are stored in single precision (each number occupies
32 bits rather than 64 bits). The approximated ERIs are

(pq|rs) ) ∑
K)1

M

Lpq
K Lrs

K (4)

Lpq
K ) ∑

µ
∑
V

CµpLµν
K CVq (5)

E(2) ) ∑
i

No

jgi

∑
a

Nv

b

(2 - δij)[2(ai|bj) - (aj|bi)](ai|bj)

εi - εa + εj - εb
(6)

|fl(ai|bj̃) - (ai|bj̃)| e γM√(ai|aĩ)(bj|bj̃) (7)

γM ) Mu
1 - Mu

(8)
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computed in single precision arithmetic by calling an
appropriate sdot BLAS function (single precision inner
product). The above-described utilization of single precision
(type casting and using the sdot function) automatically
reduces the memory demands and execution time by a factor
of 2. In order to accumulate the E(2) energy corrections,
double precision was used because this yields a substantial
gain in the final accuracy. Summation in double precision
which scales as O(No

2Nv
2) does not lead to any performance

degradation because it only constitutes less than 1% (∝ 1/M)
of the total number of floating point operations required. The
most computationally demanding step of the entire algorithm
is by far the generation of the (ai|bj̃) ERIs, which scales as
O(No

2Nv
2M).31,50

For comparison, standard MP2 energy calculations (in
double precision) were carried out within the MOLCAS 7
program using a CD-based implementation.51 It should be
particularly emphasized that the single precision MP2
calculations were done over exactly the same data and in
the same runtime environment that were used for the double
precision ones.

All programs used in this work were compiled within Intel
Cluster Toolkit 4.0. All calculations were done on Intel Xeon
E5440 (2.83 GHz) processors.

In all calculations, a CD threshold of 10-10 was used
unless otherwise specified.

4. Results and Discussion

4.1. Water Clusters. The key results of our work are
displayed in Figure 2 (see also Figure S2 and Tables S3 and
S4 in the Supporting Information). The figure shows the
absolute error in the E(2) energy correction (∆64-32) normal-
ized to the size of the cluster (i.e., divided by the number of
water molecules) caused by the evaluation of ERIs in single
precision. The error is determined as the absolute difference
between the MP2 energy computed using the P-RICDΣ
(single precision) and MOLCAS 7 (double precision)
programs and the δ ) 10-10 CD threshold. As predicted in
section 2, single precision arithmetic introduces a negligible

error into the computed MP2 correlation energy. The actual
error encountered in the correlation energies amounts to 100
nHartree (1 nHartree ) 10-9 Eh) only. In particular, the
maximal (mean) absolute errors in the E(2) energy correction
are 100 (43.7) and 269 (107) nHartree in the ANO-L-VDZP
and ANO-L-VTZP basis sets, respectively.

It is clearly seen from Figure 2 that the normalized error
only slightly depends on the cluster size and mostly depends

Figure 2. The normalized absolute error (∆64-32/n) in the all-
electron MP2 energy caused by single precision for a series
of water clusters (H2O)n (n ) 2-20) employing the ANO-L-
VDZP and ANO-L-VTZP basis sets. The dash horizontal lines
display the average normalized error. Those are 3.55 × 10-9

(red color) and 8.65 × 10-9 Eh (green color) in the VDZP and
VTZP basis sets, respectively. The solid horizontal line (black)
indicates chemical accuracy (1.593 × 10-3 Eh). Note the
logarithmic scale used.

Figure 3. The taxol molecule (C47H51NO14). The total number
of basis functions in the ANO-L-VDZP basis set is 1099.

Figure 1. Distributions of the errors of the (ai|bj) ERIs for
the water dimer using ANO-L-VDZP and ANO-L-VTZP atomic
basis sets: (A) The distribution of the upper bounds according

to inequality 7, i.e., γM√(ai|aĩ)(bj|bj̃). (B) The distribution of the
true error, i.e., |fl(ai|bj̃) - (ai|bj̃)|. Note the logarithmic scale
used.
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on the atomic basis set used. By going from the ANO-L-
VDZP to the ANO-L-VTZP basis set, the averaged normal-
ized error changes from 3.6 to 8.7 nHartree, i.e., becomes
only 2.42 times larger. At the same time, the number of
floating point operations needed to compute E(2) increases
by a factor of ∼18.62 (the generation of the (ai|bj̃) ERIs).
This difference by about one order of magnitude is due to
the cancellation of errors when summing up the contributions
from the individual integrals in eq 6. By taking into account
the information that the corresponding number of Cholesky
vectors increased by a factor of 2.43, in average, over the
set of water clusters (see Table S5 in the Supporting
Information), we can claim that the ∆64-32 error varies
linearly with the number of Cholesky vectors, i.e., with the
system size. This observation is in complete agreement with
the error model considered in the section 2.2 (see eqs 7 and
8).

Let us make a rough estimate of the critical size which a
system must have in order to cross the limit of chemical
accuracy. By taking the value 10 nHartree (10-8 Eh) as
averaged error per water molecule, the critical size is
estimated to be 160 000 water molecules or, equally, 500 000
atoms. This critical size is currently much beyond reach for
correlated quantum chemistry.

4.2. Taxol Molecule. In order to demonstrate that the
numerical results reported above are general and are not
biased to the water clusters set only, let us consider another
example, namely, the taxol molecule (see Figure 3). Table
1 reports the MP2 correlation energies computed in double
and single precision by employing various CD schemes.
As in the case of the water clusters, the single precision
errors (∆64-32) are negligibly small: the error lies in the
range from 31 to 362 nHartree. It is clearly seen from the
Table 1 that the error caused by the use of single precision
(∆64-32) is a few orders of magnitude smaller than the
corresponding approximation error ∆CD of the CD scheme.

5. Future Prospect and Perspectives

The high-end floating-point mathematical coprocessors avail-
able on the market offer teraflop (1012 floating point
operations per second) single-precision performance. For
example, the performance of Nvidia’s Tesla S2050 GPGPU
and IBM’s PowerXCell 8i based solutions are 4.1 and 6.4
teraflops, respectively.52,53 Such performances are roughly

equivalent to the total performance of 200 Intel Xeon 54xx
(Harpertown) cores. But the current price of either Nvidia’s
or IBM’s solution is only a 1/10th that of the corresponding
CPUs. With respect to the results we have obtained, we
consider coprocessors as very promising computational
platforms for performing accurate large-scale correlated
calculations. With particular emphasis on electron propagator
calculations, which are our primary goal, we plan to extend
the capabilities of our P-RICDΣ program accordingly
(transfer Cholesky vectors to coprocessors and generate the
needed molecular integrals via a BLAS library provided by
vendor).

6. Conclusions

In the present work, we clearly demonstrate by the illustrative
example of MP2 theory that single precision is sufficient for
post Hartree-Fock methods relying on the Cholesky de-
composition of the two-electron integrals. The key advantage
of the proposed scheme is that 50% performance gain and
50% reduction in memory demands can be achieved by only
minor changes in the existing codes. Our results open
intriguing perspectives for future developments and trends
in the computational quantum chemistry.
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total Hartree-Fock energies, MP2 correlation energies
(computed with double and single precision), number of
cholesky vectors for a set of (H2O)n (n ) 2, ..., 20) water
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material is available free of charge via the Internet at http://
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Abstract: The mixed density functional theory (DFT) and valence bond study described herein
focuses on the activation of 17 benzene derivatives by the active species of Cytochrome P450,
so-called Compound I (Cpd I), as well as by the methoxy radical, as a potentially simple model
of Cpd I (Jones, J. P.; Mysinger, M.; Korzekwa, K. R. Drug Metab. Dispos. 2002, 30, 7-12).
Valence bond modeling is employed to rationalize the P450 mechanism and its spin-state
selectivity from first principles of electronic structure and to predict activation energies
independently, using easily accessible properties of the reactants: the singlet-triplet excitation
energies, the ionization potentials of the aromatics, and the electron affinity of Cpd I and/or of
the methoxy radical. It is shown that the valence bond model rationalizes all the mechanistic
aspects and predicts activation barriers (for 35 reactions) with reasonable accuracy compared
to the DFT barriers with an average deviation of (1.0 kcal ·mol-1 (for DFT barriers, see: Bathelt,
C. M.; Ridder, L.; Mulholland, A. J.; Harvey, J. N. Org. Biomol. Chem. 2004, 2, 2998-3005).
The valence bond modeling also reveals the mechanistic similarities between the P450 Cpd I
and methoxy reactions and enables one to make predictions of barriers for reactions from other
studies.

Introduction

Cytochrome P450s are heme enzymes that metabolize and
biosynthesize essential compounds,1 by use of a high-valent
iron-oxo porphyrin cation-radical complex, Por+·Fe(IV)O,
so-called Compound I (Cpd I).1-3 Among these reactions
are the activation of aromatic compounds, Scheme 1, to arene
oxides, phenols, and ketones, which influences the bioavail-
ability of drugs (phenols) and may also contribute to
carcinogenicity via DNA mutations (arene oxides).4 The
relationship between the various products became intriguing
when mechanistic investigations4b,c led to the conclusion that
the arene oxide is an obligatory intermediate in this reaction
and the phenol and ketone are its byproducts.4d,e However,
new evidence suggested alternative pathways proceeding
through radical and/or cationic Meisenheimer tetrahedral
intermediates, as shown in Scheme 1.1a,2e,5 These mechanistic
studies have also generated many relative reactivity and

regioselectivity data,2e,5,6 which were addressed by a few
groups5,7,8 and reviewed.

The advent of density functional theory (DFT) has enabled
testing of these mechanistic alternatives on model systems9

and within native proteins (CYP 2C9)10 using density
functional theory/molecular mechanics (DFT/MM) calcula-
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Scheme 1. Intermediates and Products during Arene
Oxidation by P450 Cpd I
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tions. Thus, all the calculations support the intermediacy of
a Meisenheimer tetrahedral intermediate (IT),3e,9,10 as the
source of all products, and reveal the π-activation step as
rate determining for all the products. Additionally, the DFT
calculations have produced a wealth of information on the
dependence of these rate-controlling barriers on the aromatic
ring substituents and on the positional selectivity. By and
large, these model studies reproduced the observed experi-
mental trends.9b-e

In addition the calculations revealed several intriguing
features, which we address herein: (i) unlike alkane hy-
droxylation, which proceeds via the two spin states of Cpd
I (S ) 1/2; 3/2),3 aromatic activation preferentially takes
place via the lower-energy doublet state (S ) 1/2);9 (ii) the
transition states were found to have a hybrid nature with
radical and cationic characters;9,10 (iii) this hybrid character
is retained in the tetrahedral intermediates, which is neither
fully cationic nor radicalar;10 (iv) relative to benzene, both
electron-donating and -withdrawing substituents decrease the
barrier for para position attack;6a,9c and (v) in accord with
experiment,6a a significant preference is observed for para
regioselectivity even with electron-withdrawing substituents,
e.g., NO2,9c,d which in electrophilic substitution normally
leads to meta regioselectivity.

This abundance of knowledge has created the need for
establishing order; namely, the outlining of broad generaliza-
tions as well as the creation of more intuitive interfaces
between experimental and theoretical data. Several studies
were published, which employed the methoxy radical as a
Cpd I mimic8a,b,9d or used a “hybrid” Hammett substituent
parameter,9c to describe reactivity of Cpd I with aromatic
substrates. In the present study, we use valence bond (VB)
modeling of aromatic oxidation by P450, with an aim of
deriving the above trends from first principles and thereby
generating a general theoretical framework that organizes
the reactivity patterns. The VB diagram model was previ-
ously applied successfully to address reactivity patterns in
alkane hydroxylation and thioether sulfoxidation by P450.11

The Manchester group12 has extended the VB modeling to
include also bond activation by nonheme oxo-iron reagents.
The VB diagram model13 has a few merits: It reveals the
origins of the barrier, describes the formation of transition
states and reaction intermediates, and allows the prediction
of barrier heights and structure-reactivity relationships. As
shall be shown, the modified application of the VB diagram
model used herein enabled us to go beyond previous
treatments11,12 and derive the above reactivity patterns from
first principles based on physically clear predictors. Thus,
the modified VB model rationalizes the hybrid nature of the
transition states and intermediates9c,d as well as the different
barriers of the spin states during the reactions with Cpd I
and the relationship to radical attacks by MeO•.8a Further-
more, this VB model leads to expressions that estimate
barrier heights from easily accessible reactant properties, such
as singlet-triplet promotion energies, ionization potential
(IP), and electron affinity (EA).

Our focus is the series of reactions in Scheme 2a, studied
before by Bathelt et al.9c using DFT (B3LYP) calculations.
As noted by the authors,9c some of these molecules would

undergo preferentially other reactions and were used by them
for the sole purpose of modeling structure-reactivity rela-
tionships. Our goal herein is the same. Note that unlike our
usual choice to represent the cysteinate axial ligand by
HS-,3a,b,d,e we use here CH3S- in keeping with the original
study of Bathelt et al.9c Furthermore, since, Bathelt et al.9c

showed that the effect of bulk polarity makes a contribution
to the barrier, which is virtually substituent independent, and
DFT/MM calculations of benzene activation by P450 2C9,
confirmed this incremental contribution of bulk polarity to
the barrier,10 we restrict our study to the gas-phase model
reactions.14 To test the reactivity patterns of aromatic
activation by a simple radical, we use the reaction series with
MeO• in Scheme 2b. The so derived VB insight will be
demonstrated by attempts to predict trends in other molecules.

Methods

Software. The starting points for the calculations of the
Cpd I addition were the structures published in study of
Bathelt et al.9c which employed Jaguar 4.2.15a Single-point
calculations of the barriers for π-activation were carried out
with Gaussian 03 and 09,15b,c at these structures (com-
municated by Harvey). In two cases (X ) NMe2, Cl), the
calculated energies did not correspond to those obtained in
the original study, but upon reoptimization of the TSs with
Jaguar 7.6,15d the correct structures were obtained, as shown
by the new calculated barriers matching the original study.
As such, we were able to create a data set wherein all barriers
are calculated using the same methods and procedures, thus
removing nonsystematic errors, which might be contributed
by use of different software packages and procedures (see
Supporting Information, Tables S1 and S2).

We note here that in the original study,9c the authors
optimized Cpd I(CH3S-) within Cs symmetry constraints.
Removing this constraint and optimizing at C1 lowers the
energy of Cpd I(CH3S-) by 4.0 kcal ·mol-1 (see Supporting
Information, Table S3; note that the electronic structure of
the Cpd I(CH3S-) shows more pronounced mixing of the
sulfur pz orbital with the porphyrin a2u orbital in Cs symmetry
than in C1 one).3b Since this adds a constant to the barriers
and it had no effect on the quality of the VB modeling, we
present here the barriers with the Cs constrained Cpd
I(CH3S-) to stay as close as possible to the original study.9c

Scheme 2. Studied Reactions of Ar-X Molecules with (a)
Cpd I and (b) MeO•
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The VB modeling with the C1 data is given in the Supporting
Information (Table S17).

Since we will later attempt to make predictions on cases
calculated with a Cpd I model having a HS- axial ligand,
we tested the ligand effect (HS- vs CH3S-) on the benzene
activation, using the same basis sets as Bathelt et al.9c We
found that the axial ligand effect on the calculated benzene
activation is small (0.2 kcal ·mol-1) if Cpd I(CH3S-) is
indeed constrained to Cs symmetry. Because of this con-
straint, we did not perform zero point energy (ZPE) correc-
tion, which is anyway small for this kind of reaction.

All the MeO• reactions as well as IP’s and EA’s were
studied using Gaussian 09 geometry optimization.15c Charge-
transfer values (see Figure 3) in the transition state were
calculated with NBO 3.1 as implemented in Gaussian
03.15c,16

Functional and Basis Sets. Thus, as in the original
study,9c all the calculations were performed using the
unrestricted hybrid density functional method UB3LYP.17

Geometry optimizations (without constraints) were performed
with the LACV3P basis set on iron and 6-31G* on the rest
of the atoms (basis set BSI).17,18,19a,b Subsequently, single
point calculations were done on the optimized geometries
using BSII, which corresponds to LACV3P(Fe)/6-311+G**
(rest).19c,d The so computed reaction barriers for the Cpd
I/arene series (Scheme 2a) were within (0.6 kcal ·mol-1 of
those reported in the study of Bathelt et al. with an exception
for addition to the meta position in which the deviation was
1.3 kcal ·mol-1 (see Supporting Information, Tables S1 and
S2).9c The MeO• transition states were optimized with the
6-31G* basis set, and energy was corrected using the
6-311+G** basis set.

Auxiliary Data for VB Modeling. As shall be seen, the
VB modeling relies on two properties of the arene molecules,
the vertical IP and singlet-triplet ππ* excitation energies,
∆EST. Further, it requires also EA’s of Cpd I and of the
methoxy radical as input data. We used the experimental IP
values of the studied substrates from the NIST database.20

In parallel we ascertained that DFT reproduces these IP’s
well (see Supporting Information for details).

To be consistent with calculated IP’s (see Supporting
Information, Figure S1 and Table S7), the B3PW91/6-
311++G** level was chosen to obtain the vertical ∆EST

values.17a,19c,d,21 Based on the π-type orbitals in Figure 1,
there are generally two closely lying excitation types, which
can be obtained from DFT and involve πy to π*y and πx to
π*x excitations. The πxf π*x excitation energy is insensitive
to the nature of the substituents, while the πyf π*y excitation
is strongly dependent on the substituent, giving generally
lower values for the latter excitation. A plot of the calculated
∆EST(πy f π*y) excitations against adiabatic experimental
values22 shows identical trends (see Supporting Information,

Figure S2), and with the exception of X ) NO2, the
calculated vertical values are about 20 ( 3 kcal ·mol-1 higher
than the experimental adiabatic values. The calculated
∆EST(πy f π*y) value for benzene 102.2 kcal ·mol-1 is in
excellent agreement with the CCSD(T)/cc-pV∞Z calculated
datum, 104.4 kcal ·mol-1, for the 3B1u state23a and close to
a spin-coupled valence bond (SCVB) calculated value, 97.3
kcal ·mol-1.23b From absorption peak progressions for
benzene and fluorobenzene in magnetic induced singlet-triplet
excitations studied by Evans,22b it is possible to deduce that
the vertical excitation energies are ∼94-97 kcal ·mol-1

compared with the DFT calculated values 102.2 and 101.9
kcal ·mol-1.

The EAs of Cpd I and MeO• are constant quantities for
the respective reaction series studied here, but to be consistent
with past calculations,3a,b,d,e B3LYP was used to obtain the
vertical EA of Cpd I using Cs geometry,9c leading to EA )
64.9 kcal ·mol-1. The unconstrained C1 structure has a lower
EA value of 60.6 kcal ·mol-1, while the Cpd I with HS-

ligand has EA ) 67.9 kcal ·mol-1. The vertical EA of MeO•

was determined using single point calculations at CCSD(T)
level of theory,24 CCSD(T)/aug-cc-pVQZ//UB3LYP/6-
311+G**, and leads to EA ) 32.1 kcal ·mol-1.25

All the data generated in this study are shown in the
Supporting Information document. For space economy, the
following sections will focus on the key data only.

Results

Energy Profiles. Figure 2 shows the energy profiles for
the activation of benzene by Cpd I, using the recalculated
data based on geometries from Bathelt at el.9c and the
previous data of de Visser and Shaik using Cpd I(HS-).9a

Despite the differences in the representations of Cpd I and

Figure 1. The π and π*-type orbitals of benzene.

Figure 2. B3LYP potential energy profiles for the epoxidation
of benzene by 4,2Cpd I (the quartet-state species are marked
in red). All energies are in kcal ·mol-1 relative to isolated 2Cpd
I and benzene. Each species has two energy values, corre-
sponding to BSII (this work and ref 9c) and in parentheses to
LACVP(Fe)/6-31G(rest) from ref 9a.

Valence Bond Modeling J. Chem. Theory Comput., Vol. 7, No. 2, 2011 329



the basis sets, the two sets of relative energy values are
mechanistically consistent. Thus, the initial step involves the
π-activation of benzene by 4,2Cpd I via two transition states,
4,2TSπ. In both studies, the quartet species 4TSπ lies about
0.6-3.3 kcal ·mol-1 above the corresponding doublet transi-
tion state. Recalculating the barrier with Cpd I(HS-) and
the same basis sets as those in Bathelt et al.9c gave a 1.8
kcal ·mol-1 preference for the doublet over the quartet state.
In all cases, these transition states lead to the corresponding
tetrahedral Meisenheimer intermediates (4,2IT), and again the
doublet-state species is lower in energy.9a-c The intermediate
in turn undergoes a variety of reactions (see Scheme 1), and
Figure 2 shows the ring closure to the benzene-oxide, via
2TSrc, which represents the simplest reaction pathway toward
a product. As found by de Visser and Shaik,9a the quartet-
state profile continues to lie above the doublet state. In both
studies the doublet-state barrier to ring closure is smaller
than those for the π-activation step. All other barriers for
the conversion of 2IT to the other two products (phenol and
ketone, in Scheme 1) are also small.9a,c Therefore, the VB
modeling will focus hereafter on the π-activation step in the
doublet spin state. Since none of the follow-up steps is rate
controlling, their VB modeling will be largely waved (with
the exception of the qualitative representation in Figure 7a
of the simplest follow-up step).

Transition States for π-Activation by Cpd I and
MeO•. Key geometric features of the 2TSπ species for
π-activation of the various substituted benzene derivatives,
studied herein, are shown in Figure 3. Figure 4 displays the

corresponding species for the reactions with the MeO• radical
(Scheme 2b), which focused more on para attacks. For each
TSπ in Figures 3 and 4, we indicated three bond distances
and the quantities: QCT, the amount of charge transferred
(CT) from the arene to Cpd I in the TS, and FArX, the spin
density value on the ArX molecule in the TS.

Inspection of Figure 3 shows that: (i) all the 2TSπ species
are uniformly side-on types; this uniformity is important since
side-on and face-on barriers have small differences, which
would have added nonsystematic contributions into the data
set; (ii) all the 2TSπs possess a hybrid radical/cationic
character in the arene; (iii) the O · · ·C bond lengths in the
transition states vary in the range of 1.847-2.077 Å; (iv)
the 2TSπ species with para electron-releasing substituents
have ‘earlier’ structures with longer C · · ·O bond lengths;
(v) the para substituted 2TSπ species are significantly earlier
than the meta substituted ones; and (vi) the amount of charge
transferred from the arene to Cpd I, QCT, depends on the
substituent; it is larger for the electron-releasing substituents
with maximum of QCT ) 0.46e for NMe2, and the effect is
more significant for the para substituted 2TSπ species. Figure
4 shows similar trends in QCT values and O · · ·C distances
but within a narrower range compared with the Cpd I
reactions.

Barriers for π-Activation by Cpd I and MeO• and
Trends. Table 1 collects the π-activation barriers for the
P450 reactions as well as those calculated for the reactions
with MeO•, along with two properties of the arene: the IP’s
and the singlet-triplet ππ* excitations, ∆EST(ππ*).

Figure 3. Optimized 2TSπ species during π-activation of arenes by Cpd I, key geometric distances (in Å), degrees of charge
transfer (QCT) from the arene to Cpd I, and spin densities on the arenes (FArX). TSs for (a) para attack and (b) meta attack. Color
code: yellow, orange, red, purple, and blue correspond to iron, sulfur, oxygen, nitrogen, and carbon, respectively. Dark blue
represents the position of the X substituents.
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Inspection of Table 1 shows the following trends: (i) The
P450 barriers are sensitive to the substituent on the benzene
ring and vary between 9.6 kcal ·mol-1 (Ph-NMe2) to 16.2
kcal ·mol-1 (benzene); (ii) the barriers for attack on the meta
positions are generally larger than those for the para position
in which the most pronounced effect is observed for the Cpd
I addition to Ph-NMe2 (9.6 and 16.8 kcal ·mol-1 for the
addition on para and meta position, respectively); (iii) the
barriers for MeO• para-position attacks are much smaller than
the P450 values and vary in a narrower range of 3.3-8.1
kcal ·mol-1; and (iv) with the exception of X ) NO2 in the
MeO• series, in both P450 and MeO• series, the attacks on

para positions of the substituents have lower barriers relative
to benzene. Indeed, activation barriers of the Cpd I addition
and the methoxy radical addition are in good mutual
correlation, with the exception of nitrobenzene (Figure 5).

The ∆E‡ values for the para-position attack (by either Cpd
I or MeO•), with the exception of those for the most electron-
withdrawing substituents (CN, NO2), show a linear depen-
dence on the IP values of the arene.12d Similarly, part of the
data correlates linearly with the ∆EST(ππ*) values. However,
none of these two physical properties can by itself cor-
relate with all of the data. By contrast, all the P450 barrier
set can be correlated nicely with a hybrid quantity, IP +

Figure 4. Optimized 2TSπ species during π-activation of arenes by MeO•, key geometric distances (in Å), degrees of charge
transfer (QCT) from the arene to Cpd I, and spin densities on the arenes (FArX). TSs for (a) para attack and meta attack. Color
code: red and blue correspond to oxygen and carbon, respectively. Dark blue represents the position of the X substituents.

Table 1. Experimental IP’s, Calculated ππ* Singlet-Triplet
Excitations, ∆EST(ππ*), and UB3LYP/BSII/UB3LYP/BSI
Calculated Barriers, ∆E‡ (kcal ·mol-1), for π-Activation of
Ar-X by Cpd I and MeO• on para and meta Positions

IPexp
a

(kcal ·mol-1)
∆EST (ππ*)b

(kcal ·mol-1)

∆E‡, CpdI
(kcal ·mol-1)c

∆E‡, MeO•

(kcal ·mol-1)c

X para meta para meta

H 213.1 102.2 16.2 7.9
Cl 209.4 97.3 15.3 15.7 7.4
F 214.0 101.9 15.2 16.3 7.5
CN 225.3 89.3 14.9 15.9 7.6
NO2 232.0 87.1 14.2 15.3 8.1 9.0
NMe2 174.1 89.4 9.6 16.8 3.3 8.1
OMe 193.7 97.6 13.2 15.3 5.7
NH2 185.4 91.5 11.0 4.2
CH3 205.0 99.0 15.0 7.0
SMe 187.7 89.5 12.6 5.3
N-acetyl 195.1 90.7 13.6 5.9

a Experimental values from the NIST database. b Calculated
values (B3PW91/6-311++G**). c Without ZPE correction.

Figure 5. A plot of the barriers for π-activation of arenes by
Cpd I vs MeO•. The red circles are barriers for meta-position
attacks (without ZPE correction). The R2 value corresponds
to the points of the best fit for the attack on the para position
(excluding the NO2-Ph data).
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2.113∆EST(ππ*), as seen in Figure 6a, and for the MeO• set
with IP + 1.058∆EST(ππ*), as shown in Figure 6b. The
double correlation was obtained by a standard fit routine, as
is implemented in Maple 13 program package (see Support-
ing Information, Table S9). This hybrid correlation retrieves
the similar one found by Bathelt et al.,9c using Hammett
substituent parameters. The correlation follows also the hy-
brid character seen in the charge transfer and spin density
in the P450 transition states in Figure 3.

Discussion

The above computational results show a few intriguing trends
for the P450 reactions:9 (i) The computed P450 profiles show
that the doublet-state mechanism is lower in energy relative
to the quartet state; (ii) the π-activation step has a higher
lying barrier than the following rearrangement steps; (iii)
the 2TSπ species for π-activation as well as the corresponding
tetrahedral intermediates, 2IT, have hybrid radical/cationic
characters (Figure 3), which depend on the ring substituent;
(iv) the π-activation barriers are sensitive to the substituent
on the benzene ring, the lowest barrier is obtained for the
Cpd I addition to the para position of Ph-NMe2, but all the
para substituents are found to lower the barrier with respect
to the unsubstituted benzene; (v) the barriers for attack on
the meta positions are generally larger than those for the
para position, even for the electronic-withdrawing substitu-
ents which generally direct electrophilic reagents for meta
attacks; (vi) the π-activation barriers can be correlated
reasonably well with a mixed quantity made from a
combination of the IP of the arene and its singlet-triplet
excitation energy, ∆EST(ππ*); and (vii) the barriers for MeO•

attacks are much smaller than the P450 values and vary in
a narrower range of 3.3-8.1 kcal ·mol-1, nevertheless the
two barrier sets exhibit a reasonable mutual correlation.

We shall now present a VB modeling of these reactions
with an aim of unifying these findings and understanding
thereby these reactivity patterns.13 Subsequently we shall
show that the barriers can be calculated from raw data based
on the VB model.11

VB Modeling. Energy Profiles Generated from VB
Mixing Principles. Since the follow-up rearrangements of
the tetrahedral intermediate have much smaller barriers

compared with the common π-activation step, the modeling
will focus on this step up to the Meisenheimer complex
intermediate. To facilitate the discussion, we show in Scheme
3, the molecular orbital (MO) and VB representations of Cpd
I and some helpful oxidation-state formulations.11 Scheme
3a shows key MOs of Cpd I: The σFeO

2πFeO
4π*FeO

2 config-
uration represents the bonding block and accounts for a σFeO

bond and a πFeO
4π*FeO

2 manifold, as in 3O2,3a,b,d,e,26,27 and
spin-up electrons in π*FeO. The π*FeO orbitals are considered
as “d” orbitals, so that the d-block occupancy is
δ2π*FeO

2σ*xy
0σ*z2

0. Finally, the porphyrin cation-radical is
represented by the singly occupied a2u; the double-headed
arrow represents spin-down/spin-up arrangements for the
doublet/quartet states of Cpd I.

Scheme 3b outlines the correspondence of the MO and
VB representations of Cpd I, with the δ2σ*xy

0σ*z2
0 block

placed in parentheses. On the left side, we show the bonding
block MO configuration, σFeO

2πFeO
4π*FeO

2. In the VB
representation σFeO is drawn as a line, while in VB the
π-block is represented by two resonating three-electron
bonds, which span two perpendicular planes, with two spin-
up electrons on iron-oxo.3,11 Finally, the open-shell porphyrin
(a2u

1) is represented by a cation-radical symbol on porphy-
rin. These VB cartoons will be used hereafter. The reader
may note also that each of the resonance structures, in
Scheme 3b, looks like FeIII-O•. Nevertheless, because their
superposition relays four of the electrons to πFeO-bonding
orbitals, this leaves a Fe(d4) configuration that qualifies as
FeIVO. However, during the reaction the electronic structure
gets localized and becomes FeIII-O•.11c

Scheme 3c and 3d summarizes some basic conventions
of the oxidation-state formalism, which tracks d-electron
counts of transition-metal complexes during redox processes.
Scheme 3c shows oxidation numbers for Cpd I: the porphyrin
has a σ-oxidation number of 2-, the oxo is 2-, and the
thiolate is 1-. Since the molecule is neutral, the heme
oxidation-state is V, which becomes Por+•Fe(IV)O, based
on spectroscopic evidence1,2 for a porphyrin π-cation radical.
With Fe(IV), Cpd I will have a d4 electronic configuration.3,9

Scheme 3d depicts the iron-aryloxo electromers due to
π-attack by Cpd I on the arene. The resulting OAr group
has an oxidation number of 1-, and hence the effective
oxidation state of the heme becomes IV, which can manifest

Figure 6. A plot of the π-activation barriers vs: (a) IP + 2.113∆EST(ππ*), for the P450 reactions and (b) IP + 1.058∆EST(ππ*)
for the MeO• reactions. (IP’s taken from NIST, and the fit is based on Maple 13 software).

332 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Shaik et al.



as PorFe(IV)OAr and/or Por+•Fe(III)OAr, with electronic
configurations d4 and/or d5, respectively. As amply dis-
cussed,3 π-activation by Cpd I leads to two electromeric
states for the tetrahedral intermediates,3e,9a of the
Por+•FeIIIOAr and PorFeIVOAr types. Since the VB diagrams
are very similar for the two electromers11a and the latter are
usually the more stable in the gas phase, as found to be so
in this study, we shall focus only on the latter type.

Figure 7a shows the VB diagram for benzene epoxidation
via the doublet spin state. For the sake of economy, the
benzene is symbolized by a single Kekulé structure and so
is Cpd I. The diagram involves two principal curves for the
direct O transfer to the arene. The curves are anchored at
the ground states (Ψr, Ψp) and their two promoted states
(Ψp*, Ψr,CT*). This direct process is, however, catalyzed by
an intermediate-state curve (ΨI*(IV)) that cuts through the
higher energy ridge for direct oxo-transfer and splits the
process into side-on π-attack followed by ring closure to form
the ferric-arene-oxide product.11,13b,c This three-curve VB
diagram is a typical case,11-13 wherein an intermediate state
internally facilitates the otherwise more difficult transforma-
tion of Ψr directly to Ψp.

Let us elaborate on the electronic structure of the promoted
state for the principal curves: 2Ψr,CT* is a state with a mixed
CT and covalent structures, which describes the two new
O-C bonds that will be formed between the oxo of Cpd I
and the arene molecule. To save space,3e,11 Figure 7a shows

only the main charge-transfer structure, whereas Figure 7b
shows explicitly the contributing structures, which combine
together to produce eventually the arene oxide in 2Ψp. There
are two equivalent charge-transfer structures, 2ΦCT, which
arise by one-electron transfer from the arene to porphyrin+•

and where the electrons on the O• and C• are coupled to a
bond pair across one C-O linkage, while the other linkage
has an ionic character (shown by dots). In addition, there is
a purely covalent contributor, 2ΦCOV, which maintains two
covalent C•s•O spin pairs between the arene and the oxo of
Cpd I. The charge-transfer structures, 2ΦCT, dominate
2Ψr,CT*, as indicated in Figure 7a.28,29 Note that, since the
C•s•O bond pairing lowers the oxidation number of the heme
to a ferric (FeIII) state, 2Ψr,CT* is actually an image state of
the ferric-arene oxide product and hence along the reaction
coordinate 2Ψr,CT* correlates to 2Ψp, as shown in Figure 7a.
In an analogous manner, in the reverse direction, the
promoted state, 2Ψp*, is formed from 2Ψp by an electron
transfer from the porphyrin to one of the O-C bonds while
pairing the electrons on the arene, and as such, 2Ψp* is the
electronic image of the ground state on the other side, 2Ψr,
and the two correlate along the reaction coordinate.

Let us turn now to the intermediate-state curve in Figure
7a. This VB curve which is anchored in 2ΨI*(IV) participates
in the π-activation step by forming the Meisenheimer
intermediate 2IT. Thus, ΨI*(IV) involves an electron shift
from iron (from πFeO*, see Scheme 3a) to porphyrin+• (which

Scheme 3. MO and VB Representations of Cpd Ia

a The following represent: (a) Key MO’s, (b) MO-VB correspondence of the FeO-bonding block, (c) oxidation numbers in Cpd I, and (d)
oxidation numbers in tetrahedral intermediate (IT).
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is energetically a small excitation, ca. 5-6 kcal ·mol-1).11c

In addition, the π-system of benzene is promoted to a triplet
configuration, while C• and •O are coupled into a bond pair,
which eventually becomes the O-C bond in 2IT. Note that
2ΨI*(IV) is different than the covalent component 2ΦCOV of
2Ψr,CT*, and it also lies lower in energy, since 2ΦCOV involves
a costly promotion from the oxygen doubly occupied orbital
to porphyrin+• (πFeO f a2u).28 Thus, 2ΦCOV possesses two
C•s•O bond pairs, while 2ΨI*(IV), wherein the oxo group
has three electrons, can form only one C•s•O bond pair,
and therefore the latter leads to the Meisenheimer intermedi-
ate. On the product side, 2ΨI*(IV) correlates to an excited
state of the product having Fe(IV) and three-electrons in one
of the C-O linkages.

The final energy profile in Figure 7a is obtained by the
mixing of the three state curves, resulting in a biphasic energy
profile, dominated by the intermediate-state curve, with a
π-activation phase followed by ring closure. The relative
barrier heights are determined by the vertical promotion
energies between the intersection states, and since the
promotion gap at the 2IT junction is much smaller than in
the reactant onset, the barrier for the π-activation phase is
rate controlling, while at the ring-closure state it is a rather
small barrier. Other follow-up steps from the 2IT junction,
e.g., the formation of phenols, can be described analogously,
but they require their own VB diagrams,13 as they are
associated with the migration of the ipso proton to the oxo
ligand.9a

Nature of the π-ActiVation Transition State and the
Tetrahedral Intermediate. Let us start with the natures of

2TSπ and 2IT Figure 7a. The charge-transfer state curve,
2Ψr,CT* lies not so much higher than the intersection point
of the 2Ψr-2ΨI*(IV) curves, where 2TSπ will be formed by
mixing of the three state curves. Consequently, 2TSπ will
exhibit a partial charge transfer from the arene to the Cpd I
moiety, to an extent that depends on the arene substituent
(X). For example, with X ) NMe2 the IP of the arene is the
lowest in the series, ca. 58 kcal ·mol-1 lower than that of
nitrobenzene, with the highest IP. As such, the mixing of
the charge-transfer state for X ) NMe2 will be the most
pronounced in the series, while for X ) NO2, it would be
the least significant, as in fact revealed by the computational
results in Figure 3, which shows QCT values for the various
substituents. Similarly, the tetrahedral 2IT intermediate will
have a hybrid character, with a dominant radical character,
but neither fully radical nor fully cationic.

Spin-State Preference. The difference between the doublet
and quartet spin processes is depicted in Figure 7c, which
shows 2Ψr,CT* and 4Ψr,CT* and their energy difference. Thus,
in both states we have a PorFe(III)O•s•Ar+ species, which
arises by electron transfer from the arene to porphyrin+•

while coupling O• and •C to a bond-pair. However, whereas
the PorFe(III) moiety of 2Ψr,CT* has a δ2π*2π*1 d-block
configuration, 4Ψr,CT* is typified by δ2π*1π*1σ*z2

1. Thus,
4Ψr,CT* involves also a π* f σ*z2 promotion within the
d-block (approximately, 30 kcal ·mol-1).11b Since the charge-
transfer state is rather close to the other two curves, its mixing
into 2,4TSπ can be deduced from simple considerations of
perturbation theory. It is thus expected that generally the 2TSπ

species will have greater mixing and be lower than 4TSπ.

Figure 7. (a) A VB diagram describing the mechanistic scenario during the doublet spin-state conversion of benzene to benzene-
oxide via intermediacy of the Meisenheimer intermediate, 2IT. (b) A detailed description of the major contributors to the promoted
state 2Ψr,CT*. (c) The relative energies of 2Ψr,CT* and 4Ψr,CT*.
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Of course, the extent of this spin selectivity is expected to
be modulated by the substituent X, such that electron-
withdrawing susbstituents, which raise the IP of the arene,
will lead to a smaller energy advantage of 2TSπ over 4TSπ

species.
ReactiVity Patterns: Using VB Diagrams to Estimate

π-ActiVation Barriers. Figure 8 shows a section of the VB
diagram with the reactivity quantities, which are necessary
for modeling of the barrier and its variation. The drawings
of the species near the curve represent an attack on the para
position to the substituent X, and later on we shall generalize
this to meta attacks. The figure shows that the barrier is
determined largely by the avoided crossing and VB mixing
of the reactant and intermediate curves, 2Ψr and 2ΨI*, but
the charge-transfer state lying above, 2Ψr,CT*, can also mix
and lower the resulting barrier. The simplest expression for
the barrier of an elementary step is eq 1:

Here ∆Ec measures the height of the crossing point of Ψr

and 2ΨI*, and B is TS-resonance energy due to the VB
mixing of the three curves.

The height of the crossing point reflects the total deforma-
tion energies of the two reactants and their Pauli repulsions,
which are required to achieve the 2Ψr - 2ΨI* crossing.30

As usual, the height of the crossing point can be expressed
as a fraction (f) of the promotion energy at the reactant side
(Gr) leading to eq 2:

Since the promotion energy is simply the singlet-to-triplet
excitation of the arene, eq 2 becomes

Recalling that B reflects also the mixing in the charge-transfer
state, we expect that this quantity will vary as a function of
the relative energy of the transfer state Ψr,CT* near the
crossing point. This energy difference cannot be quantified

computationally, but we should expect that it will change in
proportion to the initial energy of 2Ψr,CT* relative to the
ground state, 2Ψr, and is given by:

where IPArX is the IP of the arene, while EACpd I is the EA
of Cpd I.

In summary, we expect that the barrier will be determined
by the variation of the singlet-to-triplet excitation of the
arene, with a secondary influence of the ionization potential
of the arene. Equations 3 and 4 can be used to estimate
barriers for the series of reactions of this study. Since the
reaction resembles a radical attack, we can use f ) 0.3 or
1/3, as done previously for H abstraction for radicals.11a,31

The only missing quantity is then B. However, having f and
∆EST, we can extract the B values needed to reproduce the
DFT-calculated barriers:

These data are shown in the fifth column of Table 2. Thus,
for example, using the DFT-calculated barrier (∆Eπ

‡) of
benzene, the corresponding ∆EST value (102.2 kcal ·mol-1),
and f ) 0.3, we get B(benzene) ) 14.5 kcal ·mol-1, and the
same procedure leads to B ) 17.2 kcal ·mol-1 for the N,N-
dimethylaniline. Other B values are derived similarly.

But we can do better than that, by modeling the B values
based on the understanding that these quantities reflect the
mixing of the corresponding charge-transfer states. Using
perturbation theory, this mixing will be inversely proportional
to the energy gap between the charge transfer Ψr,CT* and
the crossing point in Figure 8 and will be proportional to
the matrix element that couples the states. Since the energy
gap of the crossing point is expected to be proportional to
IPArX - EACpd I in eq 4 and the matrix element for coupling
these states is gauged by the odd electron density on the
carbon site where O-C bond is made, we can use the
following simple expression for BX for a given substituent
X, relative to BH for the unsubstituted benzene:

Here FX and FH are, respectively, the spin densities at the
sites of attack of the X-substituted arene vs benzene, in the
corresponding triplet states. Thus, all we need is to have BH,
the value for benzene, and derive from it all the other BX

values. The so calculated B values are collected in the sixth
column of Table 2.

Before looking at these results it is instructive to inspect
the spin densities, which are depicted in Figure 9 for
representative substituents (for remaining ones see Support-
ing Information, Figures S3 and S4). For most of the
substituents, the lowest triplet state is due to πy f π*y

excitation (consult Figure 1 for the orbitals), and Figure 9a
shows the spin densities for three cases. It is apparent that
the site of the highest spin density is the para position,
whereas the meta position has negligible spin density. Figure
9b shows the triplet spin densities corresponding to the πx

f π*x excitation. Here it is seen that the spin density is
largest at the meta and ortho positions, but the meta spin

Figure 8. A VB diagram for the π-activation step, showing
the three state curves and the key quantities that determine
the barrier.

∆Eπ
‡ ) ∆Ec - B (1)

∆Eπ
‡ ) fGr - B (2)

∆Eπ
‡ ) f∆EST - B (3)

∆ECT(2ψr f
2ψr,CT*) ) IPArX - EACpd I (4)

B ) f∆EST - ∆Eπ
‡ (5)

BX ) BH{[FX(IPH - EACpd I)]/[FH(IPX - EACpd I)]} (6)
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density is still smaller than the para value in Figure 9a. It is
clear therefore from eqs 4 and 6 that the barriers will be
generally larger for meta position attack on the ring, which
is what the calculations here and elsewhere9c,d generally
show, albeit not always.9d

The VB barriers of the para attacks (seventh column in
Table 2) were modeled using eqs 4 and 6 with experimental
IPX values, EACpd I ) 64.9 kcal ·mol-1 and f ) 0.3. Thus,
for example, using the IPH - EACpd I for benzene (148.2
kcal ·mol-1), the IPX - EACpd I for X ) NMe2 (109.2
kcal ·mol-1), and the corresponding FH and FNMe2 values (0.86
and 0.76, respectively), we obtain BNMe2 ) 17.4 kcal ·mol-1

and the corresponding barrier 9.4 kcal ·mol-1 compared with
the DFT-calculated datum of 9.6 kcal ·mol-1. Other data in
Table 2 (columns sixth and seventh) were derived in the same
manner.

We note that Table 2 is one of a few almost equally
successful modeling sets made with f ) 0.3 and 1/3 and
theoretical and experimental IPX values; all these attempts
give very similar results and are relegated to the Supporting
Information (Tables S10-12). As shown by the data in Table
2, the VB barriers (column seventh) model the DFT results
(column eighth) quite well with a mean unsigned error of
0.6 kcal ·mol-1. Moreover, the trends in the BX values (sixth
column) modeled by eq 6 are close to the values that are
required to reproduce the DFT barriers (eq 5). Thus, our
modeling of BX as a quantity based on the mixing of the
charge-transfer state into the transition state appears to be
quite reasonable and consistent. In both series, the largest
BX is found for X ) NMe2, in good accord with the finding

of the largest QCT for this substituent in Figure 3. Similarly,
the smallest BX is found for X ) NO2, in agreement with
the smallest QCT for this substituent in Figure 3.

The simplest expression to derive the B values for meta
attacks is shown in eq 7:

which relates the BX,m value to corresponding para value,
assuming that the only factor that varies is the relative spin
densities in these positions, FX,m/FX,p, all else being constant.
Since the meta attack will mix the two triplet states, πy f
π*y and πx f π*x, we can use the corresponding spin
densities in Figure 9b vs a, to derive the BX,m values. Using
eq 7, the predicted meta attack barriers are larger than those
for the para attack by 1.5-4.9 kcal ·mol-1, whereas the
corresponding DFT values are 0.4-2.1 kcal ·mol-1 (except
X ) NMe2; see Table 1). In the most deviant case, eq 7
predicts a rise of the meta barrier by 4.7 kcal ·mol-1 vis-à-
vis the DFT calculated 7.2 kcal ·mol-1. Obviously eq 7 yields
the correct direction in the barrier change, because BX,m <
BX,p, but it certainly is much oversimplified to provide exact
changes in the barrier.

VB Modeling of ReactiVity for MeO · Attacks. The VB
diagram for arene activation by MeO• is shown in Figure
10. Here we are concerned only with the π-activation step,
which bears similarities to the activation by Cpd I. Indeed,
as in Figure 8, here we find the state where the ArX molecule
is excited to a triplet and is coupled via a C•-•O bond pair
and the charge-transfer state, 2Ψr,CT*, which will mix with
the other state curves and generate a TSπ species with a
mixed character. However, since MeO• has a low EA (36.5
kcal ·mol-1)20 compared with Cpd I, the charge-transfer state
is high lying here in Figure 10 and will mix to a smaller
extent into the TS wave function. This is indeed born out
by the DFT calculations in Figures 3 vs 4, which shows that
the QCT quantities are always smaller in the MeO• transition
states.

The barrier can be modeled using eq 4 with f ) 0.3 (see
Supporting Information, Tables S14-16). The various BX

values can be derived from eq 4 by using the DFT barriers,
and alternatively, it can be modeled using eq 8:

Table 2. Reactivity Factors and VB Estimated BX Values and Barriers for the para Position Attacks by Cpd I on ArX
Molecules

X
IPa

(kcal ·mol-1)
∆EST (ππ*)b

(kcal ·mol-1) Fx,para
c BX

d (DFT) BX
e (VB)

∆Eπ
‡ (VB)f

(kcal ·mol-1)
∆Eπ

‡ (DFT)
(kcal ·mol-1)

H 213.1 102.2 0.86 14.5 14.5 16.2 16.2
Cl 209.4 97.3 0.80 13.9 13.8 15.4 15.3
F 214.0 101.9 0.83 15.4 13.9 16.7 15.2
CN 225.3 89.3 0.75 11.9 11.7 15.1 14.9
NO2 232.0 87.1 0.76 11.9 11.4 14.8 14.2
NMe2 174.1 89.4 0.76 17.2 17.4 9.4 9.6
OMe 193.7 97.6 0.82 16.1 15.9 13.4 13.2
NH2 185.4 91.5 0.76 16.4 15.7 11.7 11.0
CH3 205.0 99.0 0.89 14.7 15.9 13.8 15.0
SMe 187.7 89.5 0.75 16.2 15.2 13.5 12.6
N-acetyl 195.1 90.7 0.75 13.8 14.4 13.0 13.6

a Experimental values from the NIST database corresponding to vertical ionization. b See Table 1. c Spin density localized at the para
carbon of ArX in the triplet state. d BX is defined by eq 5; B ) f∆EST - ∆Eπ

‡. e BX (VB) is derived from eq 6. f MUE ) 0.6 kcal ·mol-1.

Figure 9. Spin density distributions in the triplet states of a
few Ar-X molecules in: (a) the πy f π*y and (b) the πx f π*x

states.

BX,m ) BX,p[FX,m/FX,p] (7)

BX ) BH{[FX(IPH - EAMeO)]/[FH(IPX - EAMeO)]} (8)
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which is analogous to eq 6, with one difference that the EA
of Cpd I is replaced by that of MeO• (calculated vertical
EAMeO ) 32.1 kcal ·mol-1).

All the data are assembled in Table 3, which shows a few
trends: First, the BX values are invariably larger than those
for the Cpd I series, in accord with the tighter transition states
produced by DFT, in Figure 4 vs 3.

The BX values estimated from eq 8 and the corresponding
VB barriers are close to the DFT-derived ones within a mean
unsigned error of 1.0 kcal ·mol-1. Furthermore, using eq 7
for the meta BX values leads to the same conclusion as before,
namely that BX,m < BX,p. Thus, the VB modeling captures
the essence of the two reactions and shows their close
relationships.

Addition of Cpd I or MeO• to aromatic compounds (ArX)
generates transition states with similar electronic structures
on the substrate, involving both charge and radical characters.
Inspection of the transition states (Figures 3 and 4) shows
that spin localization is not affected by the reagent identity,
whereas the charge-transfer values are more pronounced for
transition states generated by Cpd I attack. This larger charge
transfer can be attributed to higher EA of Cpd I compared
to the methoxy radical. Similar transition-state characters for

both reagents are also reflected in the VB modeling. The
transition-state energies are gauged by the singlet-triplet
energy gap and the resonance energy BX; the latter quantity
reflects also influence by the ability of a substrate to give
off an electron and the ability of an oxidant to accept an
electron. The VB model thus successfully describes both
reaction types and predicts activation energies in reasonably
good agreement with the DFT values. It further reveals that
the methoxy radical can mimic Cpd I for studies of oxygen
addition, as assumed in the pioneering study of Jones et al.8a

Making Independent Predictions Using the VB model. The
VB model allows us to try making independent predictions
of activation energies and compare these with values
calculated by DFT in the literature. Some of these predictions
are collected in Table 4.

Thus, as can be seen from Table 4, Hackett et al.32

calculated by DFT, barriers of 15.0 and 8.9 kcal ·mol-1,
respectively, for oxygenation of C6Cl6 and C6F6 by Cpd I
too while using the singlet-triplet excitation energies and
eq 6, the VB model predicts with good agreement, the values
of 14.8 kcal ·mol-1 and 9.4 kcal ·mol-1 (C6Cl6 and C6F6).
Further, Bathelt et al.9c calculated DFT barriers for oxidation
of halogenated aniline and 1,2-difluoro-benzene, which
compared favorably with experimental data.5b It is apparent
from Table 4 that the VB model predicts the barriers are in
reasonable agreement with DFT.

Whereas the model predicts reasonable barrier values, its
ability to predict regioselectivity is somewhat less effective.
Thus, in the case of 1,2-difluoro-benzene, Bathelt et al.9c

predicted a regioselectivity ratio (4,5/3,6) of 63/37 in
agreement with the experimental result (67/33).5b The VB
model predicts on the other hand a preference for 3,6. In
other substrates studied theoretically and experimentally,9d,33

the VB model predicted correctly two cases ((4/6)-methyl-
3-fluoro-aniline) and incorrectly for the other two (3-fluoro-
aniline and 2-methyl-3-fluoro-aniline). Part of the problem
originates in the difficulties to describe all the closely lying
triplet states of polysubstituted substrates with DFT. Another
part is, of course, due to the fact that regioselectivity is often
determined by barrier differences of sub kcal ·mol-1, while
the accuracy of the VB model is of the order of ∼1
kcal ·mol-1. One can think of ways to improve the predictive

Figure 10. A VB diagram describing the π-activation step
for MeO• attack on the para position of arenes.

Table 3. Reactivity Factors and VB Estimated B Values
and Barriers for para Position Attacks by MeO• on
X-Substituted Benzene Derivativesa

X
BX

b

(DFT)
BX

c

(VB)
∆Eπ

‡ (VB)d

(kcal ·mol-1)
∆Eπ

‡ (DFT)
(kcal ·mol-1)

H 22.8 22.8 7.9 7.9
Cl 21.8 21.6 7.5 7.4
F 23.0 21.9 8.7 7.5
CN 19.2 18.6 8.2 7.6
NO2 18.1 18.2 7.9 8.1
NMe2 23.5 25.7 1.2 3.3
OMe 23.6 24.3 5.0 5.7
NH2 23.3 23.8 3.7 4.2
CH3 22.7 24.7 5.0 7.0
SMe 21.6 23.1 3.8 5.3
N-acetyl 21.3 22.1 5.1 5.9

a IP’s and ∆EST(ππ*) are those which are given in Table 2. b BX

(DFT) is defined by eq 5; B ) f∆EST - ∆Eπ
‡. c BX (VB) is derived

from eq 8. d MUE ) 1.0 kcal ·mol-1.

Table 4. Predicted Activation Energies in kcal ·mol-1 for
the Cpd I Addition to Halogenated Anilines and Benzenes

substrate position
predicted

(VB)d
calculated

(DFT)

C6F6 9.4a 8.9b

C6Cl6 14.8a 15.0b

1,2-difluoro-benzene 3, 6 16.6 16.6c

1,2-difluoro-benzene 4, 5 18.8 15.2c

aniline 4 11.7 11.0c

2-fluoro-aniline 13.7 11.7c

2,6-difluoro-aniline 11.7 12.0c

2,3,6-trifluoro-aniline 12.9 11.8c

a Using Cpd I (HS-). To gauge the B values for these
substrates, the VB model used EACpd I ) 67.9 kcal ·mol-1 for Cpd
I (HS-) and the corresponding barrier for benzene activation (15.8
kcal ·mol-1) calculated with UB3LYP/LACV3P(Fe)/6-311+
G**(rest)//UB3LYP/LACV3P(Fe)/6-31G*(rest). Using the Cpd I
(CH3S-) leads to 14.6 and 9.7 kcal ·mol-1. b See ref 32. c See ref
9c. d MUE ) 1.3 kcal ·mol-1.
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ability of model by averaging the spin densities for all the
closely lying states, but this will affect the simplicity and
clarity of the model.

Conclusion

The above study describes a valence-bond modeling
approach to the mechanism of arene activation by P450
Cpd I and a methoxy radical. Interestingly, while the VB
model is applied here in a manner reminiscent of the
quantitative structure-activity relationship methodology,9e

the VB parameters derive from first principles of electronic
structure and, as such, are not arbitrary but rather have
physical significance. Thus, VB modeling shows the
origins of the barriers for both reaction series and the
nature of the corresponding transitions states. Additionally,
it elucidates the underling reasons for the stepwise
mechanism and the spin selectivity for the reactions of
Cpd I. Finally, the model is used to predict barriers for
the rate-determining π activation step, with reasonable
accuracy compared to the DFT values (mean unsigned
deviation for 35 barriers is 1.0 kcal ·mol-1), based on
easily accessible properties, such as the IPs and singlet-triplet
excitation energies of the substrates and the EA of Cpd I.
Much order is thus provided by the VB model into P450
chemistry.11
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Abstract: We present a complete linear scaling method for hybrid Kohn-Sham density
functional theory electronic structure calculations and demonstrate its performance. Particular
attention is given to the linear scaling computation of the Kohn-Sham exchange-correlation
matrix directly in sparse form within the generalized gradient approximation. The described
method makes efficient use of sparse data structures at all times and scales linearly with respect
to both computational time and memory usage. Benchmark calculations at the BHandHLYP/
3-21G level of theory are presented for polypeptide helix molecules with up to 53 250 atoms.
Threshold values for computational approximations were chosen on the basis of their impact
on the occupied subspace so that the different parts of the calculations were carried out at
balanced levels of accuracy. The largest calculation used 307 204 Gaussian basis functions on
a single computer with 72 GB of memory. Benchmarks for three-dimensional water clusters are
also included, as well as results using the 6-31G** basis set.

1. Introduction

Recent developments of linear scaling algorithms together
with the availability of larger computer resources have
made it possible to carry out electronic structure calcula-
tions for systems with many thousands of atoms,1-6 using
Hartree-Fock (HF) and Kohn-Sham density functional
theory (KS-DFT), as well as tight-binding and MNDO-type
semiempirical methods. Linear scaling algorithms have been
developed for all computationally expensive parts of such
calculations, including the computation of the Coulomb,7-9

HF exchange,10,11 and KS-DFT exchange-correlation12,13

matrices and methods for the density matrix construction
step.14-18 However, making efficient use of linear scaling
methods is not straightforward, and quadratically or worse
scaling methods are still applied even for molecular systems
with many thousands of atoms, where the use of linear

scaling algorithms would greatly reduce the computational
cost, see, e.g., ref 19.

The development of linear scaling algorithms has mostly
focused on achieving linear scaling in time, and the memory
usage aspect has often been overlooked. Whereas linear
scaling in memory can in principle be achieved by replacing
dense matrix storage with a sparse matrix representation, the
overhead from locating and modifying elements in the sparse
storage can be considerable. Often, linear scaling algorithms
have been described without considering the matrix repre-
sentation, thus implicitly assuming fast access to matrix
elements. In practice, efficient use of sparse matrix storage
requires that the way that matrix elements are accessed is
considered as an integral part of each algorithm and that the
different parts of the calculation are combined efficiently
while using only sparse data structures. Also, in order to
achieve sufficient accuracy in the result, the various threshold
values used in different parts of the calculation need to be
chosen carefully. Due to such difficulties, linear scaling
methods are still far from reaching their full potential.
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† Uppsala University.
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This paper builds on our earlier work on linearly scaling
HF calculations.4 We describe the necessary changes needed
to efficiently evaluate the exchange-correlation contributions
to the Kohn-Sham matrix with linear scaling in both time
and memory. In particular, an efficient way of accessing
sparse matrix elements is described, with an overhead
comparable to that of dense matrix storage. The new
algorithm has been implemented in the Ergo program.20 We
also describe how the exchange-correlation contributions can
be evaluated at an accuracy level consistent with the other
parts of the calculation.

This paper is organized as follows: Section 2 gives an
overview of the KS-DFT method from a computational point
of view. Our algorithm for linear scaling construction of the
exchange-correlation matrix directly in sparse form is
described in section 3. Benchmark calculations demonstrating
linear scaling behavior are presented in section 4. Finally, a
few concluding remarks are given in section 5.

2. Method

We consider calculations where the electron density is
expanded in a set of n basis functions {φk(r)} built up by
combinations of polynomials and Gaussian functions usually
centered at the nuclei of the molecule. These basis sets are
commonly referred to as Gaussian type linear combination
of atomic orbital (GT-LCAO) basis sets or simply Gaussian
basis sets. See ref 21 for a thorough discussion about such
basis sets.

The sequence of steps illustrated in Algorithm 1 sum-
marizes how a linear scaling KS-DFT calculation is carried
out in the Ergo quantum chemistry program.20 The Ergo
program uses Gaussian basis sets to compute electronic
structures with linearly scaling processor time and memory
usage.

Algorithm 1. Overview of KS-DFT Self-Consistent Field
Program

1: Read molecule and basis set information from
input files.

2: Compute overlap matrix S and inverse factor Z
such that ZTSZ ) I.

3: Compute one-electron Hamiltonian matrix H1.
4: Generate starting guess density matrix D.
5: for i ) 1, 2, ... do
6: Compute new Coulomb matrix J.
7: Compute new HF exchange matrix K.
8: Compute new Kohn-Sham exchange-correlation

matrix Vxc and energy Exc

9: Compute energy E ) Tr(DH1) + 1/2Tr(D(J + γK))
+ Exc.

10: Compute new Kohn-Sham matrix F ) H1 + J +
γK + Vxc.

11: Compute F̃ as a linear combination of new and
previous Kohn-Sham matrices.

12: Compute F⊥ ) ZTF̃Z.
13: Compute new density matrix D⊥ from F⊥.
14: Compute D ) ZD⊥ZT.
15: end for

In the self-consistent field (SCF) procedure given by
Algorithm 1, two main operations are repeated: (1) the DfF
step, for the construction of the Kohn-Sham matrix for a
given density matrix, consisting of steps 6-10 of Algorithm
1, and (2) the FfD step, for the subsequent construction of
a new density matrix, consisting of steps 12-14. These two

operations can be employed in a simple fixed point iteration,
but usually some convergence enhancing schemes are used
to accelerate and hopefully even ensure convergence, see
refs 22 and 23 for recent reviews. In our calculations, in
each iteration, either damping24,25 or DIIS26,27 is used in step
11 to generate F̃ as a linear combination of new and previous
Kohn-Sham matrices.

The Kohn-Sham matrix F consists of one-electron (H1)
and two-electron (J, K, Vxc) contributions: F ) H1 + J +
γK + Vxc. In the case of a HF calculation, Vxc ) 0, Exc ) 0,
and γ ) 1. In the case of a pure Kohn-Sham calculation, γ
) 0. For so-called hybrid functionals, Vxc and Exc are both
nonzero and γ * 0. Becke’s half-and-half functional with
an LYP correlation part (BHandHLYP),28 used in the
benchmark calculations described in section 4, is a hybrid
functional with γ ) 0.5.

The Coulomb matrix J can be efficiently calculated using
truncated multipole expansions.8,9,29-32 An important feature
of our implementation is the use of a dynamically selected
multipole expansion order, an approach that gives significant
speedups compared to always using the same expansion
order.8,9 Truncated multipole expansions are also used for
linear scaling computation of the electron-nuclei term of the
one-electron Hamiltonian matrix H1.

The HF exchange matrix K can be computed in linear time
by exploiting the locality of basis functions together with
the sparsity of the density matrix. There has been much
research devoted to efficient computation of the exchange
matrix.10,11,33-38 Some details about the exchange matrix
evaluation in the Ergo code, including memory usage
considerations, can be found in ref 4.

A key result of this article is our algorithm for linear
scaling construction of the Kohn-Sham exchange-correlation
matrix Vxc directly in sparse form. This algorithm is described
in section 3.

The density matrix D⊥ is computed from F⊥ using the
purification scheme of ref 18 combined with a novel
approach for the removal of small matrix elements.39 The
most distinguished feature of this purification scheme, which
uses the so-called trace-correcting purification polynomials
of the second order,17 is that it allows for rigorous control
of the error in the occupied subspace. This purification
procedure is formulated for an orthogonal basis. Therefore,
an inverse factor Z of the overlap matrix is needed for the
congruence transformations to and from the orthogonal basis
in steps 12 and 14 of Algorithm 1. In the calculations
considered in this paper, the inverse factor was computed
using inverse Cholesky decomposition,40-42 although other
choices for Z are possible as well.43-45

Matrix operations needed particularly in density matrix
purification but also for other operations are performed using
sparse matrix algebra. This allows for linear scaling provided
that the matrix sparsity is such that the average number of
nonzero elements per row does not increase with system size.
This is usually the case for large nonmetallic molecular
systems.

For simplicity, the description above was given for the
common case of a spin-restricted calculation. However, this
can be straightforwardly generalized to the spin-unrestricted
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case. Then, the electron densities for R and � spin are
represented by separate density matrices DR and D� so that
the total electron density matrix is given by D ) DR + D�,
and similarly two Kohn-Sham matrices FR and F� are
created. Two Kohn-Sham exchange-correlation matrices
Vxc;R and Vxc;� are also used, formed from the electron
densities FR and F� as described in the following section.

3. Linear Scaling Computation of the
Kohn-Sham Exchange-Correlation Matrix

The Kohn-Sham formulation of density functional theory46

allows one to formulate the framework for density functional
theory calculations in a way similar to the HF framework
with two important modifications. HF exchange is scaled
down or entirely removed. Instead, an exchange-correlation
term is added to the energy, and a corresponding contribution
is added to the Fock matrix. A Fock matrix with an
exchange-correlation contribution is traditionally called a
Kohn-Sham matrix.

The exchange-correlation energy Exc within the generalized
gradient approximation (GGA) is given by

where

Here, F (FR(r),F�(r),qR(r),q�(r),qR�(r)) ≡ F (r) is the density
functional which in the case of GGA also depends on the
density gradient.

GGA assumes that the nonlocal character of the exchange-
correlation contributions can be captured by making the
functional dependent on the local value of the spin-dependent
density gradient gR(r). It also separately considers electron
densities with spin-up R and -down �, similarly as in the
local spin density approximation. The densities FR and F�

are the same only in the special case of a closed shell
calculation.

Matrix elements of the exchange-correlation matrix Vxc;R

under the GGA approximation are given by

where

In contrast to the integrals encountered in calculations of
Coulomb repulsion and HF exchange, exchange-correlation
integrals cannot be evaluated using a compact analytical
expression. Instead, the exchange-correlation energy Exc and
the matrix elements Vxc;R;pq are computed using numerical
integration over a grid:

The choice of grid point locations {ri} and associated grid
weights {wi} determines the quality of the integration grid.
The electron density at a given grid point ri is computed by
contracting the density matrix DR with basis functions
evaluated at ri:

The calculation of the exchange-correlation matrix formally
scales cubically with system size. The scaling can be reduced
to linear if basis function screening is implemented.

3.1. Grids for Numerical Integration. Traditionally, the
entire integration grid is constructed as a union of atomic
grids, with grid weights {wi} adjusted in the overlapping
regions.47 Atomic grids are constructed as outer products of
Lebedev grids for angular integration48 and Gauss-Chebychev
radial grids.47,49 Alternative radial grids have been proposed
as well.50 The weights in overlapping regions are adjusted
using Becke partitioning or its variants.12,51 Smooth switch-
ing functions used in the Becke partitioning process in
principle stretch out infinitely. This makes the computational
cost of the partitioning process scale cubically with system
size. In practice, the right choice of multiplication order used
in the grid weight scaling process can make the effort per
atom roughly independent of the system size. Other parti-
tioning schemes, see, e.g., ref 12, choose the partitioning
function in a way that allows for trivial screening of atoms
far away from the grid point associated with the weight being
adjusted.

While grids constructed as unions of atomic grids are well
established, the existence of overlapping regions in multiatom
systems introduces errors that are difficult to control. The
high accuracy that is possible for the integration of densities
or exchange-correlation potentials for spherically symmetric
systems like atoms cannot be realized in such cases. The
complication of overlapping regions makes the error increase
by several orders of magnitude. A grid construction method
that in principle allows for integration of the electron density

Exc ) ∫
R3 F (FR(r), F�(r), qR(r), q�(r), qR�(r)) dr (1)

qR(r) ) |gR(r)| (2)

qR�(r) ) gR(r) ·g�(r) (3)

gR(r) ) ∇FR(r) (4)

Vxc;R;pq ) ∫
R3 [sR;p(r) φq(r) + φp(r) sR;q(r)] dr (5)

sR;p(r) ) φp(r) VR(r) + uR(r) ∑
c∈{x,y,z}

∂φp(r)

∂c

∂FR
∂c

+

t(r) ∑
c∈{x,y,z}

∂φp(r)

∂c

∂FR
∂c

(6)

VR(r) ) ∂F (r)
∂FR

(7)

uR(r) ) 1
qR(r)

∂F (r)
∂qR

(8)

t(r) ) ∂F (r)
∂qR�

(9)

Exc ) ∑
i

wiF (ri) (10)

Vxc;R;pq ) ∑
i

wi[sR;p(ri) φq(ri) + φp(ri) sR;q(ri)] (11)

FR(ri) ) ∑
pq

DR;pqφp(ri) φq(ri) (12)
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up to any accuracy is the so-called hierarchical cubature
(HiCu).13 In the HiCu scheme, the quality of the local
integration grid in each part of space is measured by
comparing the numerical integral of the electron density to
the corresponding analytically evaluated integral. The grid
is further refined until a predefined integration accuracy
criterion is met. Other parameters such as basis function
extents are related to the integration accuracy criterion,
resulting in a method where a single parameter is used to
control the accuracy of the computed exchange-correlation
matrix.

In the Ergo program, both space partitioned atomic grids
as well as the HiCu scheme are implemented. In the
benchmark calculations in section 4, we used the HiCu
scheme since it has the advantage that the accuracy is
controlled by a single parameter.

3.2. Evaluation of the Sparse Exchange-Correlation
Potential Matrix. The evaluation of the exchange-correlation
matrix as given by eq 5 formally follows the scheme shown
in Algorithm 2. An efficient implementation of that algorithm
must fulfill a few conditions:

(1) Matrix element magnitudes |Vxc;R;pq| are estimated in
advance so that memory for Vxc;R;pq < τ is not allocated and
the sum contributing to that element is not computed. Here,
τ is a preselected threshold for matrix elements.

(2) Terms sR;q(ri), φp(ri), and φq(ri), contributing to several
matrix elements, are not unnecessarily recomputed.

Algorithm 2. Numerical Integration
1: for each (p,q) giving rise to a nonvanishing

Vxc;R;pq do
2: Vxc;R;pq :) ∑i wi[sR;p(ri) φq(ri) + φp(ri) sR;q(ri)]
3: end for

Depending on the amount of available memory and other
considerations, the operations in Algorithm 2 may be
performed in a different order. If memory constraints were
not present, we could perform the operations as shown in
Algorithm 3. This simple algorithm has significant memory
requirements. The sparse matrix B needs to be available
during the entire integration process. Let us consider for
example a system with 10 000 atoms, with 10 000 grid points
per atom, and where on average 50 basis functions are
nonvanishing at a grid point. In that example, the matrix B
would require approximately 60 GB of memory if stored in
the compressed sparse row format.52 One way to reduce the
memory demand is to process the grid points in batches. The
Ergo implementation follows that approach.

Algorithm 3. Linearly Scaling Numerical Integration
1: Compute a sparse matrix B with elements Bki ) φk(ri)

of basis functions φk evaluated at grid points ri.
2: Compute Fσ(ri), σ ∈ {R, �} by contracting the sparse

density matrix Dσ with sparse B on each side: Fσ(ri)
) ∑pq BpiDσ;pqBqi.

3: Use Fσ(ri) to compute vσ(ri), uσ(ri), t(ri) and eventually
Sσ;pi ) sσ;p(ri), and store the result.

4: Compute the exchange-correlation matrix by
performing a matrix scaling and a sparse matrix-
matrix multiplication as given by eq 11: Vxc;σ;pq )
∑i wi(BqiSσ;pi + BpiSσ;qi)

At the time of grid generation, grid points are collected
in spatial cells. For each cell, we find the basis functions
that overlap with that cell. This information is important with

respect to both accuracy and performance. A too cautious
estimation may result in a dramatic increase in calculation
time. On the other hand, a too sloppy criterion for determi-
nation of basis functions relevant for a given cell will
inadvertently affect the calculation accuracy. The list of
nonvanishing basis functions for a given cell allows us to
predict, using eq 11, which exchange-correlation matrix
elements may have nonzero values and to determine an
exchange-correlation matrix sparsity pattern. This pattern in
turn permits preallocation of the resulting exchange-correla-
tion matrix Vxc;pq so that individual contributions computed
later can be added quickly without a need to reallocate
memory. The numerical integration is then performed one
cell at a time. For each cell, we follow Algorithm 3, with
the exception that the partial contributions computed ac-
cording to this algorithm are accumulated for all cells.

We store the sparse matrix pattern for the exchange-
correlation calculation as a list of nonvanishing matrix
element ranges for each column of the matrix. For any given
column, we choose to number the atoms and associated basis
functions following their spatial location, so that the number
of ranges is small. This data structure has several properties
important from the performance point of view. First, ranges
can be rapidly extended as the sparse matrix pattern is built
during grid generation. Second, a small number of ranges
for any given column, together with an efficient bisection
algorithm, makes it possible to efficiently find elements in
the sparse matrix. To assess the efficiency of our sparse
matrix structure, we have compared the performance to a
previous version of the code using full dense matrix storage.
The overhead of finding matrix elements in the sparse matrix
structure does not exceed 10% of the total exchange-
correlation integration time in pessimistic cases, and in many
cases, the sparse code is faster by 10% to 20% than the
corresponding version operating on full matrices due to
increased computer memory locality and improved cache
usage.

4. Benchmark Calculations

In this section, we present benchmark calculations for two
kinds of molecular systems: glutamic acid-alanine (Glu-Ala)
helices and water clusters. For each of them, we have
performed KS-DFT calculations for varying system sizes
using the BHandHLYP functional28 with two different basis
sets: 3-21G and 6-31G**.

4.1. Molecular Systems Used for Benchmarks. The
Glu-Ala helix systems were generated using the “build
sequence” function in the Spartan program,53 with the R helix
option selected. We refer to these systems as [GluAla]n,
where n is the number of repeating Glu-Ala units. Because
generating very large helices using the Spartan program
became cumbersome, systems larger than [GluAla]448 were
instead generated from the smaller ones using an elongation
procedure.

The water cluster geometries were generated from a large
molecular dynamics simulation of bulk water at standard
temperature and pressure by including all water molecules
within spheres of varying radii. A water molecule was
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included if its oxygen atom was within the radius, thus
making sure that only whole water molecules were included.

The Glu-Ala and water cluster systems used in the
benchmarks are comparable to the ones used in ref 4,
although the water cluster geometries were now generated
from a different, larger molecular dynamics simulation.
Thanks to improvements of our implementation as well as
the availability of greater computer memory, we are now
able to carry out benchmark calculations for significantly
larger systems.

To facilitate comparison and verification of results, all
molecular geometries used in this paper are available for
download at www.ergoscf.org.

4.2. Selection of Threshold Values. The key quantity of
interest in electronic structure calculations is the occupied
subspace. Computational approximations result in perturba-
tions of this subspace. Errors can be measured by the largest
canonical angle θ1 between exact and perturbed subspaces.
This angle is related to the Euclidean norm of the error matrix
E and the gap � between eigenvalues corresponding to
occupied and unoccupied orbitals respectively:54

Note that in the case of a Kohn-Sham matrix, � is equal to
the HOMO-LUMO gap, and in case of a density matrix, �
) 1. For the benchmark calculations, we selected threshold
values such that the erroneous rotation of the occupied
subspace in each of the FfD and DfF steps as measured
by sin θ1 would be below 1 × 10-2.

For the FfD step, our implementation of density matrix
purification allows us to specify the desired accuracy directly
in terms of sin θ1.18 For the DfF step, we use the accuracy
scan information in Figure 1 together with inequality 13 to
choose threshold values that correspond to a given error in
the occupied subspace. The needed information about the
HOMO-LUMO gap is obtained as a byproduct of density
matrix purification.18,55 The resulting threshold values,

chosen so that sin θ1 e 1 × 10-2 in each of the FfD and
DfF steps for BHandHLYP water cluster calculations, are
shown in Table 1. Note that the threshold values τJ and τK,
for Coulomb and HF exchange matrix construction, respec-
tively, differ by more than 2 orders of magnitude. This is in
spite of the fact that these threshold values are used in a
similar way, namely, that contributions smaller than the
specified value are neglected. Thus, there is no universal
relationship between neglect threshold and error matrix norm.

In principle, separate accuracy scans should be performed
also for 6-31G** and for the Glu-Ala systems, giving
different sets of threshold values for each case. Whereas the
different gap value for Glu-Ala is automatically taken into
account by the program in the FfD step, this is not the
case in the construction of the Kohn-Sham matrix. Ideally,
the different gap value for Glu-Ala should have been taken
into account in the calculations of J, K, and Vxc as well.
However, for simplicity, we have used the set of threshold
values in Table 1 for all benchmark calculations reported in
this work, with one exception: the parameter τD determining
the accuracy of the FfD step was set to 1 × 10-3 in the
Glu-Ala calculations, in order to get more accurate informa-
tion about HOMO and LUMO eigenvalues. As will be seen
below, this parameter change for Glu-Ala did not signifi-
cantly affect the overall computational time since the
Glu-Ala calculations were strongly dominated by the DfF
step.

As can be seen in Figure 1, the errors in J and K decrease
in a very predictable manner as the integral threshold values
are decreased. It is therefore possible to implement a program
that automatically selects appropriate threshold values by
extrapolation after an assessment of the slopes of the lines.56

We believe that such an automated procedure in principle
should be possible also for the exchange-correlation part.
However, with our current implementation, the error in the
exchange-correlation part decreases in a less predictable
manner, see Figure 1, which makes it difficult to automate
the procedure of selecting a threshold value for the exchange-
correlation matrix evaluation.

4.3. Results. Results of the benchmark calculations are
shown in Figures 2, 3, 4, and 5. Each figure includes timings,
matrix sparsity, memory usage, and the HOMO-LUMO gap
plotted against system size. The calculations were performed
using the Ergo program,20 compiled with the Intel C++
compiler (ICC), version 10.1, and linked to the GotoBLAS2
linear algebra library, version 1.11p1.57,58 Each calculation
was run on a HP SL170h G6 compute server with two Quad-

Figure 1. Accuracy scans for BHandHLYP/3-21G calcula-
tions on a water cluster containing 471 water molecules, near
SCF convergence. These scans are used together with
inequality 13 to select threshold values for Coulomb matrix
(J), HF exchange matrix (K), and exchange-correlation matrix
(XC) evaluations that correspond to a requested level of
accuracy in the occupied subspace.

sin θ1 e
||E||2

� - ||E||2
(13)

Table 1. Threshold Values Selected to Give an Accuracy
in the Occupied Subspace of sin θ1 e 1 × 10-2 in Each of
the FfD and DfF Steps, Where the DfF Step Consists
of J, K, and Vxc Matrix Evaluationsa

calculation threshold value

FfD step τD ) 1 × 10-2

Coulomb matrix J τJ ) 5 × 10-9

HF exchange matrix K τK ) 2 × 10-6

exchange-correlation matrix Vxc τxc ) 5 × 10-7

a The values were determined using the accuracy scans in
Figure 1 together with eq 13. The HOMO-LUMO gap in the
BHandHLYP/3-21G calculation was 0.23 au.
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core Intel Xeon 5520 (Nehalem 2.26 GHz, 8 MB cache)
processors and 72 GB of shared memory running the
Scientific Linux 5.4 operating system. Block-sparse matrix
operations were performed using a version of the Hierarchic
Matrix Library42,59 parallelized for shared memory using
OpenMP, with a uniform block size of 32 at the lowest level.
Other time-critical parts of the code are parallelized using
POSIX threads.

To generate starting guess densities, we first performed
preliminary calculations at the HF/STO-2G level of theory.
The resulting densities were used as starting guesses for
calculations at the HF/3-21G level. Finally, the converged
HF/3-21G densities were used as starting guesses for the
BHandHLYP calculations for both the 3-21G and 6-31G**
basis sets. The HF/3-21G guesses were good enough for the
BHandHLYP calculations to converge within 4-6 self-
consistent field iterations. The calculations were considered
converged as soon as the largest magnitude element of FDS
- SDF was smaller than 1 × 10-3.

The plotted timings do not include the initialization work
that is needed before the first SCF cycle, i.e., steps 1-5 in
Algorithm 1. Those steps contributed only to a small part of
the total calculation time. The whole initialization work,
including computation of the overlap and one-electron
Hamiltonian matrices, inverse Cholesky decomposition, and
starting guess density projection parts, in no case took more
than 12% of the total calculation time.

The grid for numerical integration in the KS-DFT exchange-
correlation matrix evaluation was created using the HiCu
method13 with threshold value τxc ) 5 × 10-7, which gave
on average around 9100 grid points per atom for the
Glu-Ala calculations and around 7100 grid points per atom
for the water cluster calculations. The choice of basis set
did not significantly affect the number of grid points. Even
though roughly the same number of grid points were
generated for both basis sets, the grid generation for 6-31G**
required about 4-5 times as long time as for 3-21G. This is
because the description of the electron density used during
the HiCu grid generation13 becomes more expensive when
using a larger basis set. The grid was generated only once,
in the first SCF cycle. In subsequent cycles, the same grid
was reused. Therefore, the exchange-correlation matrix
evaluation in the first SCF cycle was computationally more
expensive by roughly a factor of 2. Linear scaling was
observed for the grid generation, although this extra time is
not seen in the figures as the plotted timings are for the third
SCF cycle.

The results of the Glu-Ala helix benchmark calculations,
shown in Figures 2 and 3 for basis sets 3-21G and 6-31G**,
respectively, indicate nearly perfect linear scaling. The
timings are strongly dominated by the DfF step, consisting
of the J, K, and XC parts, while the FfD step requires less
than 10% of the total SCF cycle time. For the larger helices,
the number of nonzero elements in the density matrix

Figure 2. Timings, memory usage, matrix sparsity, and computed HOMO-LUMO gaps for BHandHLYP/3-21G calculations on
Glu-Ala helix systems of varying size. The right-most points in the graphs are for [GluAla]2048, with 53 250 atoms and 307 204
basis functions. The upper and lower limits of the HOMO-LUMO gaps are indistinguishable in the figure.
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stabilizes at around 2500 and 8000 elements per row for basis
sets 3-21G and 6-31G**, respectively. For the 3-21G basis
set, the largest helix we could handle was [GluAla]2048,
C16384N4096O8192H24578, corresponding to 307 204 basis func-
tions. For the 6-31G** basis set, the largest helix we could
handle was [GluAla]512, C4096N1024O2048H6146, corresponding
to 131 082 basis functions.

In the water cluster benchmark calculations, shown in
Figures 4 and 5 for basis sets 3-21G and 6-31G**,
respectively, linear scaling behavior is approached for the
larger systems. Perfect linear scaling is expected when
reaching system sizes where the number of nonzero elements
per row in the density matrix no longer increases. We note
that for the larger water cluster calculations the FfD step
takes a considerable part of the total SCF cycle time, and it
is clearly the last part of the calculation to enter the linear
scaling regime. This is in sharp contrast to the one-
dimensional Glu-Ala case where the FfD step takes only
a small fraction of the total SCF cycle time. For the larger
water clusters, the number of nonzero elements in the density
matrix approaches 6000 and 13 000 elements per row for
basis sets 3-21G and 6-31G**, respectively. For the 3-21G
basis set, the largest water cluster we could handle contained
9644 water molecules, corresponding to 125 372 basis
functions. For the 6-31G** basis set, the largest water cluster
we could handle contained 3050 water molecules, corre-
sponding to 73 200 basis functions.

The memory usage plotted in panel c of Figures 2, 3, 4,
and 5 is the peak virtual memory usage as reported by the
operating system. In some of the largest calculations, the
virtual memory usage was slightly above the physical
memory limit of 72 GB, so that some swapping to disk by
the operating system must have occurred. However, this
incurred no noticeable overhead.

For both water clusters and Glu-Ala helix systems, the
increase in computational cost when changing basis set from
3-21G to 6-31G** was around a factor of 5-7 in compu-
tational time and around a factor of 3-4 in memory
requirement.

HOMO and LUMO eigenvalues were computed by
applying the Lanczos method in intermediate purification
iterations as described in ref 18. The resulting
HOMO-LUMO gaps are plotted in panel d of Figures 2,
3, 4, and 5. For the larger GluAla systems, the computed
HOMO-LUMO gaps are 2.5 and 2.8 eV for 3-21G and
6-31G**, respectively. For the larger water cluster systems,
the computed HOMO-LUMO gaps are 4.2-4.9 eV and
5.6-6.4 eV for 3-21G and 6-31G**, respectively. It should
be noted that the HOMO-LUMO gaps resulting from this
kind of calculation are strongly dependent on the amount of
HF exchange in the KS-DFT functional. We chose to use
the BHandHLYP functional for these benchmarks in order
to get sufficiently large HOMO-LUMO gaps to allow
efficient calculations. In fact, for the larger Glu-Ala and

Figure 3. Timings, memory usage, matrix sparsity, and computed HOMO-LUMO gaps for BHandHLYP/6-31G** calculations
on Glu-Ala helix systems of varying size. The right-most points in the graphs are for [GluAla]512, with 13 314 atoms and 131 082
basis functions. The timings for the Coulomb (J) and HF exchange (K) parts in panel a are almost identical.
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water cluster systems as well as for large protein molecules
in general, our experience is that some fraction of HF
exchange in the functional is necessary in order to get a
nonvanishing HOMO-LUMO gap. We have been unable
reach convergence in attempted calculations using pure
functionals such as LDA, BLYP, and PBE for all but the
smallest systems.

In the matrix sparsity plots, the curves are somewhat
jagged, particularly in Figure 4b. This is an effect of the
stepping procedure in the applied truncation scheme which
ensures that the norm of the error matrix is below a requested
value, see refs 39 and 60. An adjustment of a stepping
parameter in the truncation scheme implementation would
make the curves more smooth. The effect is more pronounced
in the water cluster calculations because, compared to the
Glu-Ala case, more matrix elements are removed in each
truncation.

By comparison to higher accuracy results, we have found
that, for both water clusters and Glu-Ala, the errors in total
energies in the larger calculations were below 1 × 10-5

Hartree/atom for the 3-21G basis set, and below 3 × 10-5

Hartree/atom for the 6-31G** basis set.

5. Concluding Remarks

It should be noted that since we employed a hybrid KS-
DFT functional, the calculations presented here include all

components needed for HF calculations. Thus, although the
presented benchmarks do not include HF calculations, we
are able to perform HF calculations for these systems as well.
Compared to a BHandHLYP calculation with the same basis
set, a HF calculation is typically somewhat faster since the
exchange-correlation matrix evaluation is not needed. Also,
HF calculations are generally easier to carry out because HF
gives a larger HOMO-LUMO gap than DFT.

An important aspect of linear scaling calculations is the
selection of threshold values. In the calculations reported in
this work, threshold values were chosen to give roughly the
same accuracy for the different parts. Threshold values for
the different parts of the DfF step were chosen using
information from previous accuracy scans. Threshold values
in the FfD step were automatically selected by the program
to achieve the requested accuracy. Ideally, threshold values
for the DfF step should also be chosen automatically, for
example using extrapolation.56 In any case, balancing the
accuracy can considerably improve the overall performance.
One example of this is the selection of integral screening
threshold values for Coulomb and HF exchange matrix
evaluation. In our previous study of linear scaling HF
calculations,4 using ad hoc selected threshold values, the HF
exchange matrix evaluation was about twice as expensive
as the Coulomb part. Now, having adapted the threshold

Figure 4. Timings, memory usage, matrix sparsity, and computed HOMO-LUMO gaps for BHandHLYP/3-21G calculations on
water cluster systems of varying size. The right-most points in the graphs are for a water cluster containing 9644 water molecules,
corresponding to 125 372 basis functions.
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values to get balanced accuracy, we find that the Coulomb
and HF exchange parts require a similar amount of time.

The benchmark systems used in the present paper are
approximately four times larger than the systems of our
previous linear scaling HF study,4 while employing the same
basis sets. This increase has been made possible not only
because of greater available computer memory but also to a
large extent thanks to improvements in the code. The
memory usage has been significantly reduced by changing
to more economic data structures and avoiding unnecessary
matrix copies. Also, we have had to improve the scaling of
other previously negligible parts of the code, including the
computation of the overlap matrix and preparatory steps in
HF exchange and Coulomb matrix construction. The per-
formance of the used density matrix purification method18

has been considerably improved by use of a novel scheme
for the removal of small matrix elements.39 Other technical
issues arising for larger systems include changing data types
of several quantities to avoid integer overflow.

One remaining issue is the scaling of the inverse Cholesky
algorithm. Whereas the inverse Cholesky operation scales
linearly for the Glu-Ala calculations, the scaling for the
water cluster systems appears less favorable. We did not pay
much attention to this issue here since the inverse Cholesky
operation even for the largest water cluster calculations
requires less than 5% of the total calculation time, but for
larger systems, this issue is likely to become important. An

alternative to the inverse Cholesky algorithm is recursive
inverse factorization,45 a method based on repeated sparse
matrix multiplication.

Another important aspect is parallelization. The benchmark
calculations presented in this work were performed on a
single eight-core computer, using threading to exploit the
eight cores. An overall speedup of around 6.5 was achieved
compared to the single-core performance. The reason why
the perfect speedup of eight for an eight-core machine was
not reached is mainly that some parts of the code were not
threaded. Clearly, this should be remedied in order to make
the best use of computers with larger numbers of cores. Also,
considering that many high performance computing resources
are distributed memory systems, distributed memory paral-
lelization is desirable. In future work, we aim to use a task-
based approach as a way to achieve scalable parallelization
of dynamic hierarchic algorithms such as the sparse matrix
operations and multipole methods used in this kind of
calculation.

Finally, we note a change that was needed in our density
matrix purification algorithm when handling large systems.
Previously, the density matrix purification scheme in the Ergo
program used Theorem 3 of ref 18 to strictly ensure the
correct occupation number in cases when information about
the HOMO and LUMO eigenvalues is not yet available. This
strict occupation number requirement has since been re-
moved. Instead, the correct occupation number is assumed

Figure 5. Timings, memory usage, matrix sparsity, and computed HOMO-LUMO gaps for BHandHLYP/6-31G** calculations
on water cluster systems of varying size. The right-most points in the graphs are for a water cluster containing 3050 water
molecules, corresponding to 73200 basis functions.
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at the end of the purification process. This change, which
was necessary to handle large systems, has not caused any
problems in practice. The strict occupation number require-
ment is in conflict with linear scaling methods where the
error per electron is fixed as the system size increases. When
increasing the system size, one reaches a point where the
occupation number cannot be determined from the density
matrix within the accuracy of one electron.
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Abstract: Here we present an efficient, yet nonlinear scaling, algorithm for the computation of
Cholesky factors of sparse symmetric positive definite matrices and their inverses. The key
feature of this implementation is the separation of the task into an algebraic and a numeric part.
The algebraic part of the algorithm attempts to find a reordering of the rows and columns which
preserves at least some degree of sparsity and afterward determines the exact nonzero structure
of both the Cholesky factor and its corresponding inverse. It is based on graph theory and does
not involve any kind of numerical thresholding. This preprocessing then allows for a very efficient
implementation of the numerical factorization step. Furthermore this approach even allows use
of highly optimized dense linear algebra kernels which leads to yet another performance boost.
We will show some illustrative timings of our sparse code and compare it to the standard library
implementation and a recent sparse implementation using thresholding. We conclude with some
comments on how to deal with positive semidefinite matrices.

1. Introduction

The Cholesky factorization has become increasingly signifi-
cant in quantum chemistry, especially with respect to
applications where large sparse matrices occur. This can be
attributed to the fact that a Cholesky factor of a sparse
symmetric positive definite matrix usually retains some
degree of sparsity that can be exploited in low-order scaling
algorithms.

Beebe and Linderberg1 were probably the first who utilized
the Cholesky factorization of the two-electron integral matrix
in order to achieve savings in computational time for its
generation and transformation. After this seminal work other
groups adopted this approach,2 and it has proven to be useful
for factorizing overlap3,4 and density matrices5,6 in order to
generate sparse transformation matrices. Furthermore, Cholesky
factorizations have been used for coordinate transformations,7

factorization of the amplitude matrix in scaled-opposite-spin
MP2 (SOS-MP2)8,9 and generation of auxiliary basis sets.10

While the computational savings gained by factorizing
two-electron integral and density matrices stem from the fact
that both are semidefinite and thus their Cholesky factors
have less columns than rows, overlap matrices are strictly
positive definite as long as there are no linear dependencies
among the basis functions, and computational savings have
been obtained by preserving the sparsity during the factoriza-
tion. This approach is particularly useful for density matrix-
based schemes3,11-14 where transformations between co- and
contravariant quantities are necessary.3,13,15 For these trans-
formations, the inverse of the metric, i.e., the inverse overlap
matrix, is required, which in a dense implementation scales
cubically with respect to the size of the matrix.

As two-center overlap matrices in an atomic orbital base
tend to become very sparse in the large molecule limit, by
contrast to their inverses, their Cholesky factors (or square
roots)16 may retain at least some degree of sparsity. It has
already been pointed out3 that this factorization can be done
very efficiently by exploiting sparsity, and recently the group
of Ochsenfeld4 has devised an algorithm which is able to
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compute a sparse Cholesky factorization and its inverse by
neglecting values that fall below a specified threshold, which
they claim to be asymptotically linear scaling. Although this
algorithm performs quite well for very sparse matrices, the
performance of routines that exploit sparsity is of utmost
importance in that respect, that the crossover in runtime
between them and their usually highly optimized dense
equivalents has to occur reasonably early in order to be
advantageous. The aim of this report will be to present a
more precise and yet more efficient algorithm that relies on
purely algebraic methods based on graph theory, which
allows the prediction of the exact nonzero structure of the
Cholesky factor and its inverse before the actual numerical
factorization is started. By avoiding numerical thresholding,
we are even able to employ highly optimized linear algebra
kernels from the BLAS17 and LAPACK18 libraries. We have
implemented all of these improvements in a library and
included it into a developer version of Q-CHEM.19

We want to stress that this report is more or less a brief
introductory review of established mathematical methods20

and efficient libraries for sparse Cholesky factorization have
already been developed (e.g., CHOLMOD21 and PARD-
ISO).22 However, none of these libraries is able to compute
a sparse inverse of a Cholesky factor which is often required
in quantum chemical calculations, e.g., for the transformation
between orthogonalized and regular atomic orbital basis
sets.3,12,23

2. Theory

A symmetric N × N matrix A is positive definite if all its
eigenvalues are positive. In the case that some of the
eigenvalues are zero, the matrix is positive semidefinite.
Every positive semidefinite matrix A can be decomposed
into the form A ) XXT, with X having full rank if A is
positive definite and reduced rank if A is positive semidefi-
nite.24 Among the infinite number of possible matrices X,
however, there exists a unique triangular matrix L. This
particular matrix is called the Cholesky factor24 of A, and
its elements Li,j are algebraically given by:

We want to stress that the case Lj,j ) 0 only happens if
the matrix to be composed is semidefinite, and although the
given formula algebraically holds true for any positive
(semi)definite matrix A, it is not recommended to use it for
factorizing semidefinite matrices in the presence of rounding
error.25 This is due to the fact that rounding errors can
accumulate and lead to almost arbitrary results. One thus
has to use pivoting techniques in order to get meaningful
results,25 and we will come back to this point later. For now
we will assume the matrix A to be strictly positive definite.

Most often the Cholesky factorization is used for solving
linear sets of equations of the form

where A is a positive definite coefficient matrix, y denotes
one or more right-hand side vectors, and x is the solution to
be determined. While the naı̈ve solution to this problem can
be found by multiplying eq 2 from the left by A-1

and thus requires the explicit formation of the inverse of A,
this way is not recommended for practical applications for
several reasons: The computation of the inverse is a quite
expensive task from a computational point of view. The
inverse is usually completely dense26 even if A is sparse,
and this approach is not backward stable27 and can thus
introduce rounding errors.

For a strictly positive definite matrix A, however, the
computationally more efficient way28 for solving eq 2
consists of computing the Cholesky factorization of A

and finding the solution by forward and back substitution.29

This approach is far superior to computing the inverse
A-1 explicitly since computing the Cholesky factor is
much less demanding. (The most efficient way of comput-
ing an inverse of a symmetric positive definite matrix is
by computing its Cholesky factor, inverting it, and forming
A-1 ) LT-1L-1.) Furthermore, this approach is backward
stable, and thus the solution obtained by forward and back
substitution is usually more accurate when computed in
the presence of rounding error. The most appealing feature
of this approach however is the fact, that by contrast to
inverses, Cholesky factors usually retain some degree of
sparsity if the matrix to be decomposed is already sparse.

3. Sparse Cholesky Factorization

As stated above, Cholesky factors of sparse matrices tend
to remain quite sparse, although they are usually not as
sparse. This is due to the effect of fill-in, i.e., some elements
that have been zero in the symmetric matrix become nonzero
in the Cholesky factor.

3.1. Fill-in. In order to understand fill-in we need to
take a closer look at eq 1. Column j of the Cholesky factor
depends on the elements of all previous columns of the
Cholesky factor, since these terms appear in the sum
Σk ) 1

j-1 Li,kLj,k. Note that instead of performing this summa-
tion in a single step right before the factorization of
column j, we could also have performed a rank update to
the right after the factorization of all columns 1, ..., j -
1. If the columns are factorized one at a time, then the
rank-1 update is just the product of the vector with
elements (Li+1, j, ..., LN, j) times its transpose. This product
results in a matrix which has to be subtracted from the
lower right-hand submatrix of A.

To illustrate this effect consider the schematic representa-
tion of a sparse matrix A and its Cholesky factor L. Since
the algebraic nonzero structure of the Cholesky factor does
not depend on the actual numerical values of A, we simply
use the symbol • to indicate nonzeros:

Li,j ) { 1
Lj,j

(Ai,j - ∑
k)1

j-1

Li,kLj,k), i > j, Lj,j * 0

0, i > j, Lj,j ) 0

�Ai,i - ∑
k)1

i-1

Li,k
2 , i ) j

0, i < j

(1)

Ax ) y (2)

x ) A-1y (3)

LLTx ) y (4)
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Although A has at least some degree of sparsity, its
Cholesky factor L is completely dense. This is due to the
rank update applied after having factorized the first column.
Since the first column of A is dense, the product of the first
column without the diagonal element times its transpose
results in a completely dense matrix which has to be
subtracted from the lower right-hand side submatrix of A.
Thus the factorization continues on a completely dense
matrix, resulting in a dense Cholesky factor L.

As a second example consider the Cholesky factorization
of the matrix A′:

Now the Cholesky factor L′ has the same nonzero structure
as the matrix A′. As the reader can verify, all matrices used
for the rank updates have nonzeros in positions that are
already nonzero in A′, and thus no fill-in occurs at all.

From these two simple examples it becomes clear that the
degree of sparsity in the Cholesky factor not only depends
on the number of nonzeros in the matrix being decomposed
but also strongly depends on the nonzero pattern.

3.2. Permutation Matrices. Of course the matrices A and
A′ are quite similar. In fact they are related by the unitary
transformation

with

Matrices like P are usually called permutation matrices,
since if they are applied to a matrix A according to eq 7,
then they effectively permute rows and columns. Permutation
matrices themselves can be generated by exchanging rows
or columns of the identity matrix I.

We have already seen that the Cholesky factor L′ of A′
does not suffer from any fill-in, while on the other hand L
is completely dense. Now suppose that we want to solve
the linear set of eq 2 with matrix A from eq 5 via a Cholesky
factorization and a forward/back substitution. Obviously, we
cannot take advantage of sparsity in the Cholesky factors

right away. However, due to PTP ) I, we can reformulate
the set of equations:

Since eq 9 is exactly equal to eq 2, one can solve the
equivalent linear set of equations

by applying the permutation to the right-hand side and
computing the Cholesky factorization A′ ) L′L′T instead.
This now allows to take full advantage of the sparsity of A′,
since L′ does not suffer from any fill-in during its generation.
Of course we now obtain a different solution x′, however,
the solution x can easily be derived by unapplying the
permutation x ) PTx′.

Our focus however, is not the efficient solution of linear
sets of equations but the computation of sparse Cholesky
factors and their inverses, and of course L′ is not the
Cholesky factor of A, nevertheless

is a sparse, though nontriangular, matrix X which fulfills A
) XXT. Often, this property is sufficient for X being useful
as a transformation matrix, and it is more important that it
is as sparse as possible.

As shown in this simple example, choosing an appropriate
permutation matrix P can have a dramatic effect on the
amount of fill-in occurring during the Cholesky factorization,
and we will now outline how such permutation matrices can
be found. We would like to stress that we have not made
any assumptions on the actual numerical entries of A other
than that the matrix be positive definite, and we will continue
to do so. In what follows we will illustrate that knowing the
nonzero structure of a sparse symmetric positive matrix A
suffices to determine a permutation that results in a fairly
low amount of fill-in during the factorization.

3.3. Symbolic Cholesky Factorization. The task of
finding a fill-reducing permutation matrix P and the predic-
tion of the exact nonzero pattern of a Cholesky factor is
commonly termed symbolic Cholesky factorization,20,30 since
all these steps can be carried out by using purely algebraic
methods from graph theory. Knowing the precise structure
of Cholesky factors enables the design of efficient codes for
their computation, since this allows allocation of only the
actually required amount of memory which can even be done
in a single step, and expensive numerical thresholding is not
required at all. Furthermore, by using the so-called super-
node21,31,32 technique, we will show how highly optimized
dense level 3 BLAS17 and LAPACK18 kernels can be
employed even for the factorization of sparse matrices.

3.3.1. Graph Theory. Undirected graphs are useful tools
in the study of symmetric matrices. Any given sparse

A′ ) PAPT (7)

PTPAPTPx ) y (9)

PAPTPx ) Py (10)

A′x′ ) y′ (11)
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symmetric matrix A can be structurally represented by its
associated adjacency graph G(A) ) [X(A), E(A)], where
X(A) ) {1, 2, ..., N} is the set of nodes corresponding to
rows and columns of the matrix, and E(A) ){{Xi, Xj}, ...}
is the set of edges corresponding to nonzero entries.33 In
Figure 1 the corresponding graphs for the above-mentioned
matrices A and A′ are depicted.

In terms of graph theory, a symmetric permutation does
not affect the structure of the graph but only changes the
numbering of the nodes in the graph, and all adjacency
graphs for any symmetric permutation of a sparse symmetric
matrix are isomorphic. However, the nonzero pattern of the
Cholesky factors L and L′ are very different, and in fact it
is the numbering of the nodes in the adjacency graph that
determines the amount of fill-in occurring during the
factorization.

Recall from eq 1 that the entries of a particular column in
the Cholesky factor depend on the columns to its left already
being factorized. That means we have to start the factoriza-
tion beginning with column 1. The relationship between the
graph theoretical representation and the factorization is now
that the calculation of the elements of a given column
corresponds to removing the corresponding node from the
adjacency graph. However, after having factorized a column,
a rank update to all subsequent columns has to be performed,
which as we have already seen might result in additional
fill-in. Since every off-diagonal nonzero is represented by
an edge in the adjacency graph, upon removal of a node,
some additional edges may have to be added to the graph.
In graph theoretical terms, all nodes that have been connected
to the removed node have to form a clique afterward, i.e.,
all these nodes have to be connected to each other, which
thus might require additional edges to be introduced.

As an example consider the graph in Figure 1a. The first
column of L is completely dense since node 1 is connected
to every other node in that graph. Upon removing node 1
from this graph, one has to add all possible missing edges
between all remaining nodes to form the clique, i.e. after
eliminating the first node the resulting graph is fully
connected and thus the resulting Cholesky factor is com-
pletely dense.

If on the other hand one applies the same elimination
procedure to the graph of matrix A′ (Figure 1b), then one
can easily verify that no additional edges have to be

introduced at all, thus the resulting Cholesky factor does not
suffer from any fill-in and has the same nonzero structure
as A′.

3.3.2. Finding Fill-Reducing Reorderings. Since all ad-
jacency graphs for any symmetric permutation applied to a
sparse symmetric matrix are isomorphic and the amount of
fill-in only depends on the numbering of the nodes, finding
a permutation that results in a small amount of fill-in is
equivalent to determining an appropriate elimination sequence.

For the special case that the adjacency graph of A is a
tree (i.e., there are no cycles in the graph), there always exists
a reordering that does not introduce any additional fill-in.
More generally, any chordal graph (i.e., a graph where every
cycle of length at least four has an edge that connects two
nonconsecutive nodes on the cycle) has a perfect elimination
ordering.33 The adjacency graph, e.g., of matrix A is chordal.
While linear time implementations exist34 that can test
whether or not a given graph is chordal, the adjacency graphs
of most matrices, however, do not fall into this category.
Nevertheless a good fill-reducing reordering may still exist.

Unfortunately the task of finding an optimal, i.e., least fill-
in, reordering is known to be NP-hard35 and is thus not
feasible. However, several methods have been established
that provide low fill-in reorderings in polynomial time by
using heuristics.

Among the most popular ones of these are the Reverse
Cuthill-McKee (RCM),36 the Lexicographic Breadth First
Search (LexBFS),34,37 the Minimum-Degree (MD),28,38 (or
approximate derivations (AMD) thereof),39 and Nested
Dissection (ND)30,40-43 algorithms. The first two mentioned
strategies have been implemented as O (|A|) algorithms,
i.e., their runtime is bound from above to be proportional to
the number of nonzeros |A| in the matrix, and we would like
to stress that RCM has already been applied in a chemically
motivated context,44 where it has been applied to the
connectivity matrix of large molecules in order to reduce its
bandwidth.

Strictly speaking, MD is an O (N3) algorithm,45 however
it needs this time only for dense matrices and much less if
the matrix is sparse. For ND, except for special cases,30 no
strict runtime bound has been established yet. Nevertheless,
we used the METIS library43 for our implementation, and
we found that it can produce high-quality reorderings in
reasonable amounts of time. Although its runtime is far
higher than any other mentioned reordering strategy, this
increased demand is itself far outweighed by the gains
achieved during the subsequent numerical factorization. We
are not going to describe the ND algorithm in great detail
and rather refer the interested reader to consult the orginal
research papers.30,40-43

Just briefly, ND is a divide and conquer algorithm that tries
to find separator nodes in a graph, i.e., nodes which upon
removal would let the graph fall apart into two or more
disconnected subgraphs of similar size. Those nodes are then
assigned the highest node labels, i.e., they will be eliminated
last. The algorithm is then applied recursively to the subgraphs
until all nodes have been labeled. In Figure 2 the nonzero
structures of matrices for the prominent example46 of a regular
7 × 7 grid are depicted. We have used a color code in order to

Figure 1. Connectivity graphs for the symmetric matrices
before and after applying a permutation.
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highlight the effect of the individual steps during the ND.
Matching colors indicate separator nodes of the same level, e.g.,
the first set of node separators is colored green. Upon their
removal, the graph is separated into two disjoint subgraphs,
which by removing the red nodes are further subdivided and
so on and so forth. The resulting matrix A′ (Figure 2f) shows
a very characteristic pattern of recurring nonzero patterns, and
these patterns will turn out to be most important for the
computation of the inverse of the Cholesky factor.

In terms of their sparsity both matrices L and L′ are quite
similar. This is due to the fact that the initial ordering is
already quite good and is similar to a RCM ordering. In fact,
all mentioned heuristics are able to find good fill-in reducing
orderings, and in terms of the number of nonzeros in the
Cholesky factor, they are more or less equivalent. ND,
however, has one distinctive feature which makes it by far
the most useful strategy if one is also interested in computing
the inverse of the Cholesky factor. However, before we can
explain the reasons for this, it is necessary to introduce the
concept of elimination trees.33

3.3.3. Elimination Trees. The elimination tree33 is defined
as the adjacency graph of the Cholesky factor L from which
all nonzeros below the diagonal except for the first one of each
column have been removed, as indicated by °. For instance,
referring back to the examples of eqs 5 and 6 we have

Elimination trees always have a root, which is the highest
numbered node. A node which is directly connected to the
root is a child node of the root, while the root is its parent.
Every node has only one parent but can have several children.
Nodes which do not have any children are called leaf nodes.
Every elimination tree has at least one leaf node but can
have several.

In Figure 3 the elimination trees for the matrices A and
A′ are depicted, and in both cases, the node with number 7
is the root. The elimination tree of A (Figure 3a) has only
one leaf node (1), while that of A′ (Figure 3b) has three leaf
nodes (1, 2, 3). Elimination trees can easily be stored in the
form of a parent vector, i.e., for each node its corresponding
parent node is stored in an array of size N, as also illustrated
in Figure 3.

Figure 2. Illustration of a ND reordering applied to a 7 × 7 regular grid. (a-d) refer to matrices corresponding to the original
numbering scheme, whereas (e-h) depict the matrices after applying a ND reordering. We have used a color code to highlight
the individual sets of separator nodes at each level of dissection. Note the recurring patterns in (f-h).

Figure 3. Elimination trees and their corresponding vectorial
representations for the symmetric matrices before and after
applying a permutation.
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Given the adjacency structure of a sparse matrix and an
elimination sequence (i.e., a reordering of the rows and
columns), the elimination tree can be determined from the
actual graph as outlined in greater detail by Liu.47 We will
not describe the actual algorithm here but only mention its
runtime bounds. The original algorithm presented by Liu
using path compression has a runtime complexity of O
(|A| log2 N),48 where |A| stands for the number of nonzeros
in the matrix subject to factorization. He mentions that
another version of this algorithm exists that uses path
compression and balancing49-51 having a lower runtime
bound of O (|A| R(N, |A|)) with R(N, |A|) being the
functional inverse33,49-51 of the Ackermann function.52 This
implementation relies on a more sophisticated implementa-
tion of the set/union problem,48,49,53 however it has been
found51 that the first version is much more efficient to
implement, so the latter algorithm would have a runtime
advantage only for very large graphs. Strictly speaking, none
of these algorithms is truly linear, but the second one is
usually considered as being almost linear, since R can
essentially be regarded as a constant for all practically
relevant integers N and |A|.

Having determined the elimination tree for a particular
reordering of a sparse symmetric matrix, the next step
consists of finding what is called a postordering. This is a
particular form of an equivalent reordering of the nodes in
the elimination tree that changes neither the number of
arithmetic operations for computing the Cholesky factoriza-
tion nor the structure of the resulting adjacency graph.
Therefore, in terms of both storage and computational costs,
any postordering is as good as the original ordering.
However, we may use them to take advantage of other
aspects of elimination.

In a postordering, the nodes within every subtree of the
elimination tree are numbered consecutively. The root of a
subtree will always be labeled last among nodes in the
subtree, and it turns out that given an elimination tree, a
postorder numbering can be computed in linear time by a
depth-first search.54 As a byproduct from this step we also
obtain a vector depth of length N that contains the distance
of each node in the elimination tree from the root. This vector
will turn out to be useful later. For the elimination trees
depicted in Figure 3 however the nodes are already numbered
in accordance with a postordering, with node 7 being the
root in both cases.

The elimination tree contains useful information about data
dependencies. The straightforward Cholesky factorization al-
gorithm starts with eliminating the lowest-numbered node. If
the nodes in the elimination tree are labeled according to a
postordering, then the lowest-numbered node is always a leaf.
Note however, that for elimination trees which have more than
one leaf, we could have assigned any of them the lowest
number. The factorization may thus start with removing any
leaf node from the elimination tree, which is equivalent to
computing the corresponding column of the Cholesky factor.
Since leaf nodes do not have any children, all leaf nodes can
even be removed at once, and algorithms exploiting this in a
parallel manner have been developed42,55,56 as well. Repeating
this process of factorizing those columns that correspond to leaf

nodes can continue as long as the root is present and will stop
once this node has been eliminated as well.

Although there are no strict runtime bounds known for
ND, its appealing property is that it produces broad elimina-
tion trees, i.e., trees which have many leaves. Thus these
reorderings are especially useful for parallel factorization.
But even if one does not intend to use any form of parallelism
for the factorization step, the number of leaves in the
elimination tree, or more precisely the distance from the root
to the leaves, determines the nonzero structure of the inverse
of the Cholesky factor as we will show later.

We also note that techniques exist that aim at finding
elimination trees of minimum height,56-58 and it is known
that for every graph there exists a nested dissection ordering
with minimal separators which produces an elimination tree
of minimum height,59 but unfortunately this problem is
NP-hard60,61 as well. However, we have made no attempt
to find an elimination tree of minimum height, since the
METIS reordering already produces well-balanced elimina-
tion trees of low height.

3.3.4. Nonzero Pattern of the Cholesky Factor. After
having determined an elimination sequence that leads to a
reasonable amount of fill-in, the concluding step of the symbolic
Cholesky factorization is the determination of the actual nonzero
pattern. In order to be memory efficient, we will use the
compressed sparse column (CSC) storage scheme,62 i.e., for
every column we will store the row indices and the numerical
data for the nonzero elements only, and while the computation
of the numerical values will be postponed to the numerical
factorization step, the determination of the row indices needs
to be performed during the symbolic step. Note, that due to A′
being symmetric, we actually only need to store the lower
triangular part of this matrix.

However, before we can proceed to calculate the actual
row indices we need to allocate the appropriate amount of
memory required to store them, and thus we need to know
how many nonzeros the Cholesky factor will have. It turns
out that efficient algorithms for this task have already been
developed,51 and as before, we will only report on their
runtime bounds instead of explaining the algorithm in detail.
Actually the algorithm calculates the number of nonzeros
for every row/column and is related to the algorithm
employed for the determination of the elimination tree. It is
thus not surprising that the computational complexity again
depends on how the set/union problem48,49,53 is implemented,
and while the best known implementation has a complexity
of O (|A| R(N, |A|)), still, the computationally more ef-
ficient implementation51 has a slightly higher complexity of
O (|A| log2 N).

Knowing the exact number of nonzeros now allows us to
allocate the actual storage space for the CSC structure of
the Cholesky factor, and we can proceed with determining
the actual row and column indices now. Since all |L| nonzero
elements of the Cholesky factor need to be determined, the
best runtime complexity that can be expected for this task is
O (|L|). Indeed an efficient and quite simple algorithm
exists63 that operates on the nonzero structure of the permuted
matrix A and its corresponding elimination tree which meets
this runtime bound.
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3.3.5. Supernodes. Now that we have determined a proper
fill-reducing reordering and the actual nonzero structure of
the resulting Cholesky factor, we are almost ready to perform
the actual numerical factorization. But before we do so, it is
important to introduce the concept of supernodes.

Supernodes21,31,32 are collections of columns in the Cholesky
factor that share a similar nonzero pattern. Let xp be a parent
node of xi in the elimination tree. Both nodes belong to the
same supernode if the nonzero structure of column xp is the
same as that for xi, except for the diagonal element of column
xi, and xi is the only child of xp. Since we assume the nodes in
the elimination tree to be labeled according to a postordering,
a supernode is thus a collection of columns in L that form a
clique in the graph and share the same set of adjacent nodes
outside the clique. Thus each supernode corresponds to a
completely dense triangular diagonal block of the Cholesky
factor and has the same nonzero pattern below the diagonal
block. For the simple example given earlier, the supernodal
partioning scheme is as follows:

It will turn out that knowing the supernodal partitioning
scheme allows for a very efficient numerical factorization
at the cost of only slightly increased memory requirements.
This cost however is more than outweighed by the gains in
speed one obtains, since this partitioning scheme allows to
employ highly optimized dense BLAS and LAPACK kernels
for the numerical factorization step even for sparse matrices.

3.4. Numeric Factorization. After having completed the
symbolic Cholesky factorization, we will now outline how
the numeric factorization can be carried out efficiently. As
mentioned above, we want to take advantage of the super-
nodal partitioning scheme of the resulting sparse Cholesky
factor by employing highly optimized dense BLAS and
LAPACK kernels. For didactic reasons however, it is useful
to briefly explain how a dense Cholesky factorization is
implemented in LAPACK.

3.4.1. LeVel 3 BLAS Factorization. Most modern comput-
ers have cache architectures,64 i.e., besides the main memory
(RAM) they have up to three layers of memory that are
located near the CPU which provide faster data access than
to RAM. Accessing data in the level 1 cache is the fastest
and has almost no latency, i.e., the level 1 cache can deliver
data at every clock cycle of the CPU. However, cache is
much more expensive than RAM, and thus the size of the
level 1 cache is limited to usually a few kilobytes. By
contrast, the RAM is the slowest memory, and as a rule of
thumb, fetching data from RAM takes up to 20 clock
cycles.65 This is the reason why a naı̈ve implementation of
a matrix-matrix multiply will run at ∼5% of the theoretical
peak performance, since ∼95% of the time the CPU is idle
while waiting for data. More sophisticated implementations
of basic linear algebra kernels like those in the BLAS library
take this cache hierarchy into account and operate on smaller

blocks of matrices that completely fit into the cache.66 This
effectively reduces the amount of memory fetches from RAM
and leads to much more efficient codes which can run as
fast as ∼95% of the theoretical peak performance of the
CPU, i.e., they are about 20 times as fast.

The LAPACK library contains a lot of useful and highly
optimized kernels that make use of this blocking technique
as well and the routine DPOTRF, e.g., is the level 3 BLAS
implementation of the Cholesky factorization for dense
matrices. We will briefly review this algorithm now.

Let the lower triangular part of a symmetric positive
definite matrix A be divided into six blocks A1, ..., A6 with
the diagonal blocks A1, A4, A6 being quadratic

then we start the factorization on the first diagonal block by
using the LAPACK function DPOTRF:

As the reader can verify, the entries of the blocks below
the diagonal one can be computed as the solution of a linear
set of equations y ) Tx, where T is a triangular matrix,
namely the Cholesky factor of the diagonal block. We can
thus simply use the level 3 BLAS function DTRSM for this
task:

This concludes the factorization of the first column block,
but before we can proceed, we have to update all remaining
column blocks to the right of the current column block. This
is essentially a symmetric rank update and we can use the
BLAS kernel DSYRK for this task:

Now we can continue with factorizing the second diagonal
block, by using DPOTRF again

and by using DTRSM we can factorize the remaining blocks
of the current column:
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Again, we apply the rank update to the remaining column
with DSYRK

and likewise we would continue with this process until the
last diagonal block has been factorized

which concludes the factorization.
After this brief explanation on how to compute the

Cholesky factorization of a dense matrix, we will now
turn to the discussion of a corresponding sparse imple-
mentation. As stated above, the collection of nodes that
belong to the same supernode forms a clique in the
adjacency graph of L, and therefore, the diagonal block
of each supernode is always completely dense, and we
can employ the LAPACK kernel DPOTRF for its factor-
ization. In order to be able to do so however, we have to
set up an appropriate data structure that allows for the
invocation of this function, i.e., we have to store the di-
agonal blocks as a dense matrix, and although the function
DPOTRF only operates on the lower (or upper) triangular
part of the matrix to be factorized, the data has still to be
passed as a full n × n array, where n is the dimension of
the matrix. That means, we have to allocate the upper
triangular part of each diagonal block of every supernode
as well as indicated by °. This additional memory

requirement thus causes a small overhead which however
is more than outweighed by the increased performance
compared to a sparse indexing based factorization.

So far of course this only allows for the efficient computation
of the diagonal blocks of L′. However, we know that all
elements below the diagonal block share the same row indices
and can thus, by omitting the zero rows, be stored compactly
as a dense rectangular matrix as well. Note that we can actually
store the whole supernode as a dense matrix if we use the LDA
parameter of the BLAS and LAPACK routines properly. The
proper data structure for the numerical factorization is thus
essentially a collection of dense matrices (one for every

supernode) that contain the numerical values of the lower
triangular part of the matrix A′, as illustrated in Figure 4.

This storage scheme now allows us to proceed with the
remaining steps of the factorization in a similar way as illustrated
for the dense factorization. After having factorized the diagonal
block of a supernode, we can employ the dense matrix kernel
DTRSM to compute the remaining parts below the diagonal
block, and since the subdiagonal part is stored as a dense matrix,
we can yet use the level 3 BLAS function DSYRK for the
computation of the rank update of the columns to the right of
the current supernode. However, we have to store the result in
a temporary array first and then scatter the data into their final
destinations, since the nonzero pattern of subsequent supernodes
is not necessarily the same as that of the current supernode.
That means, we need one more temporary array to store the
rank update. The size of this array can be determined prior to
the computation since it only depends on the size of the largest
subdiagonal block and is quite small for sparse matrices.

This sequence can then be carried out for every supernode
and will eventually lead to the Cholesky factor of the matrix
A′. Note that the last supernode always consists of just a dense
square block. The size of this block tends to become larger the
denser the Cholesky factor is. Thus in case the matrix A′ is
already quite dense, there will be only one large supernode
which is factorized by using the highly optimized LAPACK
kernel DPOTRF. That means, we can expect a seamless
transition in performance from very sparse to completely dense
matrices. Although there is an additional overhead for the
symbolic Cholesky factorization, that can of course be avoided
if one knows that the Cholesky factor is going to be completely
dense; there will be no significant loss in performance as
compared to DPOTRF if the matrix is more or less dense. This
behavior is probably the most important advantage of using
reordering and supernode techniques for the factorization, since
the performance will not be affected as much as it is often the
case for sparse matrix routines if the matrix is dense.

4. Inverses of Cholesky Factors

The elements Li,j
-1 of the inverted Cholesky factor L-1 are

given by

As stated above, for the solution of linear sets of equations
like eq 2 there is usually no need to explicitly compute A-1 or

Figure 4. Illustration of the supernodal storage scheme used
for the Cholesky factor L′. SN indicates the number of the
supernode, D holds the actual numerical data stored in column
major order, where ° denotes the additional storage required
in order to be able to invoke BLAS and LAPACK routines.
DB and SB indicate the pointers to the beginning of the
diagonal and subdiagonal blocks, respectively.

Li,j
-1 ) { 1

Li,i
(-∑

k)j

i-1

Li,kLk,j
-1), i > j

1
Li,i

, i ) j

(16)

358 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Brandhorst and Head-Gordon



L-1 since one can find the solution by forward/back substitution.
In the presence of rounding errors, this is not only the most
efficient way but also the most accurate, since the computation
of L-1 is not backward stable27 and thus can lead to unnecessary
rounding errors. Furthermore, even if the right-hand side vectors
y are sparse, the solution x is usually dense, due to the fact that
the inverse of A is usually26 dense. In light of this, it can easily
be understood why all available sparse solvers21,22,67 always
operate on dense right-hand side vectors.

However, if one intends to find the solution to the forward
substitution step only and the right-hand side is very sparse,
then chances are good that the result remains sparse. This is
due to the fact that the result of the forward substitution is
given by L-1y, and as long as both matrices are sufficiently
sparse, the result may still be. Furthermore, if one intends
to use the inverse Cholesky factor as a transformation matrix,
then it becomes obvious that for reasons of efficiency it
should be as sparse as possible.

Again, we assume the Cholesky factor has been computed
for the permuted matrix A′ in order to reduce the fill-in
during the factorization. Then the inverse of the original (i.e.,
unpermuted) matrix is given by

and thus a potentially sparse, though nontriangular, equivalent
of the inverse of the orginal Cholesky factor is given as
L′-1P.

As for the Cholesky factorization, the computation of the
inverse can be split up into a symbolic and a numeric part.

4.1. Symbolic Cholesky Inversion. Given the nonzero
structure of the Cholesky factor, the nonzero structure of its
inverse is quite easy to predict. It is defined as the transitiVe
closure of the elimination tree,26,40,61 i.e., the nonzero entries
of every column are given by following the path from the
corresponding node up to the root. Every node visited on
the path corresponds to a nonzero element in the column.
Thus for the above given example, the structure of the inverse
Cholesky factor can be determined from the elimination tree
depicted in Figure 3b:

Here we use ° to indicate fill-in positions during the
inversion. Fill-in usually occurs and can be avoided only in
special cases (e.g., if the adjacency graph of the Cholesky
factor is a tree), which means that the inverse of a Cholesky
factor is usually denser than the Cholesky factor, which itself
is usually denser than the matrix subject to the factorization.
This is of course a huge drawback, and thus computational

gains by using sparse algorithms can only be expected if
the matrix is very sparse and its elimination tree is very
broad. The latter point is by far the most important since
the shorter the paths from the nodes to the root are the less
nonzeros the inverse of the Cholesky factor will have. This
observation clarifies the importance of finding fill-reducing
orderings that result in an elimination tree with many leafs.

We have tested all of the above-mentioned reordering
heuristics, and while all perform very well for the Cholesky
factorizaton, only ND is able to produce “bushy” elimination
trees, while all other reorderings tend to produce elimination
trees that are more or less straight lines like the one in Figure
3a. Although ND is the most expensive reordering strategy,
the quality of the reordering in terms of its supernode
structure and number of nonzeros in the inverse is far
superior, and the higher computational demand is by far
outweighed by the savings gained during the numerical steps.

4.1.1. Nonzero Pattern of the InVerted Cholesky Factor. The
symbolic part of the inversion is focused on determining the
row and column indices of the nonzeros, and in order to avoid
multiple memory allocation steps or a waste of memory, again
we first need to know the exact number of nonzeros. Since the
nonzero pattern is determined by the transitive closure of the
elimination tree, the number of nonzeros in one column is given
by the distance of the corresponding node from the root of the
elimination tree, and as mentioned above, this information has
already been computed as a byproduct of the postordering. The
number of nonzeros in the whole inverse can thus easily be
computed by summing over all elements in the vector depth,
which has a complexity of O (N).

After having allocated the sparse data structure, we can
then proceed with the determination of the actual nonzero
indices. Since we have to determine all of them, the best
computational complexity for this task is expected to be O
(|L-1|). Since we have stored the elimination tree as a vector
in which the parent of every node is stored, it is easy to
verify that by following the path from a given node to the
root of the elimination tree; all nonzero elements can be
computed within the given runtime bound.

4.1.2. Supernodes during InVersion. We have stressed that
taking into account the supernodal structure can lead to much
more efficient numerical factorizations, and it turns out that
we can use the same technique for the inversion as well.
Due to the additional amount of fill-in, however, the
supernodal structure for computing the inverse is usually
different from the one used for the factorization, as illustrated
for the given example:

The data structure that allows utilizing BLAS and LAPACK
kernels is essentially the same as that used for the factoriza-
tion, i.e., we store each supernode as a dense rectangular
matrix.

4.2. Numeric Cholesky Inversion. The biggest difference
between the computation of the Cholesky factor and the

A-1 ) (PTPAPTP)-1 (17)

) PT(PAPT)-1P (18)

) PT(L′L′T)-1P (19)

) PTL′-1T
L′-1P (20)
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calculation of its inverse is probably the order in which the
columns have to be computed. As the reader can verify from
eq 16, by contrast to the factorization, the elements of the
inverse depend on elements of the inverse to their right, i.e.,
we have to start the inversion with the utmost right column
and then proceed to the left.

As for the Cholesky factorization, the LAPACK library
already contains a function DTRTRI that is able to
compute the inverse of a dense triangular matrix by
invoking level 3 BLAS calls, and since we are going to
adopt this algorithm to the case when the triangular matrix
is sparse, for didactic reasons we will illustrate the basic
steps for a dense matrix.

Let the Cholesky factor L be divided into six blocks
L1, ..., L6 with the diagonal blocks L1, L4, L6 being
quadratic

then we can start the factorization on the last diagonal
block by using the LAPACK kernel DTRTRI:

As the next step we have to update the subdiagonal block
of the second column block, and as the reader can verify,
this is equivalent to a matrix multiply between a triangular
and a rectangular matrix. We can thus use the BLAS function
DTRMM for this task:

After this multiplication the final block L5
-1 can be

computed as the solution to a linear set of equations with a
triangular coefficient matrix by invoking the BLAS kernel
DTRSM

before we invert the diagonal block of the second row by
using DTRTRI again:

At this point the last two columns already contain the right
numerical values, and we can proceed with the first column. In
principle this can be carried out by multiplying the already
inverted lower right-hand submatrix with the subdiagonal block
of the first column. In order to be able to do this in place,
however, we have to break this up into smaller steps, and we
will start by modifying block L3 by calling DTRMM:

The next step requires a matrix multiply between two
rectangular matrices, which is best been done by the
prominent BLAS kernel DGEMM:

Note that for this step the unmodified block L2 is
required. This is the reason why the update of L2 by
invoking DTRMM can only take place after having
updated all blocks below it:

Now the multiplication by the inverse of the diagonal
block of the current row can be done by using DTRSM
again

and the inversion of the diagonal block L1 with calling
DTRTRI concludes the inversion:

Of course the actual sparse implementation is a little more
complicated, but it is essentially identical with a slight
overhead for bookkeeping. The appealing advantage in this
implementation is that all operations can be done by directly
calling BLAS and LAPACK functions and that there is not
a single step where temporary results have to be scattered
into their destinations. This and the fact that the individual
supernodes are larger compared to those in the factorization
step account for this algorithms’ efficiency.
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5. Illustrative Timings

After having explained how the supernodal Cholesky fac-
torization and inversion can be done, it is now time to justify
our claims about its superior efficiency.

Because they tend to become very sparse in the large
molecule limit and are always strictly positive definite, as
long as the basis set does not contain linear dependencies
among the basis functions, we choose two-center overlap
matrices as our test targets. We consider linear alkanes
(CnH2n+2), graphite (Cn), and diamond (Cn), with n ) 100, ...,
1000 as representatives of one-, two- and three-dimensional
geometries, respectively. For the construction of the geom-
etries standard values were assumed for the geometrical
parameters (alkanes: r(C-C) ) 1.54 Å, r(C-H) ) 1.10 Å,
graphite: r(C-C) ) 1.42 Å, and diamond: r(C-C) ) 1.54
Å).

All calculations were carried out using a single core/single
thread (OMP_NUM_THREADS�1) on a 2.31 GHz AMD
Opteron 2376 architecture running linux. All timings include
memory allocation times for all sparse matrices and tempo-
rary data structures generated by the routines. The computa-
tion of the overlap matrices itself, however, is not included.

Both codes have been compiled with full optimization using
the Intel compilers.

After having computed the overlap matrices, we disre-
garded all entries below a threshold of 10-15 and stored the
remaining entries in the CSC format, which we then supplied
to both our own implementation and the one of the
Ochsenfeld group. (Here we used the same threshold of 10-15

throughout.) Since this algorithm uses thresholding criteria
for retaining sparsity, we will refer to this as the “thres-
holding” implementation, while our own code is termed
“supernodal”.

The collective timings for the sparse Cholesky factorization
and the subsequent inversion for the overlap matrices in the
6-31G(d) and 6-311G(2df) basis set are listed in Tables 1
and 2 and depicted in Figure 5, respectively. For comparison,
we have also performed timings for the LAPACK routines
DPOTRF and DTRTRI from the Intel Math Kernel (MKL)
library (version 10.2).

For the linear alkanes both implementations are faster in
the large molecule limit as compared to the dense LAPACK
codes. This is not surprising since for both basis sets with
incresing system size the density of the overlap matrix rapidly

Table 1. CPU Timings for Computation of the Cholesky Factor L and Its Inverse L-1 of Two-Center Overlap Matrices S in
the Basis Set 6-31G(d) for a Series of Linear Alkanes, Single Graphite Layers, and Spherical Diamond Blocks of Various
Sizesa

thresholding supernodal LAPACK

n dim(S) % (S) % (L) % (L-1) time (s) % (L′) % (L′-1) time (s) time (s)

alkanes (CnH2n+2)

100 1904 8.1 11.8 30.6 2.98 9.1 16.2 0.20 0.78
200 3804 4.1 6.8 18.5 9.41 5.1 10.5 0.48 5.64
300 5704 2.7 4.7 13.1 16.06 3.5 8.0 0.82 18.37
400 7604 2.1 3.6 10.1 22.76 2.7 6.5 1.19 42.31
500 9504 1.7 2.9 8.2 29.26 2.2 5.6 1.59 82.16
600 11404 1.4 2.4 6.9 35.12 1.8 4.8 1.96 140.58
700 13304 1.2 2.1 6.0 42.06 1.6 4.3 2.39 220.58
800 15204 1.0 1.8 5.2 48.18 1.4 3.9 2.82 328.05
900 17104 0.9 1.6 4.7 56.75 1.2 3.6 3.28 465.61

1000 19004 0.8 1.5 4.2 64.88 1.1 3.3 3.73 634.87

graphite (Cn)

100 1500 22.1 30.2 30.5 3.36 22.3 26.9 0.44 0.39
200 3000 12.9 28.5 30.5 29.86 17.5 24.2 1.77 2.81
300 4500 9.2 26.3 30.5 92.94 14.3 21.7 4.18 9.14
400 6000 7.1 24.4 30.5 195.77 12.3 20.2 7.09 21.15
500 7500 5.9 22.7 30.5 351.83 10.8 18.7 10.15 40.61
600 9000 5.0 21.2 30.4 566.38 9.8 17.8 15.31 69.36
700 10500 4.3 20.0 30.4 830.96 9.0 16.9 19.43 109.34
800 12000 3.8 18.9 30.4 1156.21 8.6 16.4 27.44 162.50
900 13500 3.4 17.9 30.4 1532.60 7.8 15.8 32.41 229.13

1000 15000 3.1 17.1 30.4 2024.51 7.5 15.1 39.34 313.79

diamond (Cn)

100 1500 62.4 49.9 50.0 8.81 46.8 49.5 1.57 0.39
200 3000 47.0 49.9 50.0 77.36 43.9 48.2 10.18 2.81
300 4500 38.0 49.9 50.0 253.42 42.1 47.3 26.35 9.12
400 6000 31.7 49.9 50.0 605.00 39.9 46.4 48.76 21.08
500 7500 27.3 49.9 50.0 1165.08 37.9 45.2 94.72 40.65
600 9000 24.1 49.9 50.0 2022.88 36.0 42.8 139.21 69.25
700 10500 21.6 49.8 50.0 3231.13 35.6 43.6 226.14 109.09
800 12000 19.5 49.7 50.0 4643.79 33.5 41.3 255.94 162.29
900 13500 17.8 49.6 50.0 6570.94 33.1 42.2 365.23 229.99

1000 15000 16.5 49.5 50.0 9161.83 32.0 40.4 451.80 313.92

a All timings are in seconds and have been carried out on a single core/single thread (OMP_NUM_THREADS�1) on a 2.31 GHz AMD
Opteron 2376 architecture. They include memory allocation times for all sparse matrices and temporary data structures generated. The time
required to calculate the overlap matrices, however, is not included. Thresholding indicates the implementation of the Ochsenfeld group,
while our implementation is the supernodal. For comparison, the cumulative execution times for the LAPACK calls DPOTRF and DTRTRI as
implemented in the Intel MKL are provided. Dim(S) stands for the dimension of the overlap matrix and % () indicates the density in percent,
respectively.
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decays from 8.1% and 6.8% to 0.8% and 0.7%, respectively.
However, while the crossover between the dense kernel and
the thresholding algorithm occurs at roughly 5000 basis
functions in the 6-31G(d) basis and at 17500 basis functions
in the 6-311G(2df) basis, our supernodal implementation is
faster than both codes throughout and runs by a factor of
14-78 faster than the thresholding implementation. This
indicates that even for very sparse matrices the supernodal
technique is advantageous even though the thresholding code
shows a lower scaling with system size (with a larger
prefactor though) according to the polynomial fit (see Table
3) for the 6-31G(d) basis. We would like to stress that strictly
speaking the thresholding code as it is implemented is
quadratically scaling since it requires the allocation of a full
matrix in order to hold the Cholesky factor. This step of
course has a tiny prefactor and could even be avoided by
subsequent reallocation of memory once it is actually needed.

Since the supernodal algorithm relies on applying a fill-
reducing reordering to the initial matrix, which also reduces
the number of arithmetic operations, both matrices L′ and
L′-1 are less dense than their unpermuted counterparts. It is
thus likely that the supernodal code will have runtime

advantage for any reasonable number of basis functions and
that the scaling might even further decrease for larger
systems.

Of course these test systems are far from being linear in
reality and should be seen as ideal test cases for the
algorithms. We thus have included more realistic and less
ideal test cases as well, one of them being a single graphite
layer as a representative of a two-dimensional system.

For graphite the difference in performance between the
two sparse implementations is even more pronounced. While
the thresholding algorithm is roughly a factor of 5-10 slower
than the LAPACK functions, with one exception our
supernodal implementation is faster than the optimized dense
kernels by up to a factor of 13. Here the superior quality of
the ND reordering becomes apparent, which is able to
produce Cholesky factors and their corresponding inverses,
which are roughly half as dense as those obtained by the
thresholding algorithm. Once again, we would like to stress
that we have not applied any sort of thresholding, i.e., it is
likely that the number of significant elements in the inverse
could even be reduced by eliminating those values that fall
below a given threshold.

Table 2. CPU Timings for Computation of the Cholesky Factor L and Its Inverse L-1 of Two-Center Overlap Matrices S in
the Basis Set 6-311G(2df) for a Series of Linear Alkanes, Single Graphite Layers, and Spherical Diamond Blocks of Various
Sizesa

thresholding supernodal LAPACK

n dim(S) % (S) % (L) % (L-1) time (s) % (L′) % (L′-1) time (s) time (s)

alkanes (CnH2n+2) 100 4106 6.8 10.1 31.2 27.45 8.0 15.3 1.05 7.40
200 8206 3.5 6.2 24.4 118.46 4.4 9.9 2.76 55.14
300 12306 2.3 4.6 20.4 260.62 3.1 7.6 4.73 178.46
400 16406 1.7 3.6 17.6 443.93 2.4 6.2 7.05 419.51
500 20506 1.4 3.0 15.4 644.27 1.9 5.3 9.38 811.10
600 24606 1.2 2.6 13.7 848.45 1.6 4.7 12.12 1381.50
700 28706 1.0 2.2 12.3 1080.14 1.4 4.1 14.63 2168.69
800 32806 0.9 2.0 11.0 1303.58 1.2 3.8 17.65 3253.99
900 36906 0.8 1.8 10.0 1599.31 1.1 3.4 20.43 4605.42

1000 41006 0.7 1.6 9.2 1762.28 1.0 3.2 23.19 6304.39

graphite (Cn) 100 3500 18.0 28.2 28.5 44.19 19.8 24.5 3.12 4.41
200 7000 10.4 27.0 28.5 331.64 14.6 21.5 13.41 33.08
300 10500 7.4 25.1 28.5 1015.73 12.5 19.4 30.94 109.08
400 14000 5.7 23.4 28.5 2180.21 10.8 18.0 51.01 255.74
500 17500 4.7 21.8 28.5 3853.73 9.9 17.2 82.85 496.33
600 21000 4.0 20.5 28.5 6181.12 8.6 16.1 114.74 852.52
700 24500 3.4 19.3 28.5 9212.60 7.9 15.3 150.01 1352.71
800 28000 3.0 18.3 28.4 12697.22 7.3 14.6 195.04 2017.46
900 31500 2.7 17.4 28.4 16952.24 6.7 14.1 239.24 2864.93

1000 35000 2.5 16.6 28.4 22187.31 6.4 13.5 296.49 3923.51

diamond (Cn) 100 3500 55.2 49.8 50.0 122.12 45.8 49.0 17.41 4.42
200 7000 40.3 49.9 50.0 948.06 43.2 47.8 87.65 33.07
300 10500 32.1 49.9 50.0 3143.71 39.4 44.7 268.13 108.98
400 14000 26.6 49.9 50.0 7476.32 37.1 43.7 468.03 256.24
500 17500 22.7 49.9 50.0 14647.72 35.5 42.7 786.33 495.17
600 21000 20.0 49.9 50.0 24621.83 33.8 41.7 1082.80 856.80
700 24500 17.9 49.9 50.0 38711.14 32.6 40.9 1704.99 1358.30
800 28000 16.1 49.8 50.0 59171.17 31.2 40.0 2111.56 2025.69
900 31500 14.7 49.8 50.0 85512.58 31.1 41.5 3548.40 2860.03

1000 35000 13.5 49.7 50.0 115717.98 28.9 38.7 3882.37 3924.98

a All timings are in seconds and have been carried out on a single core/single thread (OMP_NUM_THREADS�1) on a 2.31 GHz AMD
Opteron 2376 architecture. They include memory allocation times for all sparse matrices and temporary data structures generated. The time
required to calculate the overlap matrices, however, is not included. Thresholding indicates the implementation of the Ochsenfeld group,
while our implementation is the supernodal. For comparison, the cumulative execution times for the LAPACK calls DPOTRF and DTRTRI as
implemented in the Intel MKL are provided. Dim(S) stands for the dimension of the overlap matrix and % () indicates the density in percent,
respectively.
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As a concluding challenging example we choose to test
the performance of our sparse implementation on rather dense
matrices, namely the overlap matrices of diamond. Of course
no one would use a sparse code for a dense matrix since
highly optimized BLAS and LAPACK kernels have been
designed exactly for this purpose, however if the density of
the matrix subject to factorization is not known in advance,
then one might give a sparse implementation a try if its
performance is not too bad as compared to a dense code. As
can be seen from Tables 1 and 2, the thresholding algorithm
is slower by a factor of 22-30 as compared to LAPACK,
and the scaling is even worse. Not surprisingly, our super-
nodal implementation is slower than the dense equivalent
as well, however it is at most 4 times slower, and by contrast
to the thresholding implementation, the differences more and
more vanish with increasing matrix size and even break even
for the diamond cluster with 1000 atoms in the 6-311G(2df)
basis. This behavior once again highlights the importance
of the supernode technique, which allows for a seamless
transition between really sparse systems and more or less

dense ones that are treated as if they were sparse. For a
completely dense matrix, our implementation would have
an overhead for the symbolic Cholesky factorization. The
numeric part however would be the same single LAPACK
call as for the dense matrix, since the matrix would have
just one supernode, and this property renders our implemen-
tation more or less generally applicable.

6. Semidefinite and Idempotent Matrices
So far we have only considered strictly positive definite
matrices, and as stated above, symmetric positive semidefi-
nite matrices do have Cholesky factors as well. However,
in the presence of rounding error, one is forced to use the
full piVoting technique25 in order to obtain reliable results,
i.e., the factorization is carried out by exchanging the current
row/column with that one having the largest diagonal element
among those that have not yet been factorized. This process
is repeated until all remaining diagonal elements fall below
a predefined threshold. The huge drawback of this approach
however is that the matrix has to be reordered at every step
of the factorization, and since this reordering now depends
on the actual numerical values of the matrix, we cannot apply
a symbolic Cholesky factorization anymore.

For semidefinite matrices which are very rank deficient
(density and two-electron integral matrices, e.g.), this ap-
proach is fine. However, although overlap matrices are
positive definite as long as there are no linear dependencies
among the basis functions, they tend to become numerically
semidefinite for larger basis sets. If this happens to be the
case, then one would encounter numerical problems during
the regular Cholesky factorization. Furthermore the Cholesky
factor would not have a regular inverse anymore, and one

Figure 5. Graphical representation of the data in Tables 1 and 2.

Table 3. Coefficients a, b for the Fitting of the Data in
Tables 1 and 2 According to a Fit Function of the Form
a ·dim(S)

6-31G(d) 6-311G(2df)

a b a b

alkanes thresholding 6.17 × 10-4 1.17 1.76 × 10-4 1.52
supernodal 1.61 × 10-5 1.25 2.13 × 10-5 1.31
LAPACK 1.42 × 10-10 2.96 1.23 × 10-10 2.97

graphite thresholding 6.52 × 10-8 2.51 9.19 × 10-8 2.50
supernodal 5.02 × 10-7 1.89 8.98 × 10-7 1.87
LAPACK 1.48 × 10-10 2.95 1.08 × 10-10 2.98

diamond thresholding 3.63 × 10-9 2.97 2.14 × 10-9 3.02
supernodal 1.58 × 10-7 2.26 3.79 × 10-8 2.43
LAPACK 1.41 × 10-10 2.96 1.17 × 10-10 2.98
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would be forced to compute its Moore-Penrose inverse68

in order to obtain numerically stable and meaningful results.

Fortunately, the Cholesky factorization is generally the
most efficient method for testing positive definiteness of
matrices,69 and for overlap matrices, it might thus be best
to try a regular Cholesky factorization as outlined further
above. In case the Cholesky factorization fails, probably the
best alternative in order to get around the demanding SVD70

required for the computation of the Moore-Penrose inverse
is to eliminate the linear dependencies among the basis
functions. Although we have not yet implemented it, we want
to note that this can be done by computing a LU71 or QR72

decomposition first and then using an iterative method for
the determination of a basis of the null space.73 Once this
basis is known, it is possible to identify those columns that
are linearly dependent and thus would cancel during the
Cholesky factorization. These columns can then be permuted
to the end of the matrix,74 and the symbolic Cholesky
factorization can then still be applied to the leading columns
in order to reduce the fill-in.

Furthermore, we would like to note that for idempotent
matrices the Cholesky factorization can also be computed

via a QR factorization75 and although we have not tested
the reliability it has been found to yield acceptable
results.76

7. Conclusion and Outlook
We have presented an efficient algorithm for the computation
of the Cholesky factor and its corresponding inverse of a sparse
symmetric positive definite matrix, the individual steps of which
are briefly summarized in Figure 6. The high efficiency stems
from splitting the factorization into a symbolic and a numeric
part. The symbolic part is a strictly algebraic algorithm based
on graph theory that first tries to find an appropriate reordering
of the rows/columns in order to reduce the amount of fill-in
and in a second step determines the exact nonzero structure of
the resulting Cholesky factor. Furthermore this step finds blocks
of columns which share a similar nonzero pattern, the so-called
supernodes. These two steps are the most important features
of this implementation and account for the superior efficiency
of this algorithm as compared to a straightforward sparse
implementation.

Furthermore, we have shown that this approach turns
out to be useful for the computation of inverted Cholesky

Figure 6. Brief summary of the algorithm for the computation of the Cholesky factorization and the inverted Cholesky factor.
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factors as well, and we have stressed that it is crucial to
use a ND reordering algorithm in order to preserve at least
some degree of sparsity in the inverse. Although we have
not made any attempt of implementation so far, we would
like to stress that the ND reordering also allows for a
parallel implementation.

Although the ND algorithm used for our algorithm is a
rather small part of our code, we are convinced that this is
the most important ingredient, and this divide and conquer
strategy might also turn out to be useful for the design of
other low-order scaling methods as well. For example, one
might think of dividing a large molecule into many local
domains based on decomposing two-center overlap matrices
in the context of local correlation methods.
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Abstract: We have computed the bond length alternation (BLA) in a series of π-conjugated
quasilinear chains containing from two to six unit cells. Several structures (eight oligomeric sets
including three conformers of polyacetylene, polymethineimine, polysilaacetylene, etc.) have
been considered to cover the possible evolutions of the BLA with increasing chain length. Three
objectives have been tackled: (1) the computation of accurate reference values using the
CCSD(T) theory; (2) an evaluation of the performances of other electron correlated wave function
approaches (MPn, SCS-MP2, CCSD, etc.); (3) the benchmarking of several DFT functionals,
including global, range-separated, and double hybrids. It turns out that the SCS-MP2 approach
is, on average, an efficient scheme in terms of its accuracy/cost ratio. Among the selected DFT
approaches, no single functional emerges as uniformly accurate for all oligomeric series and
chain lengths, but BHHLYP, M06-2X, and CAM-B3LYP could be reasonable choices for long
oligomers.

1. Introduction

The bond length alternation (BLA) is a geometrical parameter
calculated as the difference between the lengths of a single
bond and the adjacent multiple (double or triple) bond in
π-delocalized systems. For polyacetylene (PA, referred to
as CC-II in the following), a polymer constituted of a
sequence of sp2 carbon atoms (see Figure 1), it is well-known
that there is a close connection between the BLA and the
electronic gap.1,2 Indeed, in the one-electron approximation,
there is a simple proportionality relationship between these
two properties.3 More generally, in π-conjugated compounds,
the geometric and electronic structures are closely related,
and an accurate description of the ground-state structures is
an actual prerequisite for the determination of valid electronic
properties.4,5 The interested reader may find examples of the
key role played by the BLA in several domains, including

nonlinear optics,6-8 two-photon absorption efficiencies,9-11

transport properties,12 and photochromic features.13,14

Straightforward experimental determinations of the BLA
remain difficult, and the results may be relatively disap-
pointing. First, gas-phase measurements are only possible
on the shortest oligomers, as the intermolecular interaction
energies tend to be substantial in π systems. This is
unsatisfying, as the BLA evolves slowly with chain length;
e.g., it is roughly divided by two when going from butadiene
to infinitely long polyacetylene.3,15 In other words, chain end
effects cannot be neglected, as they span over more than
five unit cells (N).16 Second, the available XRD data17 suffer
from the impact of environmental effects that are sizable for
π-rich oligomers.18 This statement can also be illustrated by
comparisons between gas-phase and condensed-phase simu-
lations that yield strongly dissimilar BLA in some cases.19

Eventually, the experimental accuracy can also be a limiting
parameter; e.g., two gas-phase experiments carried out on
the simple and symmetric trans-butadiene yielded BLAs
(double/single bond distances) of 0.118 Å (1.349/1.467 Å)20
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and 0.130 Å (1.337/1.467 Å),21 a 10% discrepancy. The same
holds for solid-sate measurements obtained through XRD22

or NMR23 techniques that allow for getting useful, yet not
very accurate, estimates of the BLA of the polymeric PA:
0.08 ( 0.03 Å.18

Due to these limitations, numerous efforts have been
devoted to the computation of the BLA of conjugated chains
with reliable theoretical models. For PA chains, the most
intensively studied quasilinear oligomers, the first systematic
study dates from 19973 and demonstrated that Hartree-
Fock (HF) predicts BLA too large by a factor of 2, whereas
a pure Density Functional Theory (DFT) scheme, namely
BLYP,24,25 leads the opposite error. On the contrary, the
geometrical parameters obtained by the second-order
Møller-Plesset (MP2) and the hybrid B3LYP functional26

have been found in satisfying agreement with experimental
measurements on short chains.3 These conclusions were later
confirmed by, on the one hand, simulations relying on more
recent global hybrid functionals27 and, on the other hand,
self-interaction corrected DFT schemes.28 However, during
the past three years, it has been shown that CCSD(T) and
MP2 BLAs are far from coinciding when the polyene chain
lengthens.29-31 Additionally, different authors have indicated
that range-separated hybrids30,32,33 as well as the spin-
component scaled MP2 (SCS-MP2) approach31 are in fact
more accurate than conventional hybrids like B3LYP for PA.
The difficulties encountered when modeling the BLA of
polymethineimine (PMI, referred to as CN-III in Figure 1)
are much more dramatic, though this polymer is isoelectronic
to PA. Indeed, for PMI, global hybrids and MP2 already
provide diverging results,34 and the DFT estimates appear
to decrease too rapidly with the chain length. This finding
also holds, but to a smaller extent, for range-separated
hybrids30 and self-interaction corrected schemes:35 no avail-
able DFT approach is able to completely cure the too sharp
falloff, though the most recent functionals, combining range-
separation and second-order perturbative corrections,36 clearly
attenuate the problem.33

Five years ago, we investigated several series of oligomers
with MP237 and DFT38 approaches. These works allowed
for the definition of three phenomenological categories. In
the first set (type I oligomers), the BLA exponentially
decreases with the chain length and rapidly converges to zero.
In the second category (type II), one finds symmetric
oligomers that, due to the Peierls distortion, show nonzero
BLA for all chain lengths. The last class (type III) is
constituted of asymmetric compounds presenting significantly

different bond lengths even in very long oligomers. For type
I, most ab initio models, including conventional hybrid
functionals, give relatively accurate values,37,38 whereas for
type II, the exact exchange balance seems essential, as
illustrated by the above discussion for PA. Eventually, for
type III oligomers, no classic DFT functionals seem com-
pletely satisfying (see PMI above).38 However, these previous
works have been relying on MP2 references values38 that
are far from flawless. Additionally, other investigations
performed with more refined wave function or DFT schemes
have been limited to PA and PMI,3,27,28,30-35 making any
general conclusions difficult, if not impossible. In this paper,
we treat several series (see Figure 1) of oligomers and go
significantly beyond previous studies by (1) computing
CCSD(T) BLA for small and medium oligomers of type I
(NB-I and CSI-I), II (CC-II and SiSi-II), and type III (PB-
III and CN-III) oligomeric series; (2) evaluating the perfor-
mances of several electron correlated wave function schemes,
including CCSD and SCS-MP2 approaches; and (3) assessing
the efficiency of DFT functionals (pure as well as global,
range-separated, and double hybrids).

2. Method

All calculations have been performed with the Gaussian 09
program,39 except for the SCS-MP240 and B2PLYP41-43

calculations, which have been achieved with the ORCA
code.44 We have systematically used a tightened SCF
threshold (10-10 au) and geometry optimization criteria (rms
force smaller than 10-5 au). The 6-31G(d) basis set has been
selected throughout (see next section). HF, MP2, MP4(SDQ),
CCSD, MP4, and CCSD(T) calculations have been per-
formed using analytic gradients, except for the two latter
approaches, which relied on numerical differentiation. Con-
sequently, the MP4 and CCSD(T) calculations have been
the clear time-limiting steps in the present investigation (more
than one year of CPU time for the hexamer of CN-III at the
MP4 level). Several DFT functionals have also been used.
First, we compared methods presenting a constant correlation
functional (LYP): one GGA, BLYP;24,25 two global hybrids,
namely, B3LYP26 and BHHLYP;45 two range-separated
hybrids, LC-BLYP46 and CAM-B3LYP;47 as well as a
double-hybrid, that is, B2PLYP.41-43 For the record, note
that the original damping parameter of 0.33 au for LC-BLYP
has been applied to allow consistent comparisons with our
previous work.30 Second, we also considered four extra
modern functionals: B97-D,48 which is free of exact ex-

Figure 1. Representation of the oligomers considered in this work. All chains are capped by terminal hydrogen atoms. N is the
number of unit cells.

370 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Jacquemin and Adamo



change; two members of the M06 family (M06 and M06-
2X);49 as well as a recent range-separated hybrid (ωB97).50

The optimizations have been performed by taking the
symmetry into account but fully optimizing all nonredundant
distances and valence angles (including the hydrogen-related
bonds and angles). The only exceptions are CSI-I and CN-
III, for which the valence angles of the skeleton have been
set equal in order to enforce quasi-linearity of the molecules.
Such a scheme has already been applied for the same two
systems, and we refer the reader to these previous works
for discussion.30,35,37,38 For SCS-MP2 and B2PLYP, the
skeleton valence angles have been fixed to their MP2 values
for both CSI-I and CN-III. Test calculations have shown that
this approximation has a negligible impact on the BLA. The
BLAs reported in the following have been systematically
measured at the center of the oligomers, as they represent a
better approximation of the behavior obtained in longer
chains. Note that all chains of Figure 1 are capped by
terminal hydrogen atoms during our simulations.

3. Results

3.1. Reference CCSD(T) Values. Before analyzing the
results obtained for different oligomers, it is worth it to
discuss the choice of the 6-31G(d) basis set. This selection
of a relatively compact basis set is dictated by our consid-
eration of the hexamer with numerical MP4 and CCSD(T)
derivatives, but is clearly sound in view of several previous
investigations on the topic. Indeed, for all-trans CC-II, the
difference between the MP2/6-31G(d) and MP2/cc-pVDZ
polymeric BLA is as small as 0.002 Å,18 whereas for the
octamer, the discrepancy between the MP2/6-31G(d) and
MP2/6-311G(3df) BLA is only 0.003 Å.37 For the dimer and
tetramer of CC-II, the CCSD(T) differences between the
6-31G(d) and “best estimates” are both 0.003 Å according
to the evaluations of Zhao and Truhlar.29 For the CN-III
dimer, the CCSD(T) BLA evolves only by +0.004 Å, when
going from 6-31G(d) to 6-311G(3df).35 It is also noticeable
that, for the same system, the corresponding B3LYP (+0.005
Å), MP2 (+0.003 Å), and MP4 (+0.004 Å) basis set shifts
are completely similar.35 In addition, for the same system,
the difference between the CCSD and CCSD(T) BLA
systematically amounts to +0.007 Å with 6-31G(d),
6-311G(2d), and 6-311G(3df). For the trimer of PMI, the
CCSD/CCSD(T) BLA difference is also nearly constant with
6-31G(d) at +0.007 Å and 6-311G(2d) at +0.008 Å. These
remarkably stable results hint that the quite large errors of
CCSD for type III chains (see below) are not basis-set related.
In other words, while using much larger basis sets would
imply small variations of the computed CCSD(T) values (ca.
3 × 10-3 Å), such a choice would not affect the conclusions
regarding the relative accuracies of the different computa-
tional schemes nor the chemical trends noted below. The
interested reader may find a detailed basis set study at the
MP2 level in ref 37, as well as a complete coupled cluster
investigation (including large Dunning’s basis set) for
butadiene in ref 31, and both works allow for the concludsion
that 6-31G(d) is indeed a very good compromise for the
BLA.

The computed CCSD(T) values are collated in Table 1,
and their evolutions with chain length are displayed in Figure
2. As expected, the BLA systematically decreases when the
chain lengthens, as a result of the improved delocalization
of the π electrons. Although the chains considered in this
work are too short to allow direct extrapolation to the infinite
oligomer limit,16 one clearly sees that the BLA of NB-I and
CSI-I rapidly declines, which is consistent with a type I
evolution. Indeed, for the hexamer, they are the only two
compounds with a central BLA smaller than 0.08 Å (see
Table 1). This therefore qualitatively confirms a previous
MP2 analysis.27 From Figure 2, one clearly notes that the
two type III oligomers, PB-III and CN-III, have significantly
larger BLAs than the two type II derivatives, CC-II and SiSi-
II. Nevertheless, the evolution of the BLA between the dimer
and the hexamer remains similar for PA (-0.0274 Å) and
PMI (-0.0259 Å). CC-II and SiSi-II also present BLA
evolving at the same rate (-0.0256 Å for the latter), though
their BLA tend to become slightly more alike as the chain
lengthens. Eventually, from Table 1, one notes that going
from the all-trans (TT) to the cis-trans (CT) conformer has
a negligible impact on the BLA (ca. 1 × 10-3 Å), whereas
the trans-cis (TC) oligomer possesses more dissimilar
double and single bonds (BLA larger by ca. 1 × 10-2 Å).

3.2. Wave Function Benchmarks. The BLA computed
with the HF, MP2, SCS-MP2, MP4(SDQ), MP4, and CCSD
approaches can be found in the Supporting Information (SI),
whereas the data obtained through a statistical analysis are
given in Table 2. This table lists the mean signed errors
(MSE) and mean absolute errors (MAE) obtained for
different subsets, considering CCSD(T) as a reference. For

Table 1. CCSD(T)/6-31G(d) BLA (Å) Computed for the
Oligomers Sketched in Figure 1a

system N ) 2 N ) 3 N ) 4 N ) 5 N ) 6

PB-III 0.1493 0.1272 0.1164 0.1103 0.1053
NB-I 0.1414 0.1179 0.0988 0.0885 0.0764
CC-II (TT) 0.1154 0.1022 0.0941 0.0905 0.0880
CC-II (CT) 0.1154 0.1017 0.0951 0.0912 0.0893
CC-II (TC) 0.1284 0.1151 0.1060 0.1018 0.0992
CSI-I 0.1016 0.0951 0.0848 0.0786 0.0723
CN-III 0.1356 0.1282 0.1181 0.1138 0.1097
SiSi-II 0.1092 0.0948 0.0888 0.0855 0.0836

a See Figure 2 for a graphical representation of these data.

Figure 2. Evolution from the dimer to the hexamer of the
CCSD(T) BLA. For CC-II, only the all-trans (TT) conformation
has been represented.
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the full set of 40 derivatives, it is clear that HF significantly
overshoots the BLA. This behavior was expected, as it is
well-known that HF tends to provide a too localized picture
for most organic compounds.3,27 The typical absolute errors
brought by HF are on the order of 3 × 10-2 Å, and the only
series for which HF could be viewed as a reasonable
approximation corresponds to the easiest case, that is, type
I oligomers. In short, HF is inadequate and should not be
used to compute the BLA. Among electron-correlated
approaches, the most accurate scheme is SCS-MP2, closely
followed by MP2 and MP4, whereas MP4(SDQ) and CCSD
produce significantly larger errors. This clearly indicates the
importance of a balance between double, triple and quadruple
contributions for the most refined approaches. Interestingly,
MP4(SDQ) and CCSD both overshoot the BLA. Although
this phenomena is less pronounced than for HF, the average
errors (1 × 10-2 Å) remain incompatible with accurate
estimates.

The evolution with chain length of the errors can be
appreciated by comparing the average errors obtained for
dimers (N ) 2), tetramers (N ) 4), and hexamers (N ) 6).
It turns out that the discrepancies tend to slightly increase
with chain length for all methods but SCS-MP2. For instance,
the MAE doubles (almost triples) for MP4 (MP2) when
going from N ) 2 to N ) 6. This explains why the MP2
scheme was previously considered very accurate when
CCSD(T) calculations were only technically possible for the
shortest chains. Comparing the MSE and MAE obtained for
different categories of compounds is also enlightening: the
deviations obtained for type I are systematically small; any
theoretical scheme seems satisfying. Additionally, for this
series, the deviations tend to decrease with the chain length,
as all approaches predict a zero BLA when N f ∞. The
errors obtained for types II and III are larger than for type I
and are similar for the two series, but MP4 is extremely
efficient for the former but apparently misses the target for

III. This phenomenon is associated with only one system,
namely PB-III, as the MP4 errors for CN-III are very small
(MSE and MAE of 0.0019 Å).

To obtain further insight, we have plotted in Figure 3 the
evolutions with chain length of the errors for four selected
derivatives, including examples of different types. For CC-
II, extensive comparisons between MP2, SCS-MP2, and
CCSD(T) values may also be found in ref 31. In all cases,
the MP4(SDQ) and CCSD curves are almost coinciding. It
is certainly striking that, for both CC-II and SiSi-II, two
systems subject to Peierls distortion, the error patterns are
similar and no wave function scheme possesses a flat curve;
i.e., none of the tested approaches provides a constant error
when the chain lengthens. Of course, in very long chains,
this should become the case, but even for the hexamer, no
convergence pattern clearly emerges for CC-II and SiSi-II.
Nevertheless, one can predict, from the two top panels of
Figure 3, that in long oligomers, SCS-MP2 is certainly more
adequate than MP2 (and probably also than MP4). This
finding backs the conclusions of Sancho-Garcia and Perez-
Jimenez.31 However, for infinitely long CC-II, SCS-MP2
probably slightly overestimates BLA, contrary to what is
found in small polyenes. For CN-III, the MP2 and MP4
schemes provide nearly stabilized errors for N ) 4, 5, and
6. If SCS-MP2 outperforms MP2 for short chains, the
situation is hardly foreseeable for larger N. For CSI-I, all
patterns are similar, the discrepancies remaining relatively
small, as expected. Comparing the data in Table 2 to that in
Figure 3 demonstrates that the nearly constant MSE and
MAE with N noticed for SCS-MP2 are (in part) due to a
compensation of errors between different series of oligomers.
Eventually, the impact of changing the conformation is
correctly predicted by all approaches; e.g., for the hexamer
of CC-II, going from TT to CT (TC) induces a BLA increase
of 0.0013 Å (0.0112 Å) at the CCSD(T) level, and MP2,
SCS-MP2, MP4, and CCSD respectively deliver 0.0016 Å
(0.0124 Å), 0.0010 Å (0.0137 Å), 0.0017 Å (0.0123 Å), and
0.0010 Å (0.0126 Å).

Overall, it seems that SCS-MP2 is an excellent compro-
mise in terms of the accuracy/efficiency ratio, as it yields
relatively small discrepancies that are quite uniformly
distributed among the tested series and sizes. In fact, the
MAE obtained with SCS-MP2 is on the order of the expected
basis set error for the CCSD(T) reference values (see above).
Nevertheless, SCS-MP2 tends to produce slightly too large
of a BLA, and the error curves of Figure 3 are not flat. MP4
yields values close to the CCSD(T) reference, but in one
specific case (PB-III). However, the computational effort
associated with full MP4 (including contribution from the
triples) is largely exceeding its SCS-MP2 counterpart. Indeed,
the MP4 calculations involve resources similar to their
CCSD(T) counterparts.

3.3. Density Functional Theory Benchmarks. As for the
wave function results, the BLA computed with the selected
six DFT functionals are given in the SI, whereas Table 3
collates the corresponding MSE and MAE. We have used a
panel functional relying on the same correlation func-
tional (LYP), to allow investigations of the impact of the
exchange form, but we have additionally considered four

Table 2. Statistical Analysis of the Wavefunction Resultsa

mean signed error

set HF MP2 SCS-MP2 MP4(SDQ) MP4 CCSD

N ) 2 -293 4 -48 -79 21 -91
N ) 4 -285 49 -39 -109 45 -122
N ) 6 -271 80 -29 -97 61 -131
type I -34 -3 -34 -51 -13 -43
type II -385 56 -40 -115 28 -136
type III -330 71 -43 -119 130 -153
full -283 45 -39 -100 43 -117

mean absolute error

set HF MP2 SCS-MP2 MP4(SDQ) MP4 CCSD

N ) 2 293 30 48 79 34 91
N ) 4 292 54 39 109 57 122
N ) 6 313 80 29 111 68 131
type I 88 14 34 51 25 43
type II 385 66 40 121 31 136
type III 330 71 43 119 130 153
full 297 54 39 103 54 117

a CCSD(T) values have been used as references. Mean signed
error [CCSD(T)-tested method] and mean absolute errors are
given in 10-4 Å. Type I corresponds to NB-I and CSI-I, type II to
CC-II (three conformers) and SiSi-II, and type III to PB-III and
CN-III. See text for more details.
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recently designed functionals (B97-D, M06, M06-2X, and
ωB97). BLYP and B97-D yield very similar figures, and both
systematically underestimate the BLA. The discrepancies
with respect to CCSD(T) rapidly increase with the chain
length; e.g., they reach a factor of 2 for the hexamer of CSI-
I. Therefore, this work confirms that pure functionals are

inadequate for estimating the geometry of medium and large
π-conjugated chains. B3LYP and B2PLYP, respectively the
most popular global and double hybrids, show similar
patterns, an outcome already noticed for PA.31 M06 follows
alike trends but with errors systematically smaller than those
of B3LYP. These three functionals predict BLAs that are

Figure 3. Evolution with the chain length of the errors obtained with wave function approaches for CC-II (top left), SiSi-II (top
right), CN-III (bottom left), and CSI-I (bottom right). Note the different scales.

Table 3. Statistical Analysis of the DFT Resultsa

mean signed error

BLYP B3LYP BHHLYP LC-BLYP CAM-B3LYP B2PLYP B97-D M06 M06-2X ωB97D

N ) 2 102 11 -104 -151 -110 14 104 1 -96 -204
N ) 4 259 116 -51 -146 -70 94 261 87 -58 -198
N ) 6 337 170 -20 -142 -55 135 347 131 -38 -185
type I 213 117 43 -10 18 77 201 103 21 -20
type II 221 71 -116 -216 -134 60 231 58 -111 -277
type III 302 153 -35 -145 -54 137 301 118 -43 -214
full 239 103 -56 -147 -76 83 241 84 -61 -197

mean absolute error

BLYP B3LYP BHHLYP LC-BLYP CAM-B3LYP B2PLYP B97-D M06 M06-2X ωB97D

N ) 2 102 47 111 154 118 39 104 30 97 205
N ) 4 259 116 76 155 86 94 261 87 72 204
N ) 6 337 170 76 169 81 135 347 131 76 221
type I 213 117 70 55 55 77 200 108 49 67
type II 221 85 116 216 134 69 231 66 111 277
type III 302 153 37 145 54 137 301 119 43 214
full 239 110 85 158 94 88 241 90 79 209

a See caption of Table 2 for more details.
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too small, with very small discrepancies for the dimers (for
which they are the most accurate functionals, M06 providing
the same performance as MP2), but their predictions tend to
become less reliable with increasing chain length. For type
II chains, they yield BLAs closer to the spot, but the errors
nevertheless grow with N; i.e., they cannot be considered
completely satisfying even for symmetric polymers. LC-
BLYP and ωB97 enjoy relatively constant deviations with
the chain length but significantly overshoot the BLA,
especially the latter. Though the extent of this error is smaller
than with HF (see previous section), the average absolute
deviation still exceeds the 1 × 10-3 Å limit. Eventually,
BHHLYP, CAM-B3LYP, and M06-2X deliver a more
balanced description of the single and double bond lengths
with stable MAEs for the tetramer and hexamer and good
performances for the difficult case of type III oligomers.
Overall, M06-2X is the most efficient functional, though as
BHHLYP and CAM-B3LYP, it is not completely satisfying
for type II chains, especially for SiSi-II. It is worth
mentioning that CAM-B3LYP was already pinpointed as one
of the most efficient functionals for the two prototype
systems, PA30,32 and PMI.30

In Figure 4, evolutions of the DFT (LYP correlation) error
patterns are shown for four typical systems. The error ranges
are significantly larger than in the corresponding Figure 3,
and one notes that for all functionals and systems, the errors

tend to increase with N, so that the conclusions obtained with
short oligomers do not pertain to longer chains. The only
noticeable exception is LC-BLYP, which allows for relatively
constant errors in three out of four cases: CC-II, CN-III, and
SiSi-II. From Figure 4, it seems obvious that a large share
of exact exchange is needed to grant reasonable estimates
of the infinite chain limit, though no functional can be
considered completely satisfying. Therefore, the use of
BHHLYP, M06-2X or CAM-B3LYP, which yield very
similar values for most oligomers, may be a good choice
for medium and large conjugated chains in spite of the large
errors obtained for the dimers. It is noticeable that, in the
long range, the three functionals present a similar share of
exact exchange (50% for BHHLYP, 56% for M06-2X, and
65% for CAM-B3LYP). This investigation illustrates how a
simple structural parameter can be difficult to predict even
with refined DFT schemes.

As noted above, the conformational CCSD(T) increase in
the BLA noted for the hexamer of CC-II is 0.0013 Å (0.0112
Å) for CT (TC). The corresponding values are 0.0023 Å
(0.0066 Å), 0.0024 Å (0.0094 Å), 0.0020 Å (0.0116 Å),
0.0007 Å (0.0107 Å), 0.0013 Å (0.0111 Å), and 0.0022 Å
(0.0108 Å) for BLYP, B3LYP, BHHLYP, LC-BLYP, CAM-
B3LYP, and B2PLYP, respectively. B97-D, M06, M06-2X,
and ωB97 respectively deliver 0.0034 Å (0.0054 Å), 0.0029
Å (0.0098 Å), 0.0017 Å (0.0118 Å), and 0.0011 Å (0.0111

Figure 4. Evolution with chain length of the errors obtained with several DFT functionals for CC-II (top left), SiSi-II (top right),
CN-III (bottom left), and CSI-I (bottom right). Note the different scales.
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Å), respectively. Therefore, BLYP and B97-D are again off
target, whereas all other functionals give relatively accurate
estimates of the impact of conformation.

4. Conclusions

We have computed the central bond length alternation in eight
oligomeric series of increasing size. Reference CCSD(T) values
have been obtained in each case, allowing accurate com-
parisons for several chain lengths and atomic compositions
of the unit cell. It turns out that the error patterns of the
tested wave function and density functional approaches are
significantly affected by the considered system. Nevertheless,
several general trends have been identified. As expected, HF
produces BLA that are too large with absolute deviations of
ca. 3 × 10-2 Å. Both MP4(SDQ) and CCSD also overshoot
the BLA, and though the errors are smaller than for HF, they
remain sizable (ca. 1 × 10-2 Å). MP2, MP4, and SCS-MP2
generally yield accurate BLAs (average absolute deviations
of ca. 5 × 10-3 Å), the two former (the latter) slightly
underestimating (overestimating) the reference data. SCS-
MP2 is, on average, the most efficient, although the dis-
crepancies with respect to the CCSD(T) value evolve with
the chain length, at least up to the hexamer. None of the
selected functionals has a net edge for the full set of
molecules. Indeed, for long oligomers, it is obvious that a
global hybrid including a large share to exact exchange
(BHHLYP or M06-2X) or a balanced range-separated hybrid
(CAM-B3LYP) could be smart default choice to evaluate
the BLA, whereas, for the smallest chains, B3LYP or
B2PLYP are to be preferred.
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Abstract: Historically, two important approaches to the concept of electronegativity have been
in terms of: (a) an atom in a molecule (e.g., Pauling) and (b) the chemical potential. An
approximate form of the latter is now widely used for this purpose, although it includes a number
of deviations from chemical experience. More recently, Allen introduced an atomic electrone-
gativity scale based upon the spectroscopic average ionization energies of the valence electrons.
This has gained considerable acceptance. However it does not take into account the
interpenetration of valence and low-lying subshells, and it also involves some ambiguity in
enumerating d valence electrons. In this paper, we analyze and characterize a formulation of
relative atomic electronegativities that is conceptually the same as Allen’s but avoids the
aforementioned problems. It involves the property known as the average local ionization energy,
Ij(r), defined as Ij(r) ) ∑Fi(r)|εi| / F(r), where Fi(r) is the electronic density of the ith orbital,
having energy εi, and F(r) is the total electronic density. Ij(r) is interpreted as the average energy
required to remove an electron at the point r. When Ij(r) is averaged over the outer surfaces of
atoms, taken to be the 0.001 au contours of their electronic densities, a chemically meaningful
scale of relative atomic electronegativities is obtained. Since the summation giving Ij(r) is over
all occupied orbitals, the issues of subshell interpenetration and enumeration of valence electrons
do not arise. The procedure is purely computational, and all of the atoms are treated in the
same straightforward manner. The results of several different Hartree-Fock and density
functional methods are compared and evaluated; those produced by the Perdew-Burke-Ernzerhof
functional are chemically the most realistic.

Electronegativity

The concept of electronegativity is an old one, dating back
at least to Berzelius in 1835,1,2 and it is an extremely
important one. It has been used to rationalize and predict a
great deal of chemical behavior. However electronegativity
is not a physical observable and cannot be determined
experimentally. It is an arbitrarily defined property and
therefore can besand has beensformulated in many different
ways. In this paper, after briefly examining some of these

approaches, we shall focus upon ionizaton energy as a
pathway to electronegativity.

Pauling assigned relative electronegativities to the elements
on the basis of the estimated degrees of ionic character in
the heteronuclear covalent bonds that they form.3,4 His scale
remains, in updated form,5 a standard against which others
are measured. Pauling viewed electronegativity as “the power
of an atom in a molecule to attract electrons to itself”.6 His
focus upon polarity and upon the atom in a molecular
environment is reflected in many of the treatments of
electronegativity that followed, different as they might be
in detail. For example, Mulliken defined the electronegativity
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� in terms of the energetics of the atom in a molecule gaining
or losing an electron:7,8

Ivs and Avs are the valence-state ionization energy and electron
affinity of the atom.

Allred and Rochow represented electronegativity as the
electrostatic force exerted by the atom’s effective nuclear
charge upon an electron at its covalent radius.9 Iczkowski
and Margrave,10 following earlier work by Pritchard and
Sumner,11 expressed electronegativity as (∂E/∂Q)Q)0, where
E and Q are the energy and the net charge of the atom in a
molecule.

Already in 1961, the number and the diversity of electrone-
gativity definitions was such that Iczkowski and Margrave were
led to remark that “... there is some confusion as to what
physical picture corresponds to the term electronegativity”.10

They pointed out that there was not even agreement as to its
units, which had included energy, energy1/2, force, force/
distance, and potential. Numerous comparisons and critiques
of the various formulations of electronegativity have ap-
peared over the years.2,12-19

A new chapter in the electronegativity saga began in 1978.
In the density functional treatment of a ground-state N-
electron system having electronic density F(r), the term
“chemical potential” is applied to the Lagrangian multiplier
µ used in minimizing the energy functional E[F(r)] subject
to the constraint of constant N, N ) ∫F(r)dr.16 The chemical
potential can be expressed as

in which V(r) is the external potential, which usually refers
to the nuclei of the system. Parr et al. rewrote eq 2 as

where N0 is the number of electrons in the ground state. The
quantity µ was interpreted as the negative of the electrone-
gativity �:20

The µ (and �) defined by eqs 3 and 4 have been described
as measuring the escaping tendency of an electron within
the system.16 This is significantly different from the concep-
tion of electronegativity held by Pauling (see above) and by
many chemists.

Several points can be mentioned in support of eqs 3 and
4:

(a) It has been shown that µ must be uniform throughout
a system at equilibrium.20,21 This is consistent with
Sanderson’s postulate of electronegativity equaliza-
tion.22,23

(b) Eq 2 can readily be converted (although not rigor-
ously) to the easily evaluated form:

where I and A are the system’s ionization potential
and electron affinity. This can be done by: (a)
assuming that E is a quadratic function of N, (b)
applying a finite-difference approximation to the
derivative (∂E/∂N)V(r),N0, or (c) expanding E(N) in a
Taylor series around N0 and truncating after the
second-order term.24-26 The point is that eq 5 has the
same form as the electronegativity expression intro-
duced by Mulliken, eq 1.7,8 However Mulliken’s
equation pertains to the valence state of the atom, and
eq 5 pertains to the ground state.

(c) The electronic chemical potential as given by eq 3 is
clearly analogous to the chemical potential of a
component i of a macroscopic system in classical
thermodynamics, which must also be uniform at
equilibrium.

As was already mentioned, the approach to electronega-
tivity represented by eqs 3 and 4 differs fundamentally from
that of Pauling. The latter focuses upon the degree of ionic
character of the atom in a molecule, while eqs 3 and 4 are
for the ground state and can refer to a molecule as well as
an atom. The differences are sufficiently important that both
Pearson27 and Allen28,29 have suggested that Pauling’s
electronegativity and the chemical potential be regarded as
two separate and distinct properties.

Eqs 3 and 4 have also been criticized on various
grounds,2,29,30 such as the validity of taking E to be a
differentiable function of N given that N is restricted to
having integral values. This issue has been discussed on a
number of occasions.16,31-33 Note that this problem does
not arise with the thermodynamic chemical potential, which
involves differentiating with respect to the number of moles
of component i; this can certainly have nonintegral values.

If one accepts the differentiability of E(N) and subse-
quently arrives at the approximation represented by eq 5,
then it should be recognized that eq 3, and therefore eq 5,
requires a constant nuclear potential. Thus the I and A in eq
5 should be the vertical values, not the adiabatic. For atoms
this is of course trivial, but for molecules the effect can be
significant, especially for A.34 Furthermore, the vertical
electron affinity is often negative for closed-shell mol-
ecules.35 Then E(N) must have a minimum for N in the
vicinity of N0; by eq 3, such molecules have zero or near-
zero chemical potentials (as is predicted for any molecule
by Thomas-Fermi theory).16

In practice, the requirement of constant V(r) is frequently
ignored, and I and A are taken to be the ground-state adiabatic
values rather than the vertical. Thus, we are confronted with
three similar formulas for �:

Eq 1 is due to Mulliken and pertains to the atom in its
valence state in the molecule. Eq 6 is based approximately
upon eqs 3 and 4 and obeys the restriction that V(r) must be
constant. Eq 7 is also based approximately upon eqs 3 and

� ) 0.5(Iνs + Aνs) (1)

µ ) (∂E[F]
∂F )V(r)

(2)

µ ) (∂E[N]
∂N )V(r),N0

(3)

µ ) -� (4)

µ ) -0.5(I + A) ) -� (5)

� ) 0.5(Ivs + Avs)N0
(1a)

� ) 0.5(Ivert + Avert)N0
(6)

� ) 0.5(Iadiab + Aadiab)N0
(7)
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4 but disregards the limitation upon V(r). Eqs 6 and 7 are
intended to apply to molecules as well as to atoms; for the
latter, they are equivalent.

Eq 7, despite the problems mentioned above, is now
widely used to calculate atomic and molecular electronega-
tivities. How meaningful are they, from a chemical stand-
point? In Table 1 are the results obtained with eq 7 for the
elements H-Kr, using experimental ground-state I and A.16

In general, they follow the expected trends in the periodic
table, increasing from left to right in the horizontal rows and
decreasing from top to bottom in the vertical columns.
However there are a number of deviations from chemical
experience (and from Pauling’s electronegativities,36 also in
Table 1); some of the more striking ones are Cl > O, Cl >
N, Br ∼ O, Br > N, H > C, H > S, H ∼ N. Thus, for example,
amines would not be predicted to form hydrogen bonds!

These unrealistic relative values can usually be avoided
by utilizing eq 1, with valence-state ionization energies and
electron affinities.10,18,37-39 However this produces a dif-
ferent � for each valence state of an atom, of which there
can be several; for instance, Hinze and Jaffé list seven
possible valence states for triply coordinated nitrogen.37

There can be serious ambiguity in specifying the valence
state.38,39 An analogous problem is actually inherent in any
electronegativity treatment that focuses upon the atom in a
molecule, including Pauling’s, since a given atom differs
somewhat from one molecular environment to another. (In
this context, see Allen.)29 It can be argued that there is a
need for an electronegativity definition that is intrinsic to an
atom and yet serves as a realistic guide to its interactions
with others.

Electronegativity and Ionization Energy

The ionization energies of ground-state atoms are consider-
ably larger than their electron affinities, often by factors of

5-10.36 In eq 7, it is therefore Iadiab that primarily governs
the magnitude of �. Sacher and Currie used a double linear
regression to determine the combination of Iadiab and Aadiab

that best correlates with the Allred-Rochow electronega-
tivities and concluded that the contribution of Aadiab is
insignificant.40 However using Iadiab alone to represent �, i.e.,

is also beset with problems O < N, H ∼ O, H > Cl, H > Br,
H > C, etc.36

Allen et al. have introduced an electronegativity scale that
is within the context of ionization energy but does not lead
to the chemically unrealistic predictions that result from eqs
7 and 8.1,15,29,41,42 They proposed that electronegativity be
defined as the “configuration energy” (CE) of the ground-
state free atom. By configuration energy, they mean the
average ionization energy of its valence electrons. Thus, for
the main group (nontransition) elements:

In eq 9, ns and np are the numbers of s and p valence
electrons, and εs and εp are the multiplet-averaged differences
in total energy between the ground-state neutral atom and
its monopositive ion resulting from the loss of a s or p
electron. Spectroscopic data are used to obtain εs and εp

insofar as possible; indeed Allen originally referred to the
CE as “spectroscopic electronegativities.”15 The quantities
εs and εp can also be approximated computationally, using
the appropriate orbital energies.15

The configuration energy concept has been quite effective
in producing chemically meaningful electronegativities (Table
1), as discussed in detail by Allen.1,15,29 It has gained
considerable acceptance over the past 20 years.41

The approach has also been extended to the transition
series, but for these it is not as straightforward as for the
main group elements.15,42 For example, there is some
arbitrariness in deciding the numbers of d electrons to be
used in calculating the configuration energies.

For both the main group and the transition elements, there
is furthermore the issue that interpenetration between the
valence shell and lower-lying subshells is not being taken
into account. This can be quite significant, even for main
group elements and certainly for those in the transition series.
A quantitative measure of this can be obtained by computing
the exchange/repulsion interaction energy between a valence
electron and one in an inner subshell and by comparing this
to the expected value in the absence of interpenetration.43

For the bromine 4p-3s, 3p combination, the ratio (actual/
no penetration) is about 0.91; for the sulfur 3p-2s, 2p, it is
0.92. The effect is much greater for 3d electrons; for 3d-3s,
3p interactions, the ratio is only 0.7 to 0.8!

In an earlier preliminary study,44 we proposed a variation
of Allen’s approach that is conceptually the same but that
avoids the problems associated with subshell interpenetration
and enumeration of d valence electrons. We now present a

Table 1. Some Literature Electronegativity Values. Note
that Pauling’s are in Arbitrary Units

a Taken from ref 16. b Taken from ref 36. Note that Pauling’s
are in arbitrary units. c Taken from refs 41 and 42.

� ) Iadiab (8)

� ) CE )
nsεs + npεp

ns + np
(9)
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detailed characterization of this procedure. It involves the
average local ionization energies of the atoms.

Average Local Ionization Energy

The property known as the average local ionization energy,
Ij(r), was introduced in 1990 as a measure of the energy
required to remove an electron from a specific point r in an
atom or molecule.45 The focus is upon the point in space,
not a particular orbital. Ij(r) is given by

in which Fi(r) is the electronic density of orbital �i(r), having
energy εi, and F(r) is the total electronic density. The
summation is over all occupied orbitals.

The interpretation of Ij(r) as a local ionization energy is
formally justifiable in Hartree-Fock theory if it is assumed
that the loss of an electron from one orbital does not affect
the others; some support for this is provided by Koopmans’
theorem.46,47 Ij(r) as defined by eq 10 has also been shown
to be effective within the framework of Kohn-Sham density
functional methodology.48,49 The magnitudes are different
from the Hartree-Fock but the relative values and trends
are generally the same, which is the key point. This will be
addressed again in the next section.

The lowest values of Ij(r) indicate the locations of the least
tightly held, most reactive electrons. Ij(r) has indeed been
found to be quite successful in predicting and ranking sites
for electrophilic attack as well as pKa values.45,48-52 In these
studies, Ij(r) is typically computed on the molecular “surface”,
which is usually taken to be the 0.001 au (electrons/bohr3)
contour of the electronic density F(r), as proposed by Bader
et al.53

The significance of Ij(r) is not limited to reactive behavior. It
has been shown to be linked to local kinetic energy density,
atomic shell structure, and local polarizability/hardness. It can
be used to identify radical sites and strained C-C bonds. The
various aspects of Ij(r) are discussed in detail elsewhere.54,55

Average Local Ionization Energy and
Electronegativity

It has been demonstrated that the 0.001 au surfaces of the
atoms lie within their valence shells.56,57 Thus if we compute
the average value of Ij(r) on these surfaces, we are in fact
obtaining primarily the average ionization energies of their
valence electronssthe same concept as Allen’s configuration
energies!41,42 However if an inner orbital �i(r) has a
significant presence in the valence shell, then this will be
reflected in its Fi(r) on the 0.001 au surface, and its
contribution to Ij(r) will be included. Thus the problem of
accounting for subshell interpenetration does not arise, because
the summation in eq 10 is over all of the atom’s electrons.
Similarly, the need to enumerate d valence electrons is
eliminated, again because of summing over all electrons. These
two issues that are associated with Allen’s approach are ac-
cordingly resolved.

We shall use IjS,ave to designate the average value of Ij(r)
on the 0.001 au surface of an atom. In our earlier study,44

we computed IjS,ave for the atoms H-Kr. Clementi’s
Hartree-Fock wave functions, written in terms of extended
basis sets of Slater-type orbitals, were used for He-Kr;58

hydrogen was treated exactly. The resulting IjS,ave correlated
well with Allen’s configuration energies and showed the
relative values and trends expected for electronegativity, with
two exceptions:44 IjS,ave for hydrogen was larger than for
sulfur, 13.61 vs 13.26 eV, and sulfur in turn was less than
carbon, 14.30 eV. These are contrary to chemical experience,
e.g., the known formation of -S-H · · ·X hydrogen bonds.59

Clementi’s wave functions were at the Hartree-Fock level
and therefore did not include electronic correlation. Further-
more, the p and d subshells were treated as spherically
symmetrical. In order to assess the effects of these factors,
and to more fully characterize the IjS,ave approach to elec-
tronegativity, we now present the IjS,ave for the atoms H-Kr
as computed by several different approaches:

(a) Hartree-Fock, STO: Extended basis sets of Slater-
type orbitals, p and d subshells spherically sym-
metrical.58 The resulting IjS,ave are the ones given in
our earlier paper.44

(b) Optimized Potential Method (OPM): Exchange-only,
spherically symmetrical Kohn-Sham. Formally the
same energy functional as Hartree-Fock, OPM is used
to obtain Kohn-Sham exchange potentials.60,61

(c) Hartree-Fock, 6-311G(3d, 2p).
(d) PBEPBE/6-311G(3d, 2p): Pure density functional,62

no Hartree-Fock exchange.
(e) B3LYP/6-311G(3d, 2p): Three-parameter hybrid

functional,63,64 20% Hartree-Fock exchange.
(f) MO62X/6-311G(3d, 2p): Hybrid meta density func-

tional,65,66 54% Hartree-Fock exchange.
Procedures (d-f) are Kohn-Sham, with local exchange

and correlation plus various amounts of Hartree-Fock
exchange. In (c-f), the p and d subshells are not necessarily
spherically symmetrical; the orbitals have the occupancies
corresponding to the ground-state configurations. The wave
functions for (c-f) were obtained with Gaussian 09,67 while
the IjS,ave were computed using the WFA surface analysis
suite.68 For the PBEPBE functional, we also investigated the
addition of diffuse functions to the basis set but found these
to have no significant effect.

The results, for procedures (a-f), are in Table 2. To
facilitate comparisons, Table 3 lists their relative values,
based upon fluorine being assigned a value of 4.00 in each
case. (This was its original Pauling electronegativity.)3,4

Discussion

Tables 2 and 3 show that the overall variation of IjS,ave is as
expected of electronegativity: it increases from left to right
in the horizontal rows and decreases from top to bottom in
the vertical columns. This is depicted graphically in Figure
1.

Looking first at the absolute values of IjS,ave, in Table 2, it
is evident that they fall into two groups: The Hartree-Fock
and the OPM (exchange-only Kohn-Sham) IjS,ave have the
larger magnitudes, the exchange plus correlation Kohn-Sham

Ij(r) )
∑

i

Fi(r)|εi|

F(r)
(10)
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have the smaller. This is fully consistent with earlier work.55

The two sets of Hartree-Fock results are in general quite
similar for the main group elements but differ by more than
1.0 eV for the transition atoms Cr-Ni. This suggests that
symmetry, or lack thereof, is more important in the d subshell
than in the p.

The fact that the OPM IjS,ave is overall quite close to the
Hartree-Fock provides significant support for the validity
of extending the definition of Ij(r), eq 10, to the Kohn-Sham
framework. The OPM energy functional is formally the same
as the Hartree-Fock; the two methods differ only in the
exchange potential that enters the single-particle Hartree-Fock
or Kohn-Sham equations. In the latter, this potential is
constrained to be local (and multiplicative), whereas in the
former it is nonlocal. In Hartree-Fock theory, the interpreta-
tion of Ij(r) as an average local ionization energy is partially
justified by Koopmans’ theorem,46,47 but the Kohn-Sham
counterpart, Janak’s theorem,69 holds only for the highest-
occupied and lowest-unoccupied orbitals. The OPM and
Hartree-Fock results in Table 2 show that when the energy
functionals are formally identical, the IjS,ave obtained with the
local and nonlocal potentials not only show the same trends
but also have quite similar values.

It was mentioned earlier in this paper that the widely used
electronegativity expression, eq 7, produces a number of
chemically unrealistic results, including Cl > O, Cl > N, Br
∼ O, Br > N, H > C, H > S, and H ∼ N. (See Table 1.) Do
any of these persist in the IjS,ave in Table 2? The Hartree-Fock
procedures as well as the OPM do show H > S; the OPM
also yields H > C (Table 2). Furthermore, the Hartree-Fock
and OPM methods encounter a problem with C, S, and Br,
predicting that C > S and C > Br. The exchange plus
correlation approaches fare better, but only the PBEPBE
functional is really satisfactory with respect to the relative
C, S, and Br values. In particular, it is the only one of the
six methods tested that shows bromine to be distinctly more
electronegative than carbon.

Is it the complete absence of Hartree-Fock exchange that
makes the PBEPBE functional more effective than the
B3LYP and the M06-2X for present purposes? To test this
possibility, we computed IjS,ave for a series of atoms (H, C,
N, O, S, Cl, Br) using the M06-L functional,65,66 which also
involves no Hartree-Fock exchange, and the 6-311G(3d,2p)
basis set. The results for this group of atoms are overall
realistic, and IjS,ave is indeed larger for bromine than for
carbon, although by relatively little, 8.99 vs 8.82 eV.

Table 2. Unscaled IjS,ave Values, in eV, for Main Group Elements and First Transition Series
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Scaling the IjS,ave so that the value for fluorine is exactly
4.00 by each method considerably diminishes the differences
between the six sets of results (Table 3). The scaled PBEPBE,
B3LYP, and M06-2X IjS,ave of the main group atoms usually
differ very little. The method dependence is greater for the
first transition series, but it is not really clear what should

be expected. Perhaps the key points for the transition
elements are that the magnitudes tend to be rather small and
to vary relatively little over the whole series (about 0.4), for
each of the three procedures.

The PBEPBE functional gives the lowest results of all of
the methods, followed by the B3LYP, and the M06-2X. This

Table 3. Scaled IjS,ave Values for Main Group Elements and First Transition Seriesa

a Fluorine is assigned 4.00.

Figure 1. Computed unscaled IjS,ave values, in eV, for main group elements and first transition series.
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reflects the amount of Hartree-Fock nonlocal exchange in
each of these functionals: 0% for PBEPBE, 20% for B3LYP,
and 54% for M06-2X.

Summary

The average local ionization energies on the 0.001 au
surfaces of the ground-state atoms, as computed with the
PBEPBE exchange plus correlation density functional,
provide an effective measure of their relative electronega-
tivities. This is an alternative means of implementing the
concept introduced by Allen et al.1,15,29,41,42 This approach
is purely computational and treats all atoms in exactly the
same straightforward manner. The problem of accounting
for interpenetration between valence and lower-lying sub-
shells does not arise nor does the need to enumerate d valence
electrons.

It should be noted that we are addressing electronegativity,
not the chemical potential. We do not necessarily assume
the validity of eq 4, µ ) -�. As mentioned earlier, Pearson27

and Allen28,29 questioned this already some years ago. We
agree with Allen that electronegativity should be an intrinsic
property of a ground-state atom29 as opposed to an atom in
a molecule or in some valence state, given the ambiguity
that these entail.

If we do not require that µ ) -�, then the evidence20,21

that µ must be uniform throughout a system at equilibrium
is not relevant for �. While the notion of electronegativity
equalization may be appealing, it also seems counter to
chemical experience, as pointed out by Allen29 and by
Hinze.2 Atoms do retain much of their identities in molecules;
this can be confirmed by looking at plots of molecular
electronic densities.70,71 The rearrangements of electrons that
accompany the formation of a molecule are very subtle, as
can be seen in density difference plots.70-72 The free atom
electronegativities provide us with some initial qualitative
guidelines concerning these rearrangements.
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Abstract: The structure and NMR spectroscopic properties of [Y(C(SiH(CH3)2)3)3] are
investigated with density functional theory calculations. The existence of a C3 principal axis
that was found experimentally is reproduced, but the calculations also find that the symmetry
of the equilibrium structure of [Y(C(SiH(CH3)2)3)3] has to be reduced from the experimentally
suggested C3v or C3h to C3 in order to explain the observed SiH NMR chemical shifts. We
show that the apparent mirror plane relating two agostic SiH(CH3)2 groups on each ligand
is caused by the rapid interchange of the position of the third ligand, which could only be
observed at much lower temperatures than used previously in the experiments.

Introduction

Since their discovery in the mid 1960s,1 various types of
agostic interactions have been described for many different
systems. However, in some cases, an experimental verifica-
tion of the presence of an agostic interaction is difficult
because either reliable probes such as the characteristically
lowered NMR coupling constants are unavailable for a
particular compound or available methods such as structural
information about CH-bond proximity to a metal center are
not very accurate for such a prediction.2 In these cases,
computational inspection of the compound in question can
often assist in the determination of the nature of a particular
interaction.3 The methods currently in use for such a
computational analysis range from the theoretical reproduc-
tion of spectroscopic properties to the discussion of the
bonding situation in terms of natural bonding orbitals or the
topology of the electron density.4

In this study, we examine an yttrium complex with
sterically bulky alkyl ligands. The compound was first
synthesized by Sadow et al.,5 who, on the basis of NMR
data, described it as having six SiH agostic interactions. The
high number of agostic contacts claimed in this molecule
warrants a second look and a closer inspection of the situation
of the three ligands in relation to the central metal atom.

The SiH agostic interactions reported are not unusual; in
fact, several rare-earth complexes with silyl-amido agostic
interactions had been reported before.6 In those, the number
of coordinating groups seems to depend on both electronic
as well as steric effects. The larger [Eu(N(SiHMe2)tBu)3]
complex coordinates through three �-agostic interactions,6b

while the Me2Si(C5Me4)2YN(SiHMe2)2 ligand coordinates
through a bis-�-agostic interaction6c,e and the bulkier
Cp*2YN(SiHMe2)2 ligand coordinates through a single
�-agostic interaction.6d

In the initial characterization by Sadow et al., NMR
spectroscopy was used as the main analytical tool in the
investigation of the agostic nature of the SiH interaction.
The authors could show that, in order to obtain sufficient
resolution of the spectrum, the sample had to be cooled to
approximately 190 K. Above this temperature, the relevant

* To whom correspondence should be addressed. E-mail:
matthias.lein@vuw.ac.nz.

† Victoria University of Wellington.
‡ New Zealand Institute for Advanced Study, Massey University

Auckland.
§ Institute of Natural Sciences, Massey University Auckland.

J. Chem. Theory Comput. 2011, 7, 385–389 385

10.1021/ct100663y  2011 American Chemical Society
Published on Web 12/30/2010



SiH signals in the 1H NMR spectrum coalesced into a single
peak at 3.85 ppm.

Results and Discussion

Structures. In order to get a first insight into the structural
properties of the yttrium compound in question, geometry
optimizations were performed for both structures that had
been previously suggested.5 Those suggestions were based
on the assumption of a pyramidalized structure (1), where
the three -C(Si(CH3)2H)3 ligands all coordinate from one
side of the central yttrium atom, and a planar structure (2),
where the coordinating carbon atoms of all three ligands and
the central yttrium atom are in the same plane (see Figure
2). It was previously suggested5 that a pyramidal structure

might be the more likely one because [Y(CH(SiMe3)2)3], a
similar compound, had been shown to be pyramidal.7

Both optimizations lead to stationary points on the
potential energy hyper surface, but both structures, 2 with
C3v symmetry and structure 1 with C3h symmetry, were
calculated to be transition states. Unfortunately, it was also
found that the C3v structure is almost 70 kcal/mol higher in
energy than the transition structure with C3h symmetry and,
in addition, has only three Si-H units coordinated to the
central yttrium atom because of steric constraints, as opposed
to six Si-H units, which had been suggested when this
compound had been characterized for the first time (see Table
1). Consequently, the C3h symmetric structure, 1, was then
used as a starting point for the search for the lowest energy

Figure 1. Energetic profile for the internal rotation of the noncoordinating SiHMe2 group in 3.

Figure 2. Structures of 1, 2, and 3 (only SiH hydrogen atoms are shown; all other hydrogen atoms are omitted for clarity).
Bonds are shown as solid lines; Si-H · · ·Y agostic interactions are shown as dashed lines.
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conformation. In order to find such a structure, the coordi-
nates of the transition state with C3h symmetry were displaced
according to the vibrational modes corresponding to imagi-
nary frequencies, and the resulting initial structure with C3

symmetry was again optimized. This resulted in a true
minimum structure (3) with C3 symmetry, which is 10.6 kcal/
mol lower in energy than the previously obtained transition
state (Figure 2). The retention of the C3 axis is consistent
with the spectral data obtained by Sadow and co-workers.
In the energetic minimum, the three Si-H units that used to
be coplanar with the horizontal mirror plane in the transition
structure are now rotated out of the Y-C-Si plane by 52.7°.
This leads to the observed lowering of symmetry by removal
of the horizontal mirror plane. The other two Si(CH3)2H units
of each of the three ligands are mostly unaffected by this
internal rotation, and their mode of coordination to the central
yttrium atom through their SiH groups does not change
considerably, although a significant lengthening of the Y-H
distances is noted. Furthermore, the loss of the horizontal
mirror plane in 3 also makes the Si(CH3)2H units that used
to be above the mirror plane different from the Si(CH3)2H
units that used to be below the mirror plane. Those had been
identical in the C3h symmetrical transition structure, 1,
because of the σh-mirror symmetry between them. While the
noncoordinating Si-H units showed a Y-H distance of 2.36
Å in the transition structure 1 and a much longer Y-H
distance of 4.36 Å in the minimum structure 3 with C3

symmetry, the corresponding changes in the groups with the
coordinating Si-H units were much smaller. In those groups,
the Y-H distances increased from 2.27 Å in the transition
structure 1 to 2.30 Å and 2.36 Å in the minimum energy
structure 3 for the groups that used to be above and below
the mirror plane, respectively.

Considering the energetic gain of about 11 kcal/mol by
the internal rotation of one Si(CH3)2H unit at each of the
three C(Si(CH3)2H)3 ligands at the same time by going from
structure 1 to structure 3, the question about the size of the
energy barrier for the rotation of a single Si(CH3)2H unit
around the C-Si(CH3)2H bond has to be asked. In order to
determine this, two sets of surface scans were obtained and
evaluated (see Figure 1). In the first scan, the Y-C-Si-H
angle was varied from 0° to 180° in 5° increments with all
other structural parameters unchanged. This constrained scan
showed a large barrier for the rotation of the Si(CH3)2H unit
of 26.8 kcal/mol into a shallow energetic minimum on the
other side. This rotational barrier can be lowered significantly
if the remaining structural parameters are allowed to

minimize as well during the scan. This second, relaxed scan
shows that the energetic profile of the rotation is much
shallower and has a barrier of less than 3.5 kcal/mol between
two structures with nearly identical energies. The second
minimum in the curve (structure 3a) at 160° corresponds to
a structure where one Si(CH3)2H unit of one C(Si(CH3)2H)3

ligand has rotated through to the other side and the other
two ligands have been left largely unchanged. This structure
has been confirmed to be an energetic minimum that shows
the same energy as structure 3 within numerical accuracy
but is completely unsymmetrical (point group C1). The
transition structure 3b that connects 3 and 3a has also been
identified and is calculated to be 3.4 kcal/mol higher in
energy than 3 (and 3a).

Because of the large number of internal rotations that are
possible in this compound, a number of alternative structures
can be imagined. For example, in the “planar” structure 1,
the noncoordinating Si-H groups are all pointing in the same
direction in the horizontal mirror plane. It can be imagined
that the particular Si(CH3)2H groups those Si-H groups
belong to might be rotated by 180° in such a way that all
Si-H groups point in the opposite direction of structure 1
but still coplanar with the horizontal mirror plane. This new
structure (1a) also has C3h symmetry and has been calculated
to be a transition state like structure 1 but lies 3.4 kcal/mol
above the previously considered structure, 1.

Starting from structure 2, where all three C(Si(CH3)2H)3

ligands coordinate through one Si-H group to the yttrium
atom in the center of the complex, other modes of coordina-
tion can be imagined (see Figure 3). In structure 2a, with Cs

symmetry, one of the ligands is rotated by 180° and now
coordinates through two Si-H groups to the central metal
atom. This increases the number of coordinating groups from
three in 2 to four in 2a. At the same time, some of the steric
strain in 2 is released so that 2a is 34.3 kcal/mol more stable
than 2. Even more steric strain can be released if not all
ligands are aligned in a way where all three Si(CH3)2H
groups are above or below the plane defined by the central
yttrium atom and the three carbon atoms through which the
ligands coordinate to the metal. The C(Si(CH3)2H)3 ligands
can also rotate around the Y-C bond in a way so that one
Si(CH3)2H group (more precisely, the C-Si bond of one
C-Si(CH3)2H group) is coplanar with the plane mentioned
above. This is the case in 1, 1a, 3, and 3a, whereas in 2 and
2a, the ligands are not in this favorable orientation. An
intermediate structure 2b has been constructed and optimized
where two ligands are in the favorable “in-plane” orientation

Table 1. Symmetries, Relative Energies (in kcal/mol), Number of Imaginary Modes (i), and 1H NMR Chemical Shifts (in
ppm) for Coordinating and Noncoordinating Si-H Protons

symm ∆E i δcoord δnoncoord

1 C3h 10.6 3 6 × 3.45 3 × 5.26
1a C3h 14.0 3 6 × 3.43 3 × 5.13
2 C3v 80.2 10 3 × 4.48 6 × 5.97
2a Cs 45.9 4 2 × 4.01, 2 × 4.56 2 × 4.97, 2 × 4.84, 5.00
2b Cs 13.3 2 2 × 5.12, 2 × 4.72, 4.23 2 × 5.03, 2 × 5.16
2c C3 8.9 0 3 × 3.70 3 × 4.97, 3 × 5.10
3 C3 0.0 0 3 × 3.28, 3 × 3.70 3 × 4.75
3a C1 0.0 0 3.38, 3.45, 3.47, 3.52, 3.57, 3.62 4.76, 4.79, 4.80
3b C1 3.4 1
exp5 6 × 3.40 3 × 4.71
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and hence coordinate through two Si-H bonds to the metal
center each. The remaining third ligand is not in this
orientation and coordinates through just one Si-H bond so
that the total number of coordinating Si-H bonds in 2b is
five. With most of the steric strain now released, 2b is only
13.3 kcal/mol less stable than 3.

Although the comparison of 2, 2a, and 2b seems to suggest
that the release of steric strain is coupled to an increasing
number of coordinating Si-H bonds, this is not the case.
Starting from structure 2, it is possible to create a structure
that releases most steric strain but still coordinates through
only three Si-H bonds like 2. This new structure 2c is
obtained by rotating all three ligands concertedly to one side,
thereby reducing the symmetry from C3v to just C3. This
structure is 71.6 kcal/mol more stable than 2 and only 8.9
kcal/mol less stable than the energetic minimum 3 and, by
extension, 4.4 kcal/mol more stable than 2b, which coordi-
nates through five Si-H bonds.

NMR Spectra. While the structural data alone demonstrate
convincingly that 3 is indeed the lowest energy structure of
the compound in question, it is desirable to corroborate the
evidence by looking at the problem from another angle.
Because of the availability of experimental 1H NMR data
for the system at hand, this was chosen as a basis for
comparison to the computationally obtained NMR chemical
shifts (see Table 1).

The Si-H protons fall into two distinct groups for all
isomers. First, there are those Si-H protons that coordinate
to the central metal atom, i.e., those that are in close
proximity to the yttrium atom. The 1H NMR signals of these
protons are shifted upfield and have been characterized
experimentally at 3.40 ppm. Second, there are those Si-H
protons that do not coordinate and hence are further away
from the central yttrium atom. Those Si-H protons give
NMR signals that are shifted downfield, and they appear at
4.71 ppm in the experimental spectrum of the compound in
question.

The calculated chemical shifts of structures 1 and 1a
appear to be in line with the experimental findings. The six

coordinating Si-H protons are found at 3.45 ppm and 3.43
ppm, respectively. This correlates very well with the
experimental finding of 3.40 ppm for those protons. Unfor-
tunately, the agreement is undone by the calculated chemical
shifts of the noncoordinating Si-H protons which are found
at 5.26 ppm for 1 and 5.13 ppm for 1a, whereas the
experimentally observed chemical shifts for these protons
is 4.71 ppm. A comparison to the computed NMR data of
structure 2, the pyramidalized structure favored by the initial
experimental assessment, shows even worse agreement with
the experimental findings. Because of the high steric strain
introduced into the system by the alignment of the ligands
in C3v, the six equivalent Si-H protons are too far away
from the central yttrium atom to coordinate effectively.
Conversely, the other three Si-H protons are pushed into
the proximity of the central metal atom and hence can be
seen as coordinating. This reverses the experimental findings
which indicate that there must be six coordinating Si-H
protons and three noncoordinating protons. This clearly
eliminates 2 as a possible candidate for the structure of the
yttrium compound in this investigation.

Our structural candidate, 3, is a slightly more complicated
case. Instead of six equivalent coordinating Si-H protons,
there are two groups of three Si-H protons that coordinate
to the central metal atom but give separate signals since they
are not equivalent. Those signals are predicted at 3.28 ppm
and 3.70 ppm. At first glance, this seems to contradict the
experimental observation of a single signal for all six
coordinating Si-H protons. However, we have demonstrated
above that there is only a very small barrier of 3.4 kcal/mol
to the internal rotation that transforms 3 into 3a. This internal
rotation also transforms the two coordinating Si(CH3)2H
groups into each other, and hence the two calculated signals
at 3.28 ppm and 3.70 ppm will merge at the temperature at
which the experiment was performed to an average value of
3.49 ppm, which compares very well with the observed
resonance at 3.40 ppm. Because of the extremely low barrier
for the internal rotation, it will most probably not be possible
to cool the sample below the coalescence point and retain

Figure 3. Structures of 2a, 2b, and 2c (only SiH hydrogen atoms are shown; all other hydrogen atoms are omitted for clarity).
Bonds are shown as solid lines; Si-H · · ·Y agostic interactions are shown as dashed lines.
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the liquid state at the same time. This quick internal
rearrangement of 3 through 3b into 3a, or possibly from 3
to the mirror image of 3 through 1 if all ligands rotate at the
same time, is also the reason why the experiment appears to
indicate that all three ligands are equivalent (at all experi-
mental temperatures) and that a mirror plane relates the two
coordinating Si(CH3)2H groups.

Conclusions

The main findings of this investigation can be summarized
as follows:

Density functional theory calculations have shown that the
structure of [Y(C(SiH(CH3)2)3)3] is more complicated than
first anticipated. The potential energy surface is very shallow
with respect to internal rotations of the three ligands. In fact,
the barriers between several low-lying minima are so small
that it will be exceedingly difficult to observe the global
minimum in an NMR experiment. The fast exchange of
position exhibited by some Si(CH3)2H groups in the com-
pound makes them appear equivalent in the experimental
NMR spectrum even though our theoretical data shows that
the only two possible structures containing a mirror plane
which would explain the observation are transition states
between the true minimum structure (3) or sterically unfa-
vorable high energy structures (2).

The findings of the structural analysis are corroborated
by the calculation of NMR chemical shifts for the Si-H
protons in the compound, which show very good agreement
between the experimental findings and our proposed structure
of the global minimum and in turn the poor agreement of
the calculated chemical shifts of the other structures in
consideration of the experimental results.

Computational Details

All calculations were carried out using density functional
theory (DFT) with the B3LYP density functional.8 Correla-
tion consistent basis sets of the Dunning type were used
throughout. The yttrium atom is described by a triple-�-
quality basis set (aug-cc-pVTZ-PP) and the accompanying
effective core potential.9 The inner shell of atoms around
the yttrium metal center is described by triple-�-quality basis
sets10 (cc-pVTZ); this includes the carbon atoms that
coordinate to the metal center, all silicon atoms, and all
hydrogen atoms directly bound to a silicon atom. All other
carbon and hydrogen atoms are described by a double-�-
quality basis set10b (cc-pVDZ). All calculations were carried
out with the Gaussian suite of programs11 (g03).
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Abstract: The protein environment can have significant effects on the enzyme catalysis even
though the reaction occurs locally at the reaction center. In this paper, we describe an efficient
scheme that includes a classical molecular dynamics (MD) free-energy perturbation (FEP)
correction to the reaction energy diagram, as a complement to the protein effect obtained from
static ONIOM (QM:MM) calculations. The method is applied to eight different reaction steps,
from the O2-bound reactant to formation of a high-valent ferryl-oxo intermediate, in the nonheme
iron enzyme isopenicillin N synthase (IPNS), for which the QM:MM energy diagram has previously
been computed [Lundberg, M. et al. J. Chem. Theory Comput. 2009, 5, 220-234]. This large
span of the reaction coordinate is covered by dividing each reaction step into microsteps using
a virtual reaction coordinate, thus only requiring ONIOM information about the stationary points
themselves. Protein effects are important for C-H bond activation and heterolytic O-O bond
cleavage because both these two steps involve charge transfer, and compared to a static QM:
MM energies, the dynamics of the protein environment changes the barrier for O-O bond
cleavage by several kcal/mol. The origin of the dynamical contribution is analyzed in two terms,
the geometrical effect caused by the change in average protein geometry (compared to the
optimized geometry) in the room temperature MD simulation with the solvent, and the statistical
(entropic) effect resulting from fluctuations in the interactions between the active site and the
protein environment. These two effects give significant contributions in different steps of the
reaction.

1. Introduction

When modeling enzymatic reactions, it is common to
separate the reactivity of the active site from the effects of
the surrounding protein matrix. This approximation seems
especially valid for transition metal enzymes, for which the
activity of biomimetic complexes1 indicates that the reactivity
mainly depends on the electronic structure of the metal

center.2 However, enzymes with very similar active sites
catalyze different reactions, and an explicit description of
the protein environment is necessary to fully understand the
reaction mechanism, relative reaction rates and substrate
selectivity.

QM/MM (quantum mechanics/molecular mechanics) mod-
els take advantage of the separation between reaction active
site and protein environment by treating these regions at
different levels of theory.3 Our group has developed the
ONIOM multiscale method that calculates the total energy
of the molecular system by an extrapolation scheme including
different QM and MM calculations.4-9 The QM:MM label
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† Kyoto University.
‡ Emory University.
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separates ONIOM from standard QM/MM methods that
employ additive schemes. The interaction between the QM
part and the MM part can be included in the calculations
either classically by mechanical embedding (ONIOM-ME)
or semiclassically by electronic embedding (ONIOM-EE).9

We have previously used the ONIOM QM:MM method to
describe the protein effects on several metalloenzyme reac-
tions.10 Recently, we have employed an advanced algorithm,
the “fully coupled macro/micro-iterative” optimization
scheme,11 to efficiently locate transition states in complex
molecular systems, specifically in mammalian glutathione
peroxidase,12 isopenicillin N synthase (IPNS),13 and meth-
ylmalonyl-CoA mutase.14,15 The protein environment influ-
ences the description of the reactivity, but the effect on the
calculated energy barriers varies significantly between dif-
ferent enzymes, significantly lowering the barrier in meth-
ylmalonyl-CoA mutase, while having only a modest effect
in glutathione peroxidase.

However, describing a large system with optimization
techniques requires special care to avoid artificial changes
in geometry that can lead to large errors in relative energies.9

Static methods also cannot describe situations where the
environment changes during the chemical reaction, for
example, new alignment of side chains or solvent water,
thermal fluctuations, or large-scale protein motions. Because
of the lack of geometric polarization, the static approach may
overestimate electrostatic effects. In the present study, we
replace the static interactions between protein and QM region
by classical free-energy corrections from dynamical sampling
of millions of protein configurations. QM/MM approaches
with free-energy perturbation (FEP) have previously been
used to describe reactions in both protein and solvent.16-21

To separate the present approach from others efforts in the
area, we use the description QM:[MM-FEP] for the ONIOM
QM:MM approach, where the effect of the MM layer is
described by free-energy perturbation.22

One of the main objectives of the present method is the
capability to estimate the dynamic effects on the reaction
energy profile of complicated enzymatic reactions, for
example, a multistep redox reaction in a transition metal
enzyme. The difference in electronic structure and nuclear
coordinates between two stationary states can be large, so
in FEP each reaction step is divided into several intermediate
points, for example, by following selected reaction coordi-
nates (typically bond distances) or the intrinsic reaction
coordinate (IRC). However, transition-metal systems have
complicated multidimensional reaction coordinates, so to
avoid a detailed mapping, we adopt the standard alchemical
FEP technique that only requires information about the initial
and the final state.23 Intermediate points are generated by a
virtual reaction coordinate that gradually mixes the initial
and the final state. The required information about these states
is obtained by full QM:MM optimizations of all stationary
points, including transition states, using the fully coupled
Hessian algorithm.9

Transition-metal systems require relatively expensive QM
methods, for example, hybrid DFT. We therefore freeze the
geometry of the QM part and perform the FEP calculations
with fully classical samplings (ONIOM-ME). In this ap-

proximation the QM energy (for a given QM geometry) does
not depend on the protein structure, so only one calculation
of the QM wave function is required for each geometry. This
approximation is similar to the QM/MM-FE method,24,25 and
calculations by Rod et al.,18,26 show that this method differs
by less than 3 kcal/mol from their more elaborate QTCP
method. In this context, it must be kept in mind that modeling
of transition metal reactions is a difficult task and that the
inherent error in the QM treatment has been estimated to be
3-5 kcal/mol.2

We apply the QM:MM method with free-energy correc-
tions to the nonheme iron enzyme isopenicillin N synthase
that catalyzes the formation of isopenicillin N (IPN), a key
reaction in penicillin synthesis that is still used in large-scale
production.27 Our previous QM and QM:MM studies13,28,29

identified 19 intermediates and transition states for the
reaction leading from the ACV substrate to the IPN product.
For the free-energy treatment, we selected the first half of
this reaction, C-H bond activation from the iron-bound
dioxygen species, followed by heterolytic O-O bond cleav-
age to form a ferryl-oxo species (9 stationary points). Of
the two alternative mechanisms for Fe(IV)-oxo formation
previously investigated, only the “ligand donor” mechanism
is chosen here, partly because it shows larger protein effects.

In the following sections, we first describe the computa-
tional details of the QM:[MM-FEP] method, followed by a
presentation of the IPNS free energy diagram and a discus-
sion of how it differs from a potential energy diagram
calculated with the standard QM:MM optimization method.

2. Methods of Computation

2.1. Free Energy in the ONIOM QM:MM Scheme. The
relative energy for a standard ONIOM QM:MM calculation
is obtained as follows:6

where real includes all atoms in the system and model
includes the selected reaction center, with hydrogen link
atoms for truncated covalent bonds. In mechanical embed-
ding (ME), the interaction between model and real system
is described at the low level of theory of the real system.
The QM:MM-ME energy thus includes a QM-level descrip-
tion of the relative energy, and an MM-level description of
the protein effect on the relative energy. An alternative to
mechanical embedding is electronic embedding (EE), where
the QM-MM interactions are evaluated semiclassically by
including the MM point charges in the QM calculation of
the model system. For a free-energy calculation, the EE
approach becomes very expensive as it requires a new QM
calculation for each position of the surrounding atoms. We
take advantage of the speed of the ME approximation and
perform fully classical free-energy calculations.

In our QM:[MM-FEP] approximation, the free energy
difference between two states is calculated as

∆EONIOM ) ∆EQM
model + ∆EMM

real - ∆EMM
model (1)

∆FONIOM ) ∆EONIOM + ∆fQM
model + ∆FFEP

int/NB - ∆EMM
int/NB

(2)
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where ∆fQM
model is the free energy correction of the model

system obtained from a Hessian calculation using the
harmonic oscillator approximation. In the IPNS QM:MM
potential diagram this term has been determined from
calculations on an active-site QM-only model.28 ∆FFEP

int/NB and
∆EMM

int/NB are the classical nonbonded interactions between
the QM model system and the protein environment, evaluated
using the FEP method and the static ONIOM-ME approach,
respectively. By the use of the third and fourth terms, we
replace the nonbonded interactions in standard ONIOM by
the free energy of the model system and additionally solvent
effect.

Note that the free-energy contributions in QM:[MM-FEP]
does not explicitly include the protein-protein interactions.
The total free energy of the protein fluctuates on a scale much
larger than the energy differences between two stationary
points, and it is challenging to converge the total energy.
These interactions are still taken into account in the calcula-
tions, because the low-energy protein configurations domi-
nate the calculation of nonbonded interactions between the
model system center and the protein environment.

Free-energy calculations are performed with the real
system at the low (MM) level with the coordinates of the
model system frozen during the simulations. We have
neglected the difference between terms including the hy-
drogen link atoms in ∆fQM

model compared to the free energy of
the original covalent bonds that were truncated to form the
model system. This effect is difficult to estimate correctly
in the FEP approach,30 but the effect is not likely to change
significantly during the reaction and is therefore neglected.
We have also neglected the cross term between the free
energy of the QM model system and the protein environment,
that is, how the protein environment affects the QM
vibrations and vice versa.

2.2. Free-Energy Perturbation Method. In the alchemi-
cal FEP technique, an arbitrary number of intermediate points
can be created by increasingly mixing two stationary points
using a dual-topology method.31 Here, we use λi, a virtual
reaction coordinate that changes from 0 to 1 with increasing
i. We run the molecular dynamics (MD) simulation between
X (initial) and Y (final) states along the path of virtual
intermediate states. The MD Hamiltonian is

where Henv(R) is the Hamiltonian excluding the QM model
system, as well as the interactions between the model system
and protein environment. HX(R) and HY(R) are Hamiltonians
of the model system in the two stationary states, X and Y,
including their interaction terms with the protein environ-
ment. R ≡ R(X,Y;λi) are the atomic coordinates of the protein
environment, obtained by the molecular dynamics using the
Hamiltonian HMD

i (X,Y;R). As the set of (X,Y;λi) defines the
Hamiltonian of a mixed chemical state, only information
about initial and final states are required.

For the calculations of free energy, we define HX
NB and

HY
NB that exclude the bonded interaction terms (for link

atoms) between the model system (redox center) and the
protein environment from HX and HY. The change in free

energy ∆FFEP
int/NB is the sum of free energy differences along

the virtual reaction path

where the free energy difference for each virtual step is
calculated as

Here, kB is the Boltzmann constant, and T is the temperature.
Where we used the energy change in the reaction coordinate
from λi to λi+1, HMD

i+1 - HMD
i ) -(HX - HY)(λi+1 - λi) ≈

(HX
NB - HY

NB)(λi+1 - λi).
From the FEP calculations we obtain the part of the free

energy caused by the dynamics of the protein environment
(so-called dynamical contribution, thereafter) ∆FFEP

int/NB(X,Y)
- ∆EMM

int/NB(X,Y) for each pair of stationary points, X and Y.
For convenience we hereafter use the notations ∆FXY

FEB ≡
∆FFEP

int/NB(X,Y) and ∆EXY
opt ≡ ∆EMM

int/NB(X,Y).
2.3. Geometrical and Statistical Effects. To better

understand the origin of the QM:[MM-FEP] dynamical
effects on the reaction energy diagram, we separate the
contributions to the free energy into two parts: the geo-
metrical effect and the statistical effect. The geometrical
effect is the result of a change in average protein geometry
in the room temperature MD simulation compared to the
optimized structure. The statistical effect comes from fluc-
tuations around the average geometry, because favorable
protein geometries, that is, those that represent low-energy
pathways, give larger contributions in the calculation of the
free energy for a reaction step. ∆FXY

FEB is the difference of
the free energy interaction between state X and Y and includes
all dynamical effects, while ∆EXY

opt is the difference in protein
interaction between optimized geometries, and excludes all
dynamical effects. Here, we define a value that includes the
geometrical effect, but, not the statistical effect. For this
purpose we investigated the QM-MM interaction difference
between λ ) 0 (state X) and 1 (state Y) in MD simulations
with the state-X geometry and charges. The interaction energy
changes as

where HX
NB(X) ≡ HX

NB(R(X,Y,0)) ) HX
NB(R(Y,X,1)) MM

Hamiltonians of the nonbonded interaction between the QM
part and protein environment in the MD simulation were
defined in section 2.2. HY

NB(X) ≡ HY
NB(R(X,Y,0)) )

HY
NB(R(Y,X,1)) is written in same indices, but the interaction

is between the state-Y QM part and the state-X protein
environments. Because state-X protein geometry is not the
optimized static geometry, ∆HXY(X) is different from ∆EXY

opt.
The difference is the geometrical effect. ∆HXY(X) includes
the geometrical effect for each geometry, but not the
statistical effect. The average of ∆HXY then includes the
average geometrical effect for the reaction barrier between
states X and Y. We define the average as

HMD
i (X, Y;R) ) Henv(R) + (1 - λi)HX(R) + λiHY(R) (3)

∆FFEP
int/NB(X, Y) ) ∑

i)1

n

∆Fi,i+1(X, Y) (4)

∆Fi,i+1(X, Y) ) -kBT

ln〈exp{HX
NB[R(X, Y;λi)] - HY

NB[R(X, Y;λi)]

kBT
(λi+1 - λi)}〉

i
(5)

∆HXY(X) ≡ HX
NB(X) - HY

NB(X) (6)

392 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Kawatsu et al.



We use the values 〈∆H〉XY - ∆EXY
opt to estimate the

geometrical contribution and the remaining free-energy
contribution, ∆FXY

FEP - 〈∆H〉XY is the statistical effect. We
must notice that because 〈∆H〉XY includes only the situation
of λ ) 0 and 1, the comparison between 〈∆H〉XY and ∆FXY

FEP

is inconsistent. However, when states X and Y are enough
close, 〈∆H〉XY is reasonable approximation of the average
potential energy shift from state X to Y that excludes the
statistical effect.

For discussing the details, we partition the geometrical
effect into contributions from each single residue i, ∆∆HXY

i (X)
≡ ∆HXY

i (X) - ∆EXY
opt,i for an average geometry of state-X

MD simulation, where ∆HXY
i (X) and ∆EXY

opt,i are the contribu-
tions of residue i to ∆HXY(X) and ∆EXY

opt, respectively.
The fluctuation of ∆HXY(X) can correlate to the statistical

effect. To investigate the fluctuation, we define the standard
deviation sXY as

We also define sYX for the backward reaction from state Y to
state X in the state-Y protein environment. We calculate the
standard deviation (sXY

i ) of the single residue contribution to
the interaction change (∆HXY

i (X)) as

2.4. Computational Model. The protein setup and the
ONIOM system are described in detail in reference.13 Here
we use the small 65-atom model system including Fe, a water
ligand, selected parts of the three amino acids His214,
Asp216, His270, and the reactive part of the substrate, see
Figure 1. The small size of the model system increases
the protein effects and makes it easier to evaluate the
difference of the static and dynamic approaches. QM
calculations were performed with the density functional
B3LYP. The 6-31G(d) basis set was used for the geometry
optimizations and Hessian calculations, while 6-311+G(d,p)
was used for energy evaluations.

The classical nonbonded interactions between model and
real system depend on the van der Waals parameters and
the assigned point charges. Atoms outside the model system
were assigned parameters from the Amber94 force field34

to be able to compare with the previous QM:MM calcula-
tions.13 Atoms in the model system are assigned point
charges from RESP35 calculations of the model system for
each stationary point, using the Gaussian36 standard geometry
for the ESP calculations and the Antechamber module of
Amber37 for the first step of the RESP fitting, see Supporting
Information. Charges for the part of the substrate that is not
included in the model system were assigned from a calcula-
tion in the reactant state and were not changed during the
reaction.

2.5. Simulation Details. We started the free-energy
calculations based on the optimized QM:MM geometries of
the stationary states as reported in ref 13. The protein was
placed in an approximately 80 × 68 × 57 Å3 water box
including ∼7700 TIP3P water molecules and 11 sodium ions

with periodic boundary condition. Simulations were run using
the NAMD molecular dynamics program.38,39 Five thousand
steps of energy minimization and 1.5 ns equilibration were
applied at each stationary point before the start of the FEP
calculation. All simulations used a 1 fs time step. The
temperature was controlled at 298 K using a Langevin
thermostat every 5 fs.

We split each reaction step into 24 virtual steps (25 states)
using the virtual λ coordinate (λi ) 0, 0.001, 0.01, 0.05, 0.1,
..., 0.9, 0.95, 0.99, 0.999, 1.0). We use an unevenly spaced
reaction coordinate to reduce the impact of steric clashes
when the final state is turned on. There are nine stationary
points along the reaction path, and the total number of
intermediate states is 193. Each virtual step includes 100 ps
equilibrium followed by 500 ps sampling simulations.
Molecular dynamics is performed with the Hamiltonian for
state i, HMD

i (X,Y;R), and the difference in nonbonded interac-
tion energies between two topologies (i and i + 1) is
evaluated each 10 fs.

Average values of the exponential and statistical errors
were estimated using the bootstrap method.40,41 Our program
uses a subroutine for the inverse error function calculation
in Ooura’s Mathematical Software package.42 For each
reaction step, we ran simulations both in forward (λ ) 0 to
1) and backward (λ ) 1 to 0) directions. The final result is
the average of these two values, and the error bars are
determined by the difference of the two simulations. The
method presents statistically correct estimation of an average
value in biased sampling.

3. Results and Analysis

3.1. QM:MM-ME and -EE Potential Energy
Profiles. The use of a fully classical mechanical embedding
(QM:MM-ME) potential is critical in our method as it allows
for longer sampling times and better convergence of the FEP
calculations. To check how the classical approximation of
the protein-core interactions matches the semiclassical
electronic embedding approach, we calculated the static
energy diagram using both methods, see Figure 2. All
comparisons are made with the same protein geometry for
each stationary point, and the energies in Figure 2, therefore,
represent situations without any geometric relaxation of either
core or protein. This assumption overestimates the electro-
static effects and the difference between the methods, but
still serves a purpose for a general comparison. The present

〈∆H〉XY ≡ 〈[∆HXY(X) - ∆HYX(Y)]/2〉 (7)

sXY ≡ √〈[∆HXY(X)]2〉 - 〈∆HXY(X)〉2 (8)

sXY
i ≡ √〈[∆HXY

i (X)]2〉 - 〈∆HXY
i (X)〉2 (9)

Figure 1. QM:MM model system of isopenicillin N synthase
(QM atoms in ball and stick). All protein illustrations in the
present paper are prepared using the VMD program.32,33
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ONIOM-ME energy diagram is different from the energy
diagram in ref 13. In the present study, the model charges
are updated at each stationary point, but in the previous study
the MM parameters were constant to provide a continuous
energy surface for optimization of a large number of
stationary points, including transition states. To facilitate the
discussion in this section and later, each stationary point is
described by a number in bold, representing the order it
appeared along the reaction energy diagram. For details see
ref 28.

Counting all stationary points, the mean absolute deviation
between ME and EE approximations is 2.2 kcal. Major
deviations between the two methods appear for stationary
points 4 (iron-bound peroxide) and 9 (ferryl-oxo + water).
In the first case, 4, two alternative electronic structures can
be drawn, see Figure 3, with the difference being a charge
transfer between substrate and iron. This charge transfer leads
to significant electrostatic repulsion from the surrounding
protein, and while the ME calculation indicates a complete
charge transfer (no spin population on the substrate), in the
EE calculation there remains some unpaired spin population
on the substrate carbon (-0.14). The difference in electron
density between ME and EE can be ascribed as a polarization
effect of the surrounding protein. In the second case, 9,
heterolytic O-O bond cleavage leads to release of water
from the active site, and new direct interactions between QM
and MM atoms. Fortunately these effects are not essential
for the modeling of a reaction mechanism because product
formation is exothermal and the energy of reaction does not
affect the barriers of the proceeding steps of the reaction.

If we only compare the barrier heights of the three
transition states, from state 2 to 3, 5 to 6, and 7 to 8, the
mean absolute deviation is only 0.67 kcal/mol. Although the

classical approximation shows differences compared to the
semiclassical approximation for certain steps, the potential
energy diagrams for the present reaction are mostly reason-
able. We therefore employ the classical charges for our FEP
calculations.

3.2. Dynamical Contribution to the Free-Energy
Diagram. The dynamical contributions to the free-energy
diagram ∆FXY

FEP - ∆EXY
opt are shown in Figure 4. In this figure

each reaction step is written as a pair of initial (X) and final
state (Y). Effects exceed 3 kcal/mol for pairs XY ) 45, 56,
and 89 and must, therefore, be considered significant. The
transition from state 4 to state 5 is a rotation of the peroxide
formed after C-H bond activation, a step, where there is a
large change in the active site geometry. The transition from
5 to 6 corresponds to an electron transfer from iron to an
antibonding π* O-O orbital, a step with large electrostatic
effects from the protein environment, see discussion in ref
13. The transition from 8 to 9 is the release of H2O from the
reaction center after O-O bond cleavage, and the QM water
molecule makes several new hydrogen bonds with MM
residues and water molecules. The error bars for the FEP
calculations are relatively small, with the exception of pair
89 where the released water molecule sometimes has strong
steric interactions with the MM atoms as the virtual
coordinate λ changes from 0 to 1.

The calculated free-energy diagram is shown in Figure 5.
The blue line is the static QM:MM result (with updated
RESP charges) and the red line is the QM:[MM-FEP] result.
The QM:[MM-FEP] results represent a frozen core and a
flexible protein, and to make a relevant comparison, the
ONIOM-ME results are obtained with the same core
geometry and with the protein reoptimized after the RESP
charges had been updated.

Compared to the static ONIOM-ME description, the free-
energy description leads to an increase in the C-H activation
barrier (state 2 to 3) and a decrease in the barrier for O-O
bond activation by significantly stabilizing state 6 relatively
to 5. For evaluation of the reaction mechanism, the most
significant difference is the predicted rate-limiting step. The
ONIOM-ME (RESP) diagram suggests that O-O bond
activation is rate-limiting. The free-energy approach gives a
higher barrier for C-H bond activation step (2 to 3)

Figure 2. Comparison between ONIOM-EE and ONIOM-ME
with charges (ESP and RESP) of the model system updated
at every stationary point.

Figure 3. Resonance structures for stationary point 4. The
difference between the left and the right structure is an
electron transfer from substrate to iron.

Figure 4. Contribution of MM dynamics, relative to a static
QM:MM description, on the relative energies of neighboring
stationary points X and Y.
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compared to O-O bond cleavage (5 to 6), which is consistent
with kinetic isotope experiments that show that C-H
activation is at least partly rate-limiting.43 However, the two
barriers are relatively close in both cases and the uncertainties
in both QM and MM treatment makes it difficult to use the
relative barriers as a reliable benchmark. The computed free-
energy of C-H activation barrier is 12.9 ((0.3) kcal/mol,
where the error bars reflect the statistical error of the FEP
calculation. The value is significantly lower than the experi-
mentally estimated reaction barrier of 16.8 kcal/mol,44 but
that barrier is based on a DFT calculation with the B3LYP
functional. This method may underestimate barriers of simple
hydrogen atom transfer reactions.45,46

We discuss the geometrical and statistical effects in the
next two subsections.

3.3. Statistical vs Geometrical Effects in the Free
Energy Diagram. The geometrical effect is caused by the
change in average protein geometry compared to the
optimized structure. The statistical effect comes from fluc-
tuations around the average geometry. In Figure 6, each
protein residue is represented by a circle. The horizontal axis
indicates the rmsd value between the MD average geometry

and the optimized geometry, that is, how much a residue
moves on average in MD simulations. The vertical axis
indicates the rmsd in geometry of 10 MD snapshots from
the average MD geometry. This value correlates to the
flexibility of the residues, that is, how much their positions
fluctuate from their average MD positions. Many of these
flexible residues are on the protein surface, which is
reasonable because the MD system includes explicit water
molecules that allow surface residues to move during the
simulation. However, we also note that many residues inside
the protein also show significant flexibility. We found
residues for which both RMSDs are large, and these
geometry changes may represent the geometrical and statisti-
cal effects. For a more detailed analysis of geometry changes
during MD simulations, see the Supporting Information.

Here, we try to determine which effect controls the protein
effect on each barrier of the entire reaction free energy
profile. We calculated three type of nonbonded interaction
energy, ∆FXY

FEP, ∆EXY
opt, and 〈∆H〉XY that include both geo-

metrical and statistical effects, no effect and the geometrical
effect, respectively. When ∆FXY

FEP and ∆EXY
opt have similar

values, there is no net dynamical contribution to the free
energy profile. 〈∆H〉XY - ∆EXY

opt and ∆FXY
FEP - 〈∆H〉XY are

the geometrical and statistical contributions, respectively. The
results for ∆FXY

FEP - 〈∆H〉XY and 〈∆H〉XY - ∆EXY
opt for all

reaction steps are shown in Figure 7.
We found three cases: (a) the geometrical effect |〈∆H〉XY

- ∆EXY
opt| is larger than the statistical effect (XY ) 12, 23,

34, 67, and 78); (b) the statistical effect |∆FXY
FEP - 〈∆H〉XY|

is larger (XY ) 45 and 56); and (c) both values are very
large (XY ) 89). In the first case, the geometrical effect
dominates the dynamical contribution of the free energy
profile. In the free energy diagram (Figure 5), this effect
increases the transition state barrier for C-H bond activation
from 2 to 3 and affects the energy of steps 34 and67. For
XY ) 12 and 78, geometrical and statistical effects partly
cancel and the total dynamical contribution is small. In
second case, the statistical effect dominates the dynamical
contribution. This effect decreases the exothermicity of XY
) 45 (peroxide rotation) and decreases the reaction barrier
of O-O bond activation (XY ) 56). In the third case (XY )

Figure 5. Free-energy diagram for the formation of an Fe(IV)-
oxo intermediate after dioxygen binding. The results of the
FEP approach are compared to results from a static approach
where the protein has been optimized (ONIOM-ME). The
relative energy differences between the two approaches are
shown in the center box.

Figure 6. rmsd of the geometry of heavy atoms on each
residue. The horizontal axis indicates rmsd between the
optimized geometry and the MD averaged geometry. The
vertical axis indicates rmsd between the MD averaged
geometry and geometries in 10 MD snapshots, from XY )
34 forward simulation. Each point represents a protein residue.

Figure 7. Comparison between the statistical contribution,
∆FXY

FEP - 〈∆H〉XY (black circle) and the geometrical contribution
〈∆H〉XY - ∆EXY

opt (red diamond) of the protein dynamics on the
free energy profile.
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89), both effects are large, but partly cancel, and as the
geometrical effect is larger there is a net positive contribution
to the total dynamical effect, see Figure 4. However, the case
XY ) 89 may contain an artificial effect of broken criterion
of the perturbation calculation (see section 4).

To clarify how these energetic results are coupled to the
molecular dynamics simulation, we show the fluctuation of
∆HXY in two typical cases, one where the geometric effect
dominates (XY ) 23) and one where the statistical effect
dominates (XY ) 56), see Figure 8. Black and red lines
indicate the forward direction ∆HXY(X) and the negative
reverse direction -∆HYX(Y). The green straight line is ∆EXY

opt.
In the case of XY ) 23, Figure 8a, the fluctuations of both
black and red lines are small. That is, most geometries have
similar opportunity for the reaction from state X to Y or vice
versa. All these geometries contribute similarly to the free
energy profile and the statistical effect is small. However,
the green line, representing the static calculation, is shifted
relative to the center of the black and red lines that represent
the dynamical calculation. Looking back at the energy
contributions in Figure 7, it is clear that the geometrical
effect, rather than the statistical effect, dominates the protein
contribution to the free energy profile.

In the case of XY ) 56, Figure 8b, the fluctuation of the
black line is large. The possibility that the state X switches
to state Y at the geometry R is proportional to exp(-∆HXY(R)/
kBT). Therefore, geometries with lower ∆HXY have larger
opportunity to react from state X to Y. When the fluctuation
of ∆HXY is large, the reaction is dominated by the few
geometries with very low values of ∆HXY rather than the
geometric average, and the statistical effect becomes large.
Other geometries do not contribute to the reaction from state
X to Y.

When the black and red lines cross, these conformational
pairs in the same energy can switch states XY and its protein
geometries without extra energy. Such condition often
appears at the top of the free energy potential barrier. XY )
56 has less crossing possibility than XY ) 23 and intermedi-
ate states of X and Y must contribute to the reaction instead
of pure states of X and Y. We notice that these two
simulations are independent and time axis can shift.

As a measure of the stability of the calculated QM-MM
interactions, we use the standard deviation sXY for the
interaction energy change ∆HXY, see section 2.3. sXY is
defined for the forward reaction from state X to state Y in

the state-X protein environment in eq 7. The protein dynamics
presents various barrier heights of the reaction steps in time.
And when the barrier is low, the reaction can occur easily.
During the molecular dynamics simulation, the reaction is
more likely to take place through the geometry that has lower
energy difference ∆HXY between two stationary points, and
the free energy of the reaction ∆FXY becomes lower than in
the average geometry. The situation would be the same the
reverse reaction with sYX and ∆FYX ≡ -∆FXY. When sXY and
sYX are similar, the net effect is zero. However, when one of
them is larger than the other, fluctuations give a net effect
on ∆FXY (if sXY is larger than sYX, ∆FXY decreases). Figure 9
shows sXY and sYX for the eight reaction steps. For example,
s54 is much larger than s45for the opposite direction, and s56

is much larger than s65. ∆FXY
FEP - 〈∆H〉XY values of XY ) 45

and 56 are largely positive and negative, respectively, see
Figure 7. These dynamical contributions mainly originate
from the statistical or entropic effect of the thermal fluctua-
tions. We put the graph of |∆FXY

FEP - 〈∆H〉XY| to compare
with the log of standard deviations. Good correlation is
shown in Figure 9. For sign of ∆FXY

FEP -〈∆H〉XY, see Figure
7.

3.4. Residue Contributions of the Geometrical and
Statistical Effects. Figure 10a-d show computed ∆∆HXY

i (X)
for four pairs with significant dynamical effects, see Figure
4, XY ) 23, 67 (weak statistical effect) and XY ) 45 and 56
(strong statistical effect), respectively.

Figure 8. Fluctuation of the interaction energy change ∆HXY(X) (black line) and the negative reverse -∆HYX(Y) (red line) in
FEP calculations. (a) XY ) 23 and (b) XY ) 56. Green line is the interaction energy difference ∆EXY

opt between state X and Y in
the optimized geometries.

Figure 9. Fluctuation of the interaction change ∆HXY(X) from
state X to state Y for all steps, comparing with pairs of states
of stationary points for the IPNS enzymatic reaction, see
Figure 5. The vertical axis is the log scale of the standard
deviations sXY of the interaction shift ∆HXY(X). sXY is in kcal/
mol. The blue line is the absolute values of the statistical
effects to compare with standard deviations.
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In each case, several residues contribute significantly,
resulting in partial cancellation of the geometrical effect. A
common significant residue, Asn252, has a hydrogen bond
with the residue Asp216; Asn252 can rotate almost 180
degrees between the stationary points in MD simulation. This
residue is located close to the ligand water molecule that is
involved in the reaction. The energetic effect of Asn252
is large in both steps 56 and 67, but of opposite sign, so it
is possible that it switches back and forth as the reaction
proceeds. As expected, most other significant residues are
also in the vicinity of the QM part. Glu215, Val217, and
Arg271 are located next to ligand residues His214, Asp216,
and His270, respectively. Asn225 and Ser281 have H-bonds
with the ACV substrate. Pro268 has H-bonds with ligand
His270. Phe211 is close to the ligand oxygen molecule.
Thr331 contacts to MM part of ACV (as shown in the
Supporting Information) and Asn328 is a neighbor of Phe211
and His214. We also analyzed whether these geometrical
effects are from electrostatic or VDW interactions. In above
residues, only Asn252 in XY ) 56 and Gln225, Asn252, and
Ser281 in XY ) 67 have strong geometrical effects because
of their electrostatic interaction. Although there are many
residues that have similar or even larger size of the
electrostatic interaction changes, it is not enough to be
strongest without the contribution from VDW. These Asn,
Gln, and Ser residues have uncharged polar side chains.
Residues with large electrostatic repulsion might not make
enough VDW contact with the QM part. The geometrical
effects of the other significant residues in Figure 10 are
mainly caused by VDW interactions.

Figure 11a-d show SXY
i for XY ) 23, 67 (small statistical

effects) and 45, 56 (large statistical effects), respectively.
Some residues located near the QM part appear in both the

geometrical and statistical effects, but many others only
contribute significantly to one of the effects. The statistical
effects are mainly caused by VDW interactions, rather than
electrostatic interactions because of the stronger distance
dependence of the former. Bulky residues, like Phe211 and
Pro268, in the vicinity of the QM part have large effects,
while residues that contributed to the geometric effect by
electrostatic interactions do not appear in the analysis of the
statistical effect. Pairs XY ) 23 and 67 have relatively small
geometric changes of the QM part. In XY ) 23, C-H bond
activation, the oxygen molecule moves slightly and the major
movement is the hydrogen atom on the substrate ACV that
moves closer to the oxygen. Among the significant residues
in Figure 11a, Tyr189 and Ser281 both have H-bonds with
QM part of ACV, while Phe211 is close to the oxygen
molecule. Other significant residues, Phe41 and Pro268 are
near the iron ligand His270, and Asn328 is next to the iron
ligand His214. In the reaction corresponding to pair XY )
67 (Figure 11b), the O-O distance of the peroxide formed
after C-H activation increases in anticipation of O-O bond
cleavage. Significant residues Phe221 and Asn252 are both
close to the ligand water molecule that donates a proton
during O-O bond cleavage, and Pro268 adjoin these two
residues.

Both reactions with larger statistical effects (pairs XY )
45 and 56) also have large geometrical changes in the active
site. In XY ) 45, there is a rotation of the peroxide ligand
away from the substrate and toward the ligand water that
donate its proton. The significant residue Leu231 is located
close to the oxygen molecule, while Phe41 is adjacent to
the ligand water molecule and Leu231. Tyr189 and Ser281
both have H-bonds with the QM part of ACV, and Ile187 is
next to these two residues. Arg271 is next to the ligand

Figure 10. Differences of the interaction energy change ∆∆HXY
i (X) between the average MD stationary point geometry and

ONIOM QM:MM optimized geometry for individual residue i, namely, contributions of residue i to the geometrical effect of protein
dynamics on the free energy profile. (a, b) Cases of the weak statistical effect (XY ) 23 and 67). (c, d) Cases of the strong
statistical effect (XY ) 45 and 56).
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His270 and adjoins the ligand His214 and another significant
residue, Leu231. In XY ) 56, an oxygen atom of the ligand
OOH moves about 1 Å (another oxygen and hydrogen atoms
also move ∼0.5 Å), and the ligand water rotates in the
process of the electron transfer from iron to the oxygen
molecule. Phe211, Leu231, and Arg271 are close to the
ligand oxygen and Thr221 and Asn252 locate next of the
ligand water. Pro268 is a neighbor of significant residue
Asn252 as written above. Interactions between these residues
and QM part significantly change in the reaction from state-5
to state-6, and they contribute to the statistical effect of the
free energy profile, see Figure 11d.

Comparing the values of the standard deviation in cases
of weak statistical effect (XY ) 23 and 67) within cases of
strong statistical effect (XY ) 45 and 56) in Figure 11, the
size of the standard deviation for significant residues are
much different (see vertical axes). On the other hand,
significant values of ∆∆HXY

i (X) are similar size in Figure
10a to 10d. These comparisons suggest that the geometrical
effect is relatively stable for different reaction steps and the
statistical effect can become large, because these values
connect to the statistical and geometrical effects, respectively.
When the dynamical contribution is large, the statistical effect
dominates it in the reaction step. When the statistical effect
is weak, sizes of the geometrical and statistical effects can
be comparable.

4. Discussion

The goal in the present paper is to describe a method that
can give a broad overview of dynamical contributions for
complex multistep reactions. To achieve this, the most

important approximations are the neglect of dynamical
contributions on the QM region and a classical description
of the interaction between QM and MM regions. With these
two approximations, we avoid recalculating the QM wave
function for each snapshot of the protein geometries.

The QM:[MM-FEP] approach belongs to a family of
ONIOM approaches to model interactions between model
and real system. ONIOM-ME describes these interactions
classically and does not include polarization of the model
system or the surrounding. In the semiclassical ONIOM-EE
description, the model system is polarized by the charges of
the surrounding, but polarization of the environment is not
included. The geometry optimization procedure leads only
to small changes in the protein structure, and does not really
describe geometric polarization. The FEP approach includes
a geometric polarization of the actual environment at a finite
temperature but uses the classical representation of the
electrostatic interactions.

Comparing the static and dynamical results of the potential
diagram, the largest change is in the transition state barrier
for O-O bond cleavage (XY ) 56), see Figure 5. In this
investigation, the dynamical contributions to the energetics
have been separated into two types of effects, the geometric
and the statistical effects. For the present reaction step, the
statistical effect dominates the dynamical contribution of the
protein on the free energy profile. The result suggests that
the barrier at the QM:MM level includes an artificially high
electrostatic repulsion, caused by lack of polarization in the
frozen protein environment. The structure fluctuation of the
protein environment screens this interaction and decreases
the barrier height. We therefore suggest that when redox

Figure 11. Standard deviation sXY
i of nonbonded interaction change in MD simulation for individual residues, a representation

of the statistical effect of the protein dynamics on the free energy profile. (a, b) Cases of weak statistical effect (XY ) 23 and
67). (c, d) Cases of strong statistical effect (XY ) 45 and 56). Note that there are different vertical scales for different figures.
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center presents significant change of either geometry or
electrostatic potential, the dynamical contributions to the free
energy reaction diagram should be considered.

In FEP methods, all coordinates other than the selected
reaction coordinate are integrated. Any type of the reaction
coordinate can be selected, either a real geometry space
coordinate or a virtual space coordinate. When choosing a
real space coordinate, various computational developments
have been reported using different integration methods for
leaving coordinates.47,48 In the most cases, one or a few
reaction coordinates like bond, angle or dihedral torsion have
been chosen. The approach is appropriate for discussing the
realistic dynamics of the system. In the present investigation,
we have employed the alchemical FEP method that uses a
nonphysical coordinate. The reaction coordinate describes
the appearance of atoms in the final state and disappearance
of atoms in the initial state. One advantage is that this method
can be used for any change of a system, not only chemical
reactions. Here, we use the method out of convenience
because it is possible to describe the reaction path between
two intermediates without a detailed mapping of the potential
energy surface. However, in cases where the appearing and
disappearing atoms leads to significant changes in the
Hamiltonian, the FEP calculation is sometimes hard to
converge, and the alchemical FEP method has therefore been
preferably applied to small fragments. The alchemical FEP
method uses direct linear interpolation of the interaction
potential energy. The potential interpolation for the free
energy calculation is a traditional approach.49 There is
another approach to build a virtual reaction coordinate in
the linear interpolation of the other physical values like
atomic coordinates and charges.50 This alternative approach
still avoids the cost of determining the intermediate state and
includes less approximation of the interaction energy. At
same time, when the rotations of molecules are involved in
the reaction, the direction of linear interpolation of the atomic
coordinates must be properly chosen.

Our computed value of the dynamical contribution is not
a well-determined component of the free energy, because it
includes effects of the solvent, temperature difference
(compared with 0 K model) and dynamics of the environ-
ment. The term is not for comparing with the nature or
experiments, but for connecting QM:MM calculations to
these. The geometrical effect includes both solvent and
temperature effects. On the other hand, the statistical effect
is a value connecting to the entropic energy. Computing the
entropy in FEP criterion is challenging because the sampling
of the correlation function of interactions is required instead
of the sampling of interactions in the free energy calculation.
That requires N-square order of the free energy sampling.
The value of the statistical effect can be considered as an
estimation of the entropic energy.

In the present study, we have selected a large fragment
that includes the enzymatic reaction center as the alchemical
part. The chemical reaction mainly occurs at the center of
the fragment and only the metal ligands describe large
geometric changes. We find that for reactions where the
change in electronic structure is dominant, compared to
changes in geometric structure, the alchemical FEP approach

is well behaved. However, convergence is slow when strong
VDW contacts appear during the FEP step. The error bars
are largest for the release of water (step 89) where the oxygen
atom moves out about 1 Å from its original position in state
8 and occasionally makes strong VDW contacts with Leu231
and MM water molecules in the MD simulation. The same
oxygen atom moves significantly (0.8-1.3 Å) also in other
five reaction steps. But the difference is that in the final step,
the water is released from the active site out into the
environment. Water molecules are very flexibility in orienta-
tion inside the protein and such strong VDW contacts can
be avoided. The perturbation criterion is broken at this
moment and an artificial energy may be included in this part
of FEP calculation. To avoid such problems, it might be
necessary to check the change in the effective volume of
the redox center when this method is applied.

Another problem appears when the statistical effect has a
large contribution to the free energy profile. In that case the
FEP calculation picks up only a small number of samples
from the configurations that contribute the most. Therefore,
such rare events get a very high weight in the FEP
calculation. As an example XY ) 56 has large fluctuation of
∆HXY and the error bar of the computed dynamical contribu-
tion is also relatively large. For accurate calculations of
reactions dominated by the statistical effect, longer sampling
might be needed to include enough number of events, or it
may be required to apply another approach.51

As we froze the redox center in the MM calculation, we
neglect two free-energy terms caused by the dynamics of
the redox center. One is that the average geometry of the
redox center can change because of the protein dynamics.
This effect can be included by applying free energy gradient
methods.52,53 The other term is the statistical effect of the
redox center that influences the dynamics of neighboring
residues and solvent. QM/MM sampling or an alternative
method is required in order to include this term, which would
result in a significant increase in computational cost. These
terms depend on the computed system and model and are
not clearly negligible. That is a challenging problem in the
future.

5. Conclusion

The dynamical contribution of the protein environment to
the reaction energy diagram has been included at the ONIOM
QM:MM level, using an MM FEP method. We applied the
method to eight reaction steps of the nonheme iron enzyme
isopenicillin N synthase. Redox active metal enzymes require
a relatively expensive QM treatment of the active site, and
the method is therefore designed to avoid recalculating the
QM density at any point of the dynamics simulation.

The dynamical contribution has been separated into
geometric and statistical effects of the protein environment.
The geometrical effect comes from a change in the average
protein geometry and influences to the overall potential of
the reaction diagram. The statistical effect is caused by the
fluctuation of the interaction between MM and QM part
during the molecular dynamics simulation. With respect to
the IPNS enzymatic reaction mechanism, the inclusion of
the dynamical contribution, mainly coming from the statisti-
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cal effect, decreases the barrier for O-O bond cleavage by
several kcal/mol. These results show that the dynamical
fluctuations of the protein environment can be a factor when
modeling enzymatic reactions.
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(8) Dapprich, S.; Komáromi, I.; Byun, K. S.; Morokuma, K.;
Frisch, M. J. THEOCHEM 1999, 461-462, 1–21.

(9) Vreven, T.; Byun, K. S.; Komáromi, I.; Dapprich, S.;
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Abstract: The free energy surfaces (FESs) of alanine dipeptide are studied to illustrate a new
strategy to assess the performance of classical molecular mechanics force field on the full range of
the (φ-ψ) conformational space. The FES is obtained from metadynamics simulations with five
commonly used force fields and from ab initio density functional theory calculations in both gas
phase and aqueous solution. The FESs obtained at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p)
level of theory are validated by comparison with previously reported MP2 and LMP2 results as well
as with experimentally obtained probability distribution between the C5-� (or �-PPII) and RR states.
A quantitative assessment is made for each force field in three conformational basins, LeRI (C5-�-
C7eq), LeRII (�2-RR), and LeRIII(RL-C7ax-RD) as well as three transition-state regions linking the above
conformational basins. The performance of each force field is evaluated in terms of the average
free energy of each region in comparison with that of the ab initio results. We quantify how well a
force field FES matches the ab initio FES through the calculation of the standard deviation of a free
energy difference map between the two FESs. The results indicate that the performance varies
largely from region to region or from force field to force field. Although not one force field is able to
outperform all others in all conformational areas, the OPLSAA/L force field gives the best performance
overall, followed by OPLSAA and AMBER03. For the three top performers, the average free energies
differ from the corresponding ab initio values from within the error range (<0.4 kcal/mol) to ∼1.5
kcal/mol for the low-energy regions and up to ∼2.0 kcal/mol for the transition-state regions. The
strategy presented and the results obtained here should be useful for improving the parametrization
of force fields targeting both accuracy in the energies of conformers and the transition-state barriers.

Introduction

Classical molecular dynamics (MD) simulations have become
an indispensable tool to study the structure and dynamics of
biological macromolecules, such as proteins, nuclear acids,
and lipid assemblies.1-7 Assuming the validity of the

underlying classical approximation and sufficient sampling
of the phase space, the accuracy of a MD calculation
primarily depends on the quality of the molecular mechanics
(MM) force field employed. Relentless effort to develop and
parametrize MM force fields during the past three decades
has led to the development of standardized force field
libraries with brand names, such as the AMBER,8

CHARMM,9 GROMOS,10 and OPLS models.11 Considering
the somewhat simple standard functional form of additive
pair-potentials, (which include many-body effects, such as
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polarization only in an effective manner), these force fields
have been shown to reproduce experimentally determined
equilibrium structures of biological macromolecules surpris-
ingly well. However, with the constantly advancing computer
power, the emphasis of MD simulations has gradually moved
from structural prediction to dynamical and kinetic processes,
such as protein folding.12-19 The performance of the standard
force fields in these areas of study has not yet been evaluated
thoroughly. This is partially because the accuracy of a
thermodynamic and/or kinetic process depends not only on
a correct force field description of the equilibrium structure
but also that of the conformational propensity between
different conformers and transition states.

To investigate the conformational dynamics and kinetics
of proteins, the alanine dipeptide (Ace-Ala-Nme, AD,
Figure 1) molecule has been a standard model system for
theoretical16,20-29 and experimental studies for the past
20 years.30-36 Experimentally, two-dimensional (2D)
infrared (IR),37 vibrational,38 Raman,39 vibrational circular
dichroism,40 and NMR spectroscopy40 have been used to
study the conformational preference of AD and other alanine
peptides in aqueous solution. Theoretically, high-level ab
initio methods, such as the second-order Møller-Plesset
perturbation theory (MP2), have been used to calculate the
potential energies of AD across the full range of the (φ-ψ)
conformational space, either in gas phase or using the implicit
continuum solvent models.25,41 The energy profile as a
function of the backbone dihedral angles φ and ψ, known
as the Ramachandran plot, has been used to parametrize and
examine MM force fields9,24,41-43 and in the development
and evaluation of new modeling techniques.44-46 Various
enhanced sampling techniques, such as umbrella sampling,47,48

adiabatic free energy dynamics (AFED)49 method, and
metadynamics,50-52 have been developed and applied on
mapping the (φ-ψ) free energy surface (FES) of AD in both
gas phase and aqueous solution. Most of these studies, with
a focus on methodology development, have either compared
FESs of AD among different force fields52 or evaluated the
force field FESs by high-level ab initio calculations in terms
of positions (φ, ψ values) of energy minima, such as C7eq,
C5, RR, �, etc. and their relative stabilities. Both types of
evaluation have limited abilities to give a full spectrum of
assessment of the force field FESs. This is especially true
for free energy in aqueous solution phase, even though
experimental27,37 and high-level ab initio data have become
available.25 Critically, no emphasis has been made on
assessing the accuracy of transition states, which are essential
in describing kinetics.

With respect to the dynamics, MD simulations of AD (and
other small alanine peptides) up to 20 ns have been carried
out using various MM force fields and semiempirical [such
as self-consistent charge density functional tight binding

(SCC-DFTB), PM3, and AM1] methods.24,27,53,54 The per-
formance of the force field has been evaluated by comparing
the conformational propensity obtained from the force field
and semiempirical MD simulations. However, with 20 ns
simulations, only a part of the negative φ side of the (φ-ψ)
conformational space has been sufficiently sampled. There-
fore, assessment of the force fields is made mostly on
whether or not a proper ratio of population is achieved
between the � and RR conformers, not the full (φ-ψ) space.

In the present work, we have applied the metadynamics
method,50,55 in combination with five different force fields,
to explore the 2D (φ-ψ) FESs of AD in both gas and
aqueous solution phases. Further, we have mapped out the
potential energy profiles of AD using ab initio method,
specifically the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p)
combination, on a 50 × 50 grid for both gas and implicit
solvent models. The quality of the B3LYP energy surfaces
is carefully examined by comparing them with both experi-
mental and high-level ab initio results, such as those using
MP2 and LMP2 with fairly large basis sets.25,56 The free
energy corrections to the potential energy profiles are
obtained from frequency calculations at each grid point. The
assessment of the force field FESs was not done by simple
comparison of geometry and energy of each individual
minimum- or transition-state structure against the ab initio
result. Instead, the 2D (φ-ψ) map was divided into three
low-energy conformational basins and three transition-states
regions. Quantitative assessment of each force field was
carried out by two comparisons between force field and ab
initio results: (1) the average free energy of each region; (2)
how well a force field FES would match the ab initio FES
in each region by calculating the standard deviation of the
free energy difference between the two FESs.

Methods

Ab Initio Calculations. Ab initio energy surfaces of AD
were computed on a 50 × 50 grid in the (φ-ψ) conforma-
tional space in which each dihedral angle had a range of
-180° to 180° with a 7.2° interval. At each grid point,
geometry parameters, except the constrained (φ-ψ) dihedral
angles, were fully optimized at the B3LYP/6-31G(d,p) level
of theory.57-59 For AD in water, the optimization was
performed in a polarized reaction field. The dielectric
constant of water and the polarized continuum model
(PCM)60-62 implemented in Gaussian 0363 were used. All
energy minima and transition-states found on the constructed
energy profiles were further fully optimized by removing
the φ-ψ constraints. The potential energy of AD at each
grid point, minimum or transition state, was then refined by
single point calculation at the B3LYP/6-311+G(2d,p) level
of theory. Frequency calculation at the B3LYP/6-31G(d,p)
level of theory was carried out on each partially (grid point)
or fully optimized structure to characterize the minimum (no
imaginary frequency) or the transition state (one imaginary
frequency) and to obtain the free energy corrections, includ-
ing zero point energies (ZPE) (scaling factor of 0.9804)64

and thermal energy (enthalpy and entropy) corrections at
298.15 K and 1 atm.

Figure 1. Structure of Ace-Ala-Nme (alanine dipeptide, AD).
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Metadynamics Simulations. All metadynamics simula-
tions were carried out using the CM3D program.65 Five
different force fields, CHARMM27,9,41 AMBER94,8 AM-
BER03,42 OPLSAA,11 and OPLSAA/L (modified torsion
parameters),43 were used to describe AD and the water
molecules, with the exception of using SPC/f for the water
model.66,67 All of these force fields use pair potentials that
have been parametrized using a combination of quantum
mechanical and experimental data to reproduce the minimum
structures of macromolecular molecules, such as proteins,
RNA, and DNA. These force fields also have similar
functional forms (bonded and nonbonded terms). While there
are no gross differences, they do differ in the details of
parametrization. For example, AMBER03 is reparameterized
using new point charges and backbone torsion parameters
from AMBER94 to improve the performance of condensed-
phase simulations. Similarly, OPLSAA/L is an improved
version of OPLSAA by refitting the backbone torsion
parameters. As a result, specific molecular systems will show
differences, such as in simulations of membranes68 or
DNA.69 It should be noted that the cross terms (CMAP) in
the CHARMM27 force field were not used to evaluate the
force fields within the boundary of the standard functional
forms. For the simulation of aqueous solution, an AD
molecule was placed in a periodic cubic box (L ) 18.8 Å)
with 216 water molecules. The electrostatic interactions were
calculated using Ewald summation,1,70,71 and the real space
cut-off was half of the cell dimension (9.4 Å). Prior to the
metadynamics runs, NPT simulation at 1 atm and 298 K for

at least 100 ps was carried out to equilibrate the cell volume.
The metadynamics simulations were carried out using the
NVT ensemble and a time step of 0.5 fs.

We used two sets of parameters related to the Gaussian
potentials (or “hills”):50,51 (1) w ) 0.2 rad, h ) 0.02 kcal/
mol, and ∆ ) 0.02 rad and (2) w ) 0.1 rad, h ) 0.02 kcal/
mol, and ∆ ) 0.075 rad. Here, ∆ is the minimum distance
that the systems must move in (φ-ψ) space before the next
Gaussian potential is added. Hills setting (2) thus employs
smaller potentials that are also further away from each other
than hills setting (1). It should increase the accuracy of the
FES, however, it takes longer simulation time to sample the
entire conformational space. For AD in gas phase, both
settings were employed. For hills setting (1), a 5 ns
productive run was carried out to achieve sufficient sampling
of the whole (φ-ψ) conformational space. For hills setting
(2), 20 ns are needed to achieve reasonably sufficient
sampling for most of the force fields. The reconstruction of
the (φ-ψ) FES was done on a 50 × 50 grid, in which the
grid interval of 7.2° was comparable with the width of the
hills in both settings. The same grid resolution was used
throughout the paper so that the energy difference map
between any two FESs, which is essential for our quantitative
analysis, can be easily calculated.

Results and Discussions

Highlights. Results obtained from this study fall into three
subsections: (1) ab initio FESs of AD in gas and aqueous

Figure 2. B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) energy contour maps of AD. (A) Potential energy (relative to C7eq) in gas
phase. (B) Free energy (relative to C7eq) in gas phase. (C) Potential energy (relative to C5) in aqueous solution phase. (D) Free
energy (relative to C5) in aqueous solution phase.

404 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Liu et al.



phases; (2) FESs of AD obtained by metadynamics simula-
tions using the five force fields; (3) quantitative assessment
of the force fields according to the ab initio FESs. Part (3),
though comes at the end, is the most important part of this
study. Therefore, to give the readers a synopsis of what this
study concludes, here we are providing the highlights of our
results, which mainly focus on part (3), followed by more
detailed discussion of each subsection.

Our study shows that the B3LYP/6-311+G(2d,p)//B3LYP/
6-31G(d,p) method (with PCM for aqueous phase) is able
to generate energy contour maps of AD in gas (Figure 2A)
and aqueous (Figure 2C) phases that are as accurate as the
previous MP2 approaches.25,41 The computationally cost-
efficient hybrid density functional theory (DFT) method also
allowed us to perform frequency calculation and obtain free

energy corrections at each grid point so that the ab initio
FESs (Figure 2B and D) can be constructed. Second,
metadynamics simulations in combination with several
commonly used force fields, namely AMBER94, AMBER03,
CHARMM27, OPLSAA, and OPLSAA/L, are used to
generate FESs of AD in gas (Figure 3) and aqueous (Figure
4) phases (explicit solvents). The estimated errors of the FESs
are 0.2-0.4 kcal/mol for the ab initio FESs and 0.3-0.4
kcal/mol or slightly larger (up to 0.7 kcal/mol) in some cases
due to minor insufficient sampling for the force field FESs.

The ab initio FESs are used as standards to assess the
accuracy of the MM force field FESs in the low-energy
conformational basins and critically for transition states
linking the minima. Specifically, the (φ-ψ) conformational
space has been divided into six regions (Figure 5). The

Figure 3. Free energy contour maps of AD in gas phase: (A) AMBER03; (B) AMBER94; (C) OPLSAA; (D) OPLSAA/L; and (E)
CHARMM27.
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Figure 4. Free energy contour maps of AD in aqueous solution. (A) AMBER03; (B) AMBER94; (C) OPLSAA; (D) OPLSAA/L;
and (E) CHARMM27.

Figure 5. Definitions of low-energy (LeR) and transition-state (TsR) regions: (A) gas and (B) aqueous solution phases.
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partitions are based on common practice of protein backbone
conformational subsets as well as the ab initio FESs. There
are three low-energy conformational basins (denoted as LeR),
in which LeRI encloses minima C5 (corresponding to � in
some literatures), � (corresponding to PPII in some litera-
tures), and C7eq. The LeRII basin includes minima �2 and
RR, and both the LeRI and LeRII regions are on the negative
φ side. LeRIII is on the positive φ side and covers minima
RL, C7ax, and RD. There are also three transition-state regions,
in which TsRI is the low-lying transition region between
LeRII and LeRI. Both TsRII and TsRIII link the negative
(LeRI and LeRII) and positive (LeRIII) φ sides through
rotation of the φ dihedral angle clockwise (through 0°) or
counterclockwise (through 180°), respectively. In this study,
we have measured two quantities (Tables 3 and 4) per region
for any FES. The first one is the mean free energy (average
free energy of all grid points included in one basin), and the
other is the standard deviation of the free energy difference
map (FEDM) (obtained by one to one subtraction at each
grid point between two FESs) of the designated region
between the force field and the ab initio FESs. Comparison
of the mean free energy of each basin (relative to the overall
mean of all six regions on a FES) between ab initio and
force field roughly indicates the accuracy of free energies
of a particular group of conformers or transition states. The
standard deviation of the FEDM measures how well the two
FESs match each other and therefore provides a good
indication of whether or not the force field predicts the
positions of minima or transition states accurately. The
following paragraphs give a brief summary of the assessment
for each force field employed. It is worth mentioning that
the average free energy of LeRII (�2-RR) is 0.9 kcal/mol
higher than that of LeRI (C5-�-C7eq) in aqueous solution
based on our ab initio FES. This free energy gap is in
agreement with a probability partition of 80-20 between
the C5-� and the RR states, as reported in recent experimental/
computational investigations.27,38

For AMBER03, for the gas phase, the mean free energies
of most regions agree well with the ab initio values.
However, the LeRII (�2-RR) stability is slightly underesti-
mated (0.9-1.2 kcal/mol higher). The energy surfaces match
better with the ab initio FES on the negative φ side
(deviations ∼1 kcal/mol) than on the positive φ side
(deviations ∼1.5 kcal/mol). For aqueous solution phase, all
three low-energy regions have higher, while all three
transition-state regions have lower, mean free energies than
ab initio. This means that the energy barriers for transition
between conformational basins are 1.2-2.4 kcal/mol under-
estimated. In terms of the standard deviations, the AMBER03
aqueous FES matches well in all regions with the ab initio
FES except for TSRI and TsRII, which have slightly larger
deviations (1.5-1.7 kcal/mol). In addition, the aqueous phase
FES matches with ab initio slightly better than the gas-phase
FES, which reflects the parametrization emphasis of AM-
BER03 for condensed phase.

For AMBER94, for both gas and solution phases, the LeRI
(C5-�-C7eq) stability is underestimated. The effect of this
underestimation is severe for the aqueous solution phase FES
since it has caused a reversed order of stability between LeRI

(C5-�-C7eq) and LeRII (�2-RR). In addition, the mean free
energy is lower for TSRII and higher for TSRIII than ab
initio for both gas and aqueous phases, but the differences
in energy are bigger in aqueous solution. The energy barriers
decrease up to 5.5 kcal/mol for TsRII and increase 1.3 kcal/
mol for TsRIII, which will affect any kinetic model built
based on the AMBER94 force field.

CHARMM27 underestimates the stability of LeRII (�2-
RR) in gas phase but not in aqueous solution and vice versa
for LeRIII (RL-C7ax-RD). It also gives a higher mean free
energy for LeRI (C5-�-C7eq) and a lower mean for TsRII in
aqueous solution, thus lowering the barrier 1.8-2.8 kcal/
mol. In addition, CHARMM27 also heavily overestimates
the stability of TsRI, i.e., the lower left quadrant of the (φ-ψ)
conformational space in both gas and aqueous phases. The
standard deviations in all regions are generally the first or
second highest among all force fields. These larger deviations
from ab initio are probably the result of the CHARMM
parametrization procedure, which includes more empirical
adjustments to fit with experimental crystallographic data.9

The performances of OPLSAA and OPLSAA/L are
generally similar, and both have lower standard deviations
(0.7-1.5 kcal/mol) in all six regions comparing with other
force fields. For both gas and aqueous phases, the OPLSAA
mean free energies of LeRII (�2-RR) are higher than the
respective ab initio values. OPLSAA/L improves the average
free energies of LeRII significantly. However, OPLSAA
gives a much better relative stability of LeRI (C5-�-C7eq)
versus LeRII (�2-RR) due to similar underestimation of
stabilities of both regions for the aqueous phase. Conversely,
the improvement of OPLSAA/L in LeRII (�2-RR), in
combination with the underestimation of stability of LeRI,
leads to too small of an energy difference between LeRI and
LeRII for aqueous phase. Both force fields also have lower
mean free energies for TsRII, which leads to a 3.0 kcal/mol
decrease in barrier for OPLSAA and a 2.4 kcal/mol for
OPLSAA/L.

In summary, in our opinion, OPLSAA/L gives the best
performance overall, followed by OPLSAA and AMBER03.
As recently pointed out by Feig,72 force fields parametrized
based on AD can accurately reflect amino acid backbone
torsional preferences when used in MD simulations of
proteins. Therefore, the quantitative assessment and strategy
presented here can be used for improving force field
parametrization targeting not only the accuracy of energies
of conformers but also transition-state barriers. It should be
noted that the torsional profiles of AD obtained should not
be directly used to represent the torsional preference of amino
acids in protein structures.72

Free Energy Surfaces of AD by Ab Initio Calcula-
tions. Previously, various ab initio calculations at different
levels of theory have been used to study AD in gas phase,
water, and/or other medium, in order to gain insights into
the conformational preferences of protein backbones and/or
in assisting parametrization of MM force fields.41,56,73,74

Particularly, Wang et al. have used the MP2/cc-pVTZ//MP2/
6-31G(d,p) level of theory, in combination with the PCM
model, for solvation effects to obtain fully relaxed (φ-ψ)
potential energy surfaces of AD.25 In addition to fully relaxed
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energy surfaces in the gas phase, ether and water, they have
also optimized and characterized all energy minima and
transition states as well as calculated free energy corrections
of energy minima. Mackerell et al. have constructed the
potential energy surface of AD in gas phase at a similar level
of theory.41 In addition, they and others have also optimized
a few energy minima in the gas phase using levels up to
MP2/6-311++G(d,p). In this paper, we have utilized a more
time-efficient hybrid DFT method, specifically, the B3LYP/
6-311+G(2d,p)//B3LYP/6-31G(d,p) method, in combination
with the PCM model for solvation effects. Our energy
contour maps were obtained in a similar fashion with a finer
grid. Furthermore, we have also estimated the free energy
corrections to the energy contour maps. Finally, we optimized
and characterized all energy minima and transition states.
The comparison with the previous results will not only give
us an estimate on the accuracy of the more time-efficient
DFT methods but also test the robustness of the approach.

Figure 2A and B shows the potential energy surface and
the FES of AD in the gas phase. The general features of the
potential energy map are very similar to an energy map
calculated at the MP2/cc-pVTZ//MP2/6-31G(d,p) level of
theory.25 The positions and numbers of energy minima and
transition states on the two energy maps coincide with each
other. Particularly, both the MP2 and DFT energy map
indicate a transition state (TS2) at around (0°, 0°), which is
different from the HF map where only the energy maximum
is observed between TS1 and TS3. This has indicated that
the DFT method is able to describe the electrostatic interac-
tions between the CdO and NsH groups in AD, when
compared to the HF method. Full geometry optimization at
the B3LYP/6-31G(d,p) level has located energy minima C7eq,
C5, C7ax, �2, RL, and R′ as well as transition-states TS1, TS2,
and TS4-TS7. Similar to all previous theoretical studies,
minimum RR cannot be located in gas phases, therefore
optimization with (φ-ψ) constrained at (-80°,-20°) is
carried out. For RD and TS3, no stationary points can be
definitely located at the B3LYP/6-31G(d,p) level because
the energy derivative with respect to the ψ dihedral angle

does not converge to zero. However, we have located the
best approximation of RD and TS3 by a series of partial
optimizations (detailed in Supporting Information) as (59.8°,
-136.2°) and (2.8°, -77.3°), respectively. The energy
gradients with respect to ψ are estimated at less than 0.008
kcal/mol deg.

As shown in Table 1, the optimized structures, potential
and free energies of minima, and transition states agree fairly
well with previous theoretical results. The relative potential
energy order of all energy minima C7eq, C5, C7ax, �2, RR,
RL, RD, and R′ is the same between the DFT and MP2
methods. Quantitatively, the differences in optimized dihedral
angles φ and ψ between the two methods are mostly about
0-9° with two exceptions (�2 and TS2) at around 15-17°.
This is understandable since both minimum �2 and transition
state TS2 lie on the flat regions of the energy landscape. In
fact, theoretical studies from different sources have shown
significant discrepancy between optimizations using the MP2
method with different basis sets. Specifically, the �2 con-
former was optimized at (-141.6°, 23.8°) with MP2/6-
31G(d,p),25 (-125.7°, 21.6°) with B3LYP/6-31G(d,p), and
(-90.7°, -7.8°) with MP2/6-311++G(d,p).41 Interestingly,
the optimized φ angle value determined by the DFT method
is closer to that from the MP2/6-311++G(d,p) level with a
much larger basis set than the MP2/6-31G(d,p) value with
the same basis sets. The results indicate that the sizes of the
basis sets (perhaps the addition of the diffusive functions)
affect the optimized geometry more than the difference in
methodology. Therefore, we are confident that the DFT
method performance is at least as good as the MP2 method
in terms of geometry optimization.

The differences in relative potential energies (C7eq as
reference zero) of RR, C7ax, TS5, and TS6 are within 0.1
kcal/mol between the B3LYP/6-311+G(2d,p)//B3LYP/6-
31G(d,p) and MP2/cc-pVTZ//MP2/6-31G(d,p) methods. The
relative energies of C5, �2, TS2, and TS4 from the DFT
calculations are ∼0.5-0.7 kcal/mol less than that of the MP2
results. While the relative energies of RL, R′, RD, TS1, and
TS3 from the DFT calculations are ∼0.5-0.9 kcal/mol more

Table 1. Optimized Geometries (φ and ψ in °) and Relative and Free Energies (∆E and ∆G in kcal/mol) of Stationary Points
of AD in a Gas Phase, Obtained at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) (this work) and MP2/cc-pVTZ//MP2/
6-31G(d,p)25 Levels of Theory

B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) MP2/cc-pVTZ//MP2/6-31G(d,p)

φ ψ ∆E ∆G φ ψ ∆Ec ∆G

C7eq -83.1 72.6 0.00 0.00 -82.0 80.6 0.0 0.00
C5 -158.4 164.6 0.92 0.06 -159.7 159.3 1.47 (0.91-1.11) 0.67
RR -80.0 -20.0 3.37a 2.28 -80.0 -20.0 3.27 3.74
RL 68.4 26.5 5.48 5.19 63.2 35.4 4.52 (4.36-5.19) 4.99
C7ax 73.6 -57.7 2.48 2.63 75.8 -62.8 2.50 (2.06-2.48) 2.32
�2 -125.7 21.6 2.72 1.87 -141.6 23.8 3.25 (2.51-2.84) 2.63
R′ -169.9 -39.2 6.59 5.88 -166.1 -36.7 6.07 (5.49) 6.15
RD 59.8 -136.2 5.53b 4.55 53.0 -133.4 4.75 5.24
TS1 5.6 81.4 9.72 10.31 4.4 84.3 8.94
TS2 -1.4 -8.9 8.64 8.94 -0.2 -26.2 9.37
TS3 2.8 -77.3 10.68b 10.39 4.4 -85.5 10.20
TS4 112.8 -146.7 7.93 8.24 115.4 -151.9 8.44
TS5 135.9 -26.2 8.17 8.68 135.0 -25.3 8.12
TS6 79.0 86.4 11.23 11.04 75.2 90.7 11.20
TS7 -149.8 -87.3 6.80 6.27

a Partially optimized by constraining (φ,ψ) at (-80.0°, -20.0°). b Located by a series of partial optimization. c Values in parentheses are
from ref 56 at levels ranging from LMP2/cc-pVTZ(-f)//MP2/6-31G* level to LMP2/cc-VQZ(-g)//MP2/6-311++G**.
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than that of the MP2 results. Generally, the DFT method
predicts more stable extended structures (C5, �2) and less
stable compact conformers (RL, RD) than the MP2 method.
It has been recognized that the MP2/cc-pvTZ//MP2/6-31G**
may artificially stabilize the compact conformers with respect
to the extended ones due to intramolecular basis set sup-
position errors (BSSE).56 The current energies calculated at
the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) could be
more accurate than that of the MP2/cc-pVTZ//MP2/6-
31G(d,p) level. Furthermore, Table 1 has also listed the
relative energies of C5, RL, �2, C7ax, and R′ with respect to
C7eq at the levels up to LMP2/cc-pVQZ(-g)//MP2/6-
311++G(d,p).56 Since the local MP2 (LMP2) method can
circumvent the BSSE issue, the fact that the LMP2 energies
agree better with the DFT method (on C5, �2, and in one
case RL) further confirms the above conclusion.

The free energies of all energy minima also agree fairly
well, with a difference generally smaller than 0.7 kcal/mol,
between the DFT and MP2 methods, with an exception of
conformer RR which has a free energies difference of 1.5
kcal/mol between the two methods. This difference, however,
has no indication on the accuracy of the employed DFT
method based on the fact that Wang et al. have estimated
the RR free energy corrections using the RL conformer, while
we have calculated them using the RR conformer. Apart from
the RR conformer, the DFT method also tends to produce
more stable extended structures (C5, �2, R′, RD) and less
stable compact conformers (RL, C7ax) in terms of free
energies relative to C7eq, when compared to the MP2 method.
The contributions to this trend come from either the potential
energies (C5, �2,and RL) or the free energy corrections (R′,
RD, and C7ax). The free energy of the C5 conformer is 0.06
kcal/mol higher than the C7eq conformer at the B3LYP/6-
311+G(2d,p)//B3LYP/6-31G(d,p) level and 0.67 kcal/mol
at the MP2/cc-PVTZ//MP2/6-31G(d,p) level. Both results
agree well with the experimental observation that C5 and
C7eq were the dominant species at room temperature in the
CCl4 solution and at low temperature in Ar matrices.75

Although the discrepancies between the two approaches
are not large enough to raise serious concerns, we do want
to note two facts that favor the approach in the current paper.
One is that the frequency calculations and the geometry
optimizations in this paper are done at the same B3LYP/6-
31G(d,p) level of theory, while in the previous case, HF/6-
31G(d) was used to optimize the structures and calculate the
frequencies, and the free energy corrections obtained were
then applied on optimized structures at the MP2/6-31G(d,p)
level of theory. The second is that the current calculations
are performed with tight optimization criteria and an ultra
fine grid for integration.

The FES of AD in gas phase, as shown in Figure 2B, is
constructed on the basis of potential energy map plus free
energy corrections, including zero point energies and thermal
energy corrections based on frequency calculations. The
accuracy of the free energy corrections is subject to the
magnitudes of the remaining nonzero first derivatives (force)
of the optimized structures at each grid point. Generally, there
are two types of errors. One behaves more like noises since
it comes from the uneven qualities of the optimized structures

at each grid point, i.e., differences in remaining forces below
the convergence criteria. Other sources of inaccuracy, such
as vibrational-rotational coupling and hindered rotors, may
also contribute to the noise of the FES. We have applied a
linear smoothing function to even out noises. Specifically
each grid point has only 50% contribution from the frequency
calculation at this grid point, the other 50% comes evenly
from its four neighboring grid points (φ -7.2°, φ +7.2°, ψ
-7.2°, and ψ +7.2°). This technique works quite well based
on the comparison of the FESs before and after the
smoothing. The second type of error is more systematic since
it comes from the remaining forces (nonharmonic character
outside the minima or transition states) caused by the
constraints of the two dihedral angles. We have also analyzed
the behaviors and the magnitudes of the second type of
systematic errors. Naturally, the free energy corrections are
most accurate around the true stationary points, i.e., minima
and transition states. The frequency calculations lead to
underestimation or overestimation of the free energy cor-
rections in the area that extends out from a minimum or a
transition state, respectively. By analyzing the trends of free
energy corrections along the paths from minimum to transi-
tion state, we can estimate that the maximum error would
be around 0.6-0.7 kcal/mol, while the average error would
be around 0.2-0.4 kcal/mol.

The overall features of the FES are similar to those of the
potential energy surface as expected. Although the free
energy corrections do not alter the positions of energy
minima and transition states, they do slightly increase the
slopes of the energy profiles, which results in more distin-
guished local energy minima, such as the separation of the
�2-RR area from the C5-�-C7eq area or RL and RD from the
C7ax center. The average free energy correction to all
the transition states is 0.7 kcal/mol higher than the average
correction to all the minima, as also shown in Table 1.

The fully relaxed energy maps without and with free
energy corrections of AD in water, obtained at the B3LYP/
6-311+G(2d,p)//B3LYP/6-31G(d,p) level with the PCM
model, are shown in Figure 2C and D, respectively. The
energy map in Figure 2C includes the potential energy of
solute and polarized solute-solvent (PS-S) interaction
energy, while the free energy corrections include zero point
energies and thermal (enthalpy and entropy) corrections to
the solute from the frequency calculation as well as the
nonelectrostatic energy term, i.e., cavitation, dispersion and
repulsion energies, calculated by the PCM model. The terms,
energy maps without and with free energy corrections, are
used in the following discussion with regard to Figure 2C
and D, respectively.

The topological features of the energy map and changes
from the gas-phase energy map to the aqueous map are
almost identical to that obtained at the MP2/cc-pVTZ//MP2/
6-31G(d,p) level with PCM model for solvation effects.25

The changes include: (1) expansion of low-energy regions,
more accessible and flatter energy surface (note the different
contour color scale for gas (0-20 kcal/mol) and solution
(0-16 kcal/mol) phases in Figure 2); (2) diminishing of the
gas phase global minimum C7eq and emerging of the new
minima RR and �; (3) energy barrier (TS0) between C5-�
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and RR-�2 regions; and (4) the shift of dominant region from
C7ax to RL. The optimized geometries and relative energies
of all energy minima and transition states of AD in water
are also shown in Table 2. The agreement on both the
optimized (φ, ψ) angles and energies is again reasonable,
indicating the robustness of both ab initio treatments. The
topological feature changes from the gas phase to the aqueous
map bring the aqueous map into closer agreement with the
experimental Ramachandran plot derived from experimental
protein structures.76 The results indicate that the PCM
approach gives good description of the bulk solvent polariza-
tion effects despite the lack of specific interactions between
the solute and solvent molecules.

The discrepancies in optimized geometries between DFT
and MP2, however, are slightly larger than that from the
gas-phase calculations. This directly results from more
extended and flatter low-energy regions in the aqueous
energy surface. There are five stationary points (C7eq, �, RD′,
TS0, and TS2), instead of the two in the gas phase, whose
optimized φ or ψ angles differ by more than 10° but no more
than 25° between the DFT and MP2 results. For relative
energies (C5 as reference) without the corrections, the two
methods agree very well (within 0.1 kcal/mol) on extended
structures like � and �2. However, for more compact
structures, such as C7eq, RL, RR, and C7ax, the DFT method
gives higher energies (relative to C5), roughly 0.8-1.5 kcal/
mol higher than that from the MP2 method. The discrepan-
cies are systematic since relative stabilities (e.g., relative
energies to C7eq) among the more compact structures are
similar (difference 0.3-0.4 kcal/mol) between the two
methods. This is consistent with what we have observed in
the gas-phase calculations, which states that BSSE errors at
the MP2/cc-pVTZ//MP2/6-31G(d,p) level might have arti-
ficially stabilized more compact structures. For energy
without corrections, both methods predict C5 as the global
minimum. The orders of energies for the minima are not
exactly the same but very similar. Due to the stabilization
on the extended structures by the DFT method, the � and �2

conformers switch their places with their respective neigh-
bors, the RR and C7eq conformers, in the energy order (low
to high) C5-RR-�-C7eq-�2-RL-C7ax-RD-RD′ from the MP2
method. As a result, the energy order of C5-�-RR- �2-C7eq-
RL-C7ax-RD-RD′ is obtained at the level of B3LYP/6-
311+G(2d,p)//B3LYP/6-31G(d,p).

Similar to the MP2 study,25 the free energy corrections
have also changed the order of energy minima slightly in
the current DFT study. The overall agreement between the
DFT and MP2 free energies is reasonable. Both methods
give the C5 conformer as the global minimum, with the �
conformer with slightly higher free energy (0.39 for MP2
and 0.06 kcal/mol for DFT). Two other conformers, RR and
�2, follow C5-� with relative free energies roughly 1-1.6
kcal/mol higher than that of the C5. Both methods partially
agree with the experimental observations that the � and RR

conformers are the dominant species in water.27,32,37,38,40

However, the lack of experimental evidence on the existence
of conformers C5 and �2 does not explain the theoretical
results in which they have very similar energies with � and
RR, respectively. As indicated by Wang et al., the lack of
explicit interactions of AD with water molecules as a result
of using the PCM model may attribute to this disagreement.
They have also speculated two intermediate conformers with
explicit hydrogen-bonded water molecules whose geometries
lie between C5 and � and RR and �2, respectively. These
intermediate conformers are believed to be the dominant
species � and RR observed in experiments.

The differences in the relative free energies between MP2
and DFT are similar to the differences in the relative energies
before the free energy corrections, indicating inheritance of
the problem. That is, there is a general trend of more stable
extended structures and less stable compact structures from
the DFT method than the MP2 methods. Another significant
discrepancy is that the free energy (relative to C5) of the RL

conformer in the DFT results is about 1.63 kcal/mol higher
than that from the MP2 results. This energy difference comes
from energy without corrections (1.57). There is no direct

Table 2. Optimized Geometries (φ and ψ in °) and Relative and Free Energies (∆E and ∆G in kcal/mol) of Stationary Points
of AD in Water, Obtained at the B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) (this work) and MP2/cc-pVTZ//MP2/6-31G(d,p)25

Levels of Theory

B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) MP2/cc-pVTZ//MP2/6-31G(d,p)

φ ψ ∆E ∆G φ ψ ∆E ∆Gb

C7eq -85.4 73.4 2.06 3.09 -86.3 90.1 0.92 2.42
C5 -151.6 147.6 0.00 0.00 -156.4 143.8 0.00 0.00
RR -78.1 -27.2 0.84 1.60 -70.5 -32.1 0.08 0.94
� -75.1 143.3 0.26a 0.06 -64.0 142.1 0.17 0.39
RL 61.3 40.9 2.84 3.30 59.4 41.4 1.27 1.67
C7ax 73.4 -53.0 3.48 4.32 74.9 -54.3 2.69 4.00
�2 -138.5 27.3 1.36 1.37 -145.6 27.2 1.27 1.57
RD 60.1 -147.7 4.43 4.30 55.6 -144.9 3.59 3.57
RD’ 72.8 164.8 4.79 4.01 60.5 -170.9 4.08 3.68
TS0 -129.8 62.6 1.74 2.63 -143.1 70.9 1.80
TS1 0.3 91.6 6.41 7.88 0.1 91.4 5.83
TS2 -11.0 -11.7 10.55 12.52 -6.6 -29.6 10.70
TS3 7.3 -92.1 8.08 9.99 7.5 -92.2 7.50
TS5 132.2 -28.1 6.58 7.78 130.4 -28.7 6.51
TS6 81.3 104.2 5.28 6.45 76.4 104.5 6.30
TS7 127.9 133.7 6.45 7.09
TS8 -114.0 -115.6 3.44 4.99

a Located by a series of partial optimization. b Free energies corrections were made at the HF/6-31G* level.
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experimental or theoretical evidence to determine which set
of results is closer to the real value. However, from the MP2
results, the free energy of RL is just 0.7 kcal/mol higher than
the RR conformer. This small difference should have resulted
in a population of the RL conformer being observed
experimentally. Therefore, a much larger energy gap of 1.7
kcal/mol between the RL and RR conformers from the DFT
calculations fits better with the experimental results where
only the population of RR and no RL is observed.27,37

The free energy corrections for the aqueous energy map
have been subjected to the aforementioned linear smoothing
technique. Analysis also has shown that the systematic errors
caused by constraints of dihedral angles in optimization are
similar to those of the gas-phase free energy corrections in
terms of behaviors and magnitudes. As shown in Figure 2D,
the aqueous FES is slightly nosier than that of the gas-phase
FES. This is most likely because the convergence criteria
used for partial geometry optimization of AD in aqueous
phase at each grid point is slightly larger than that used for
gas-phase optimization. The remaining forces will lead to
larger noises in frequency calculations and therefore thermal
corrections. Similar to the gas-phase behavior, the free energy
corrections tend to raise the slope of the energy profiles. The
increase is even greater in the aqueous phase than in the gas
phase. The average free energy correction to the transition
state is 1.1 kcal/mol higher than the average to the minima,
as comparing to 0.7 kcal/mol in gas phase.

In a brief summary, the current B3LYP/6-311+G(2d,p)//
B3LYP/6-31G(d,p) with PCM model approach was able to
generate energy contour maps of AD in the gas phase and
in water that is at least as accurate as the previous MP2
approaches. The cost-efficient hybrid DFT method has also
allowed us to generate the energy contour maps using a finer
grid as well as performing frequency calculation at each grid
point to generate free energy corrections to the map. The
validated ab initio FESs will be used as standards to access
the accuracy of FESs generated by metadynamics simulations
in combination with several commonly used force fields,
namely AMBER94, AMBER03, CHARMM27, and OPLSAA.

Free Energy Surfaces of AD by Metadynamics
Simulations using MM Force Fields. Figure 3 displays
FESs of AD in a gas phase, and Figure 4 exhibits FESs of
AD in an aqueous solution. In this section, we will visually
examine and compare the general features of the force field
FESs against that of the ab initio FESs to provide a
qualitatively assessment of different force fields and the
metadynamics method.

The gas-phase FESs are obtained using both hills setting
(1) (Figure 3A) and (2) (Figure S1, Supporting Information).
Comparison of the gas-phase FESs from two hills setting
shows that using the same force field but different hill sizes
produces almost identical FESs for each force field. This
indicates the robustness of the metadynamics method to hills
settings. The efficiency of the metadynamics simulations in
sampling conformational space of the selected variables is
shown in Figure 3, in which the contour lines cover up almost
all conformational space except a very small high-energy
area at around φ ) 0° and ψ ) 180°. The excellent coverage
indicates a good conformational sampling in just 5 ns using

hills setting (1). The dependency of the sampling efficiency
on the metadynamics (hills) parameters can be analyzed
based on the difference in conformational coverage. The
metadynamics simulations using hills setting (2) add Gauss-
ian potentials (hills) with half of the width and less frequently
when compared with hills setting (1). Therefore, even with
a 20 ns of simulation, the uncovered area is still larger than
that of the FES from hills setting (1) with 5 ns. However,
the blank areas are high-energy hills and generally do not
affect the minima and important transition states. The
unsampled areas in the aqueous solution phase FESs (Figure
4) are much less than that of the gas phase (using hills setting
(2)). The result indicates that solvation effect has made the
free energy surface much more accessible, which is consistent
with what we observed in the ab initio calculations.

The general shapes of all force field gas-phase FESs are
similar to that of the ab initio FES (Figure 2B). All force
field FESs capture the major minima C5, C7eq, and C7ax.
Their positions in terms of the values of (φ, ψ) are also in
good agreement with that of the ab initio FES. However,
further inspection of Figure 3 indicates that there are
characteristic differences in details of the gas-phase FESs
of different force fields and the ab initio FES. For example,
most force field FESs do not have local minima for
conformers RL and RD, whose positions are clearly defined
in the ab initio FES. On the OPLSAA, OPLSAA/L, or the
AMBER94 FES, there is a small relatively flat region below
the C7ax minimum that can be classified as the RD conformer.
For RL, a similar flat region above C7ax is seen only on the
OPLSAA FES. Second, on the AMBER03, OPLSAA, and
CHARMM27 force field FESs, the stability of the �2

conformer area is underestimated. It should be noted that
Mackerell et al. have noticed this underestimation and have
added φ, ψ dihedral cross terms (CMAP) to the CHARMM
force field to improve the energetics of the �2 conformer.41

However, the current FES is calculated without the cross
terms to evaluate the force fields within the boundary of the
standard functional forms. Another significant difference
between the force field and ab initio FES is that the
CHARMM27 force field has overestimated the stabilities of
the conformational space at the lower left quadrant of the
FES, i.e., the area around (-120°, -120°).

The rest of the transition states fall into two major groups
that connect the low-energy regions (LeRI and LeRII, C5-
C7eq-�-�2-RR) on the negative φ side, to another region on
the positive φ side (LeRIII, RL-C7ax-RD) through rotation of
the dihedral angle φ clockwise and counterclockwise,
respectively. One group includes TS1-TS3 which have φ

roughly at 0°. As shown in Figure 3, only the AMBER94
force field FES features all three transition states with TS3
shifted slightly upward (larger ψ). The OPLSAA and
CHARMM27 FESs feature TS1 and another transition state
(TS2/TS3) which positions somewhere between the ab initio
TS2 and TS3. The AMBER03 and OPLSAA/L force fields,
on the other hand, only show TS2, which also shifted slightly
downward (smaller ψ) in the AMBER03 FES. The other
group includes TS4 and TS5 whose φ angle values are
roughly at 120°-150°. Both transition states are featured in
the FESs of three force fields, AMBER94, OPLSAA, and
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OPLSAA/L, while only TS5 is shown by AMBER03, and a
combined TS4/TS5 is shown by CHARMM27. The last
transition state TS6 is of less importance due to its higher
free energy (∼11 kcal/mol relative to C7eq by DFT).
Generally, all force fields have predicted its position reason-
ably well but overestimated the energy barrier with respect
to the global mimimum C7eq, in which OPLSAA and
OPLSAA/L did slightly better than the other three force
fields.

The comparison of Figures 3 and 4 shows that the changes
from the gas phase to the solution phase FESs are common
among all force fields and also very similar to those observed
in the ab initio FESs (Figure 2). These changes include more
extended low-energy regions, flatter surface, diminishing of
gas-phase global minimum C7eq and emerging of � and RR,
and shifting from C7ax to RL. Considering the force field
aqueous FESs are obtained from simulations with explicit
solvent molecules, the results indicate that the PCM model
used in the ab initio calculations, although lacking specific
AD-water interactions, does capture the major solvation
effect.

On the other hand, the difference in the details of the FESs
between force field and ab initio is also more evident in the
aqueous solution phase. Although all force fields have
captured the low-lying minima � and RR accurately in terms
of both their energies and positions. When compared with
the ab initio FES, AMBER94, and CHARMM27 fail to
capture minimum C5. For the �2 conformer, OPLSAA/L has
done a good job, followed by the two AMBER force fields
which predict the position of �2 to be slightly higher than
that of the ab initio calculations. The OPLSAA gives a local
minimum roughly 60° (in ψ) above the position of the ab
initio �2 conformer. The CHARMM27 force field has failed
to produce a �2 minimum and underestimated the stability
of the �2 region significantly. The performance of the force
fields on the second group of minima RL-C7ax-RD-RD′ on the
positive (in φ) side of the contour map also varies. The
OPLSAA force field seems to produce the best fit to the ab
initio result, featuring well-separated RL and C7ax minima
with RL being the lowest in free energy among the four
minima. The two AMBER and the OPLSAA force fields
combine RL and C7ax into one minimum, which positions in
the middle. The CHARMM27 force field predicts the position
of RL quite well but underestimates its stability significantly.
In terms of transition states, all force fields except
CHARMM27 predict the position of TS7 fairly well, and
its stability varies from 2 to 6 kcal/mol with respect to the
RR or � conformer. Similar to the gas-phase CHARMM27
FES, the stability of the lower left quadrant of the aqueous
CHARMM27 FES has been overestimated, therefore, no TS7
is observed. Instead, a transition state above the RR and below
the C7eq has been identified. For the transition-state group
TS1-TS3, all force field FESs feature TS1 and TS3 whose
positions and energetics also agree well with the ab initio
FES. TS2 is missing from all force field energy maps,
however, it is not of serious concern since TS2 is much
higher in energy than the other two transition states. All force
field FESs feature both TS5 and TS8, and their positions
similar to that have been observed in the ab initio FES.

In addition to the force field-specific discrepancies dis-
cussed above, there is also one common difference between
all MM force field FESs and the ab initio FES of AD in
aqueous phase, i.e., the free energy span of the ab initio FES
(0 to ∼14 kcal/mol), which is wider than that of the force
field FESs (0 to ∼10-12 kcal/mol). Since we have excluded
the high-energy areas of the FES when calculating the above
free energy range, we can safely say that the insufficient
conformational sampling in these high-energy areas by the
force fields does not influence our results. The lack of specific
interactions (hydrogen bonds) between solvent and AD in
the ab initio PCM calculations may have contributed to this
discrepancy. We could not determine to what extent the lack
of specific interactions has on the FES until ab initio MD
simulation of AD with explicit solvent can be afforded. In
addition, the free energy corrections may also have a small
contribution (0.2-0.4 kcal/mol) to this common discrepancy.

The qualitative visual inspection of both ab initio and force
field FESs reveals that although they all bear similar general
features, they are distinctly different in characteristic details.
In the following section, we will present quantitative
assessment of the performance of each force field.

Quantitative Assessment of the Force Field FESs.
Before a detailed quantitative comparison between force field
and ab initio FESs can be made, it is necessary to determine
the error (noise) of each individual FES so that the difference
in energy measured later can be put into context. The error
of the ab initio FES, ignoring errors from potential energy
which is not the scope of this paper, is 0.2-0.4 kcal/mol
based on analysis on the free energy corrections in the
previous section. For the force field FESs, the method we
use to estimate their resolutions was briefly mentioned in a
previous article.51 Basically, the errors are calculated as the
standard deviation of the FEDM between two FESs that
should be the same, e.g., two FESs using the same force
field but different hills settings. The errors are estimated to
be around 0.3-0.4 kcal/mol, or slightly larger (up to 0.7
kcal/mol) in some areas due to insufficient sampling, for both
gas-phase and aqueous phase FESs. More details of the error
analysis can be found in the Supporting Information.

As we have mentioned in the Introduction, most force field
parametrization processes that integrate ab initio calculations
have focused on getting the position and the relative energies
of a few low-lying minima right. Since such parametrization
does not pay much attention to the transition states, the
resulting force field could introduce large errors when
studying protein dynamics and kinetics. In this paper, we
present a strategy to assess the performance of any force
field not only in the low-energy regions but also transition-
state areas. As shown in Figure 5, the φ-ψ space has been
partitioned into six regions, which in total account for more
than 80% of the conformational space. The rest of the space is
of high energy and excluded from our analysis. The partitions
are different from gas to aqueous solution phase and are based
on common practice of protein backbone conformational
partitions as well as the ab initio FESs. There are three low-
energy regions in which LeRI encloses minima C5, �, and
C7eq, and LeRII includes minima �2 and RR, and both of
these regions are on the negative φ side. LeRIII is on the
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positive φ side and covers minima RL, C7ax, and RD. There
are also three transition regions in which TsRI is the low-
lying transition region between LeRII and LeRI. Both TsRII
and TsRIII link the negative and positive φ sides through
rotation of the φ dihedral angle clockwise (through 0°) or
counterclockwise (through 180°).

Based on the 50 × 50 grid map, the distribution of free
energies of each region has been plotted in Figure 6 for each
force field or ab initio FES in gas or aqueous solution phase.
In addition, we have also measured two quantities per region
for each force field FES. As shown in Tables 3 and 4, the
first one is the mean free energy, and the other is the standard

deviation of the FEDM between the force field and ab initio
FESs for each region. Unlike the FESs (Figures 2-4), where
free energy is relative to the global minimum, the mean free
energies in Tables 3 and 4 or the free energies in the
distribution plots of Figure 6 are relative to the overall mean
of all six regions for each force field. This overall mean, as
a reference, is unbiased and not subject to the error in energy
of a single point (the global minimum) on the FES.
Comparison of the mean free energy of each region between
the ab initio and any force field FESs roughly indicates the
average accuracy of the force field on energetics of a
particular group of conformers or transition states. The

Figure 6. Free energy distributions: (A) gas and (B) aqueous solution phases.
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standard deviation of the FEDM indicates how well the two
energy surfaces match, therefore is a good measure of
whether or not the force field predicts the positions of minima
or transition states as accurately as the ab initio method. We
will discuss, region by region, first the results of the gas-
phase FESs, then the aqueous phase FESs.

Gas-Phase Region by Region. As shown in the bottom
panel of Figure 6A, the overall free energy distributions,
obtained by metadynamics simulations using the five dif-
ferent force fields, fit reasonably well with the ab initio
calculations. The width and the position of the peaks all
match closely with the ab initio distribution. Table 4 shows
that the standard deviation of the difference between any
force field and the ab initio FESs ranges from 1.25 to 2.17
kcal/mol, which is much larger than the estimated errors
(0.2-0.7 kcal/mol), indicating true difference. More specif-
ically, the two OPLSAA and the AMBER03 force fields
differ from the ab initio free energy map about 1.2-1.4 kcal/
mol, while AMBER94 and CHARMM27 have larger devia-
tions from 1.8 to 2.2 kcal/mol.

The performance of all force fields in the first low-energy
region, LeRI, is also good. As shown in Table 3, the average

free energies (-3.07 and -3.50 to -3.74) of LeRI are mostly
within the error range with that of the ab initio FES (-3.72).
The only exception is AMBER94 (-3.07), which underes-
timates the stability of LeRI for about 0.65 kcal/mol, just
outside the error range of 0.3-0.4 kcal/mol. The standard
deviation of the difference energy map between any force
field and ab initio FES in this region mostly ranges from
0.8-1.0 kcal/mol. The AMBER94, again, has a slightly
larger deviation of 1.5 kcal/mol from the ab initio energy
map. In gas phase, all five force fields seem to underestimate
the stability of the second low-energy region LeRII, i.e., the
�2-RR conformers, especially the CHARMM27, OPLSAA,
and AMBER03 force fields, whose average free energies are
1.0-1.5 kcal/mol higher than the ab initio mean of LeRII.
Both AMBER94 and OPLSAA/L give reasonable average
free energies. However, the distribution of free energies (as
shown in Figure 6A) of AMBER94 is much wider, and not
surprisingly the standard deviation from the ab initio map is
the largest (1.5 kcal/mol). That leaves the OPLSAA/L force
field that performs well in both average free energy (∼0.5
kcal/mol difference from ab initio) and standard deviation
(∼1 kcal/mol). For the third low-energy region LeRIII, the

Table 3. Mean Free Energies of the Six Regions of the Ab Initio and MM Force Field FESs

DFT AMBER03 AMBER94 CHARMM27 OPLSAA OPLSAA/L

Gas Phasea

all six regions 0.00 0.00 0.00 0.00 0.00 0.00
LeRI (C5-�-C7eq) -3.72 -3.82/-3.74 -3.16/-3.07 -4.14/-3.69 -3.69/-3.50 -3.63/-3.51
LeRII (�2-RR) -3.11 -1.86/-2.09 -2.60/-2.89 -1.27/-1.55 -1.22/-1.60 -2.66/-2.57
LeRIII (RL-C7ax-RD) -0.32 0.42/0.18 -0.35/-0.88 0.90/-0.11 0.32/-0.07 -0.07/-0.31
TSRI (TS7) 0.67 0.45/0.35 0.64/0.76 -1.51/-1.29 0.81/0.85 1.08/1.15
TSRII (TS1-TS3) 2.82 2.82/2.50 0.74/0.48 3.02/3.01 2.10/1.70 2.27/2.49
TSRIII (TS4-TS5) 2.48 1.87/2.34 3.38/3.86 2.87/3.28 2.11/2.54 2.26/2.23

Aqueous Solution
all six regions 0.00 0.00 0.00 0.00 0.00 0.00
LeRI (C5-�-C7eq) -3.85 -2.57 -1.91 -2.79 -2.68 -2.52
LeRII (�2-RR) -2.90 -2.29 -3.21 -2.74 -1.90 -2.66
LeRIII (RL-C7ax-RD) -0.07 0.94 0.30 1.27 0.26 0.21
TSRI (TS7) 0.04 -1.03 -0.50 -3.60 -0.71 -0.27
TSRII (TS1-TS3) 3.02 1.74 -0.60 1.37 1.12 1.87
TSRIII (TS5-TS8) 2.07 1.48 3.34 2.97 2.15 1.75

a First number is from a 20 ns gas-phase simulation using hills setting (2), while second number after the slash is from a 5 ns gas-phase
simulation using hills setting (1).

Table 4. Standard Deviation (kcal/mol) of the FEDMs between the Ab Initio and Force Field FESs

AMBER03 AMBER94 CHARMM27 OPLSAA OPLSAA/L

Gas Phasea

all six regions 1.50/1.39 1.78/1.96 2.13/2.17 1.31/1.30 1.25/1.25
LeRI (C5-�-C7eq) 0.89/0.75 1.39/1.53 1.03/1.06 0.76/0.89 0.89/0.89
LeRII (�2-RR) 1.09/1.24 1.25/1.45 1.03/1.21 1.04/1.07 1.03/0.99
LeRIII (RL-C7ax-RD) 1.58/1.53 1.92/1.83 2.21/2.32 1.03/1.09 1.37/1.51
TSRI (TS7) 1.01/0.90 1.04/1.15 2.25/2.22 1.04/0.98 0.76/0.73
TSRII (TS1-TS3) 1.55/1.55 1.64/1.62 1.65/2.02 1.47/1.60 1.96/1.90
TSRIII (TS4-TS5) 1.82/1.70 1.34/1.45 2.14/2.28 1.41/1.24 0.87/1.00

Aqueous Solution
all six regions 1.67 2.50 2.52 1.62 1.51
LeRI (C5-�-C7eq) 1.23 1.84 1.69 1.26 1.17
LeRII (�2-RR) 1.12 1.45 1.87 1.15 0.79
LeRIII (RL-C7ax-RD) 1.23 1.96 2.11 1.27 1.19
TSRI (TS7) 1.74 2.17 2.14 1.55 1.32
TSRII (TS1-TS3) 1.50 1.52 1.92 1.31 1.82
TSRIII (TS5-TS8) 1.30 1.39 1.94 1.05 1.22

a First number is from a 20 ns gas-phase simulation using hills setting (2), while second number after the slash is from a 5 ns gas-phase
simulation using hills setting (1).
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average free energies (-0.88 to 0.28) of all five force fields
are all within a reasonable range, comparing with the ab initio
mean (-0.32) of LeRIII. Figure 6A shows that the force
field free energies distributions are usually wider than that
of the ab initio. The standard deviations of the difference
between any force field and the ab initio FESs rank as the
following: OPLSAA has the smallest deviation (1.09 kcal/
mol), followed by OPLSAA/L and AMBER03 (∼1.5 kcal/
mol), then followed by AMBER94 and CHARMM27
(1.8-2.3 kcal/mol). This is consistent with the observations
based on the FESs, in which most force field FESs miss the
RL and RD conformers, except OPLSAA which shows some
signs of the two minima.

The next region, TsRI, features transition state TS7 and
minimum R′. The performance of all force fields except
CHARMM27 are good, with their mean free energies within
(0.4 kcal/mol, standard deviation ∼1.0 kcal/mol, and distribu-
tion fits well with the ab initio calculations. The exception,
CHARMM27, heavily overestimates the stability of this region.
The mean free energy calculated by CHARMM27 is nearly 2
kcal/mol lower than the ab initio mean. In addition, the standard
deviation of the difference map between the CHARMM27 and
ab initio FESs in this region is 2.2 kcal/mol, which is two times
of any other force field.

The second transition-state region, TsRII, is one of the
two paths between the φ < 0 (LeRI and LeRII) and the φ >
0 (LeRIII) regions. We have observed a general increase in
standard deviation from the minima regions to this transition
region. The results indicate that match between any force
field FES with the ab initio FES in this region is less
satisfactory than that of the low-energy minima regions. This
is probably due to the fact that all parametrization focuses
only on matching the positions and energetics of minima.
The best standard deviation is ∼1.5 kcal/mol from the two
AMBER and the OPLSAA force fields, while the other two
are at ∼2.0 kcal/mol. The average free energies of TsRII of
AMBER03, OPLSAA/L, and CHARMM27 are reasonable,
while OPLSAA and AMBER94 underestimate the average
free energy by 1.1-2.3 kcal/mol, respectively. Overall, the
AMBER03 force field gives the best fit to the ab initio FES
in this region (TsRII).

The last transition-state region, TsRIII, also links the φ <
0 (LeRI and LeRII) and the φ > 0 (LeRIII) regions but from
an opposite direction. AMBER94 and CHARMM27 over-
estimate the energy of this region for 1.4 and 0.8 kcal/mol,
respectively. The average free energy of the other three force
fields is good, however, the standard deviation between
AMBER03 (1.7 kcal/mol) and ab initio is larger than the
two OPLSAA (1.0 to 1.2 kcal/mol) force fields. Overall, the
OPLSAA/L FES fits the best with ab initio for TsRIII, in
terms of both mean and standard deviation.

Aqueous Phase Region by Region. Consistent with what
we have observed in the free energy maps, the distribution
of free energies among all six regions is generally wider for
ab initio than the force fields. It should be noted that the
sharp peaks we saw at the high energy end of the
CHARMM27 distribution are due to insufficient conforma-
tional sampling, mostly in TsRIII region, as shown in Figure
4. Standard deviations between the force field and ab initio

FESs are generally larger than that in the gas phase,
indicating less satisfactory matches. As shown in Table 4,
the standard deviation of individual region or among all six
regions falls into two groups. The OPLSAA, OPLSAA/L,
and AMBER03 force fields are in one group (1.5-1.7 kcal/
mol)withsmallerdeviationsthanAMBER94andCHARMM27
(2.5 kcal/mol). This trend is similar to the performance of
these force fields in gas phase.

For the first low-energy region, LeRI (C5-�-C7eq), the
average free energies of all force field FESs are higher than
the ab initio mean. This is directly related to the fact that ab
initio has a wider distribution, therefore the average free
energy of the lowest energy region, relative to the average
of the overall distribution, is lower than that of the force
fields. Since energy is only relevant in terms of relative
stability, we will discuss the effects of this discrepancy later
together with the average energies of other regions. However,
we would like to mention that the average free energy of
LeRI of AMBER94 is 2.0 kcal/mol higher than the ab initio
mean. This difference is slightly larger than the 1.0-1.3 kcal/
mol differences between the other force fields and ab initio
FESs. This is consistent with the gas-phase results in which
AMBER94 underestimates the stability of LeRI. In terms
of standard deviation, i.e., how well a force field FES
matches with the ab initio FES, OPLSAA/L, OPLSAA, and
AMBER03 give ∼1.2 kcal/mol deviation, while AMBER94
and CHARMM27 go up to 1.7-1.8 kcal/mol.

For the second low-energy region, LeRII (�2-RR), the
average free energy is 0.9 kcal/mol higher than that of LeRI
(C5-�-C7eq) based on the ab initio FES. This difference is
very much in agreement with a probability partition of 80-20
between the C5-� (or �-PII) and the RR states, according to
an experimental/computational investigation.27 For AM-
BER03, CHARMM27, and OPLSAA/L, the mean free
energy of LeRII agrees well with that of the ab initio.
However, the free energy differences between the LeRI and
LeRII regions for these force fields are too small (-0.3,
-0.05, and 0.1 kcal/mol, respectively) because of the
underestimation of the stability of the LeRI regions. The near
to zero (-0.05) energy difference obtained by CHARMM27
is consistent with previous MD simulation which gives a
50-50 probability distribution24 between the two regions.
AMBER03 is slightly better than CHARMM27, while
OPLSAA/L is slightly worse. For AMBER94, the mean free
energy of LeRII is in line with ab initio as well. However,
the order of mean free energy between LeRI and LeRII is
reversed due to the underestimation of stability of LeRI.
Again, the reversed order of stability is consistent with
previous MD simulation, which gives a reversed 20-80
probability distribution between LeRI and LeRII.24 For
OPLSAA, the mean free energy of LeRII is 1.0 kcal/mol
higher than the ab initio mean. However, since both LeRI
and LeRII’s stabilities have been underestimated by 1.0-1.1
kcal/mol, their relative stability is similar to ab initio. This
is again in line with previous MD simulation that gives an
85-15 probability distribution between the two regions.24

The consistency observed also validates the current approach
of using the mean free energy and the definition of regions.
The standard deviations for LeRII between the force field
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and ab initio FESs are 0.8 kcal/mol for OPLSAA/L, ∼1.1
kcal/mol for OPLSAA and AMBER03, and 1.5-1.9 kcal/
mol for AMBER94 and CHARMM27.

For the low-energy region on the negative φ side, LeRIII,
the mean free energies are 1.0-1.3 kcal/mol higher than the
ab initio mean for AMBER03 and CHARMM27. This results
in relative stability between LeRI and LeRIII, in good
agreement with ab initio, but not for relative stability between
LeRII and LeRIII. For the other three force fields, the mean
free energies of LeRIII are close to the ab initio value.
Therefore, the relative stabilities between LeRII and LeRIII
are good for AMBER94 and OPLSAA/L but not so good
for OPLSAA due to the higher mean free energy of LeRII.
Furthermore, none of these three produces a good relative
stability between LeRI and LeRIII. The standard deviations
of LeRIII between force field and ab initio are very similar
to LeRI, in which the first group of force fields OPLSAA/L,
OPLSAA, and AMBER03 is at ∼1.2 kcal/mol, while the
other group including AMBER94 and CHARMM27 is at
∼2.0 kcal/mol.

For the first transition-state region, TSRI, the results are
very similar to the gas phase, in which CHARMM27 heavily
and AMBER03 and OPLSAA slightly overestimate the
stability of this area. Combining performance in both mean
and standard deviation, the OPLSAA/L is the best as
comparing with ab initio. For the second transition-state
region, TSRII, the average free energy from all force fields
is lower than that of the ab initio. This directly contributes
to the fact that ab initio FES has a wider free energy
distribution than all the force field FESs. More specifically,
AMBER94 underestimates the free energy of this region for
3.6 kcal/mol. The other force fields perform better than
AMBER94 and only underestimate the average free energy
for 1.1 to 1.9 kcal/mol. Similar to the gas-phase result,
AMBER03 is the best match to the ab initio values
combining the performance of mean and standard deviation.
OPLSAA/L has the best mean but slightly larger deviation,
while OPLSAA has the best deviation but slightly lower
mean. For the third transition-state region, TsRIII, the mean
free energies obtained by CHARMM27 and AMBER94 are
0.9 and 1.3 kcal/mol higher than the ab initio mean. Both
force fields also have higher standard deviations from the
ab initio FES. The other three force fields match with the ab
initio values in both mean free energy (difference within 0.6
kcal/mol) and standard deviation (1.0-1.3 kcal/mol). The
two OPLSAA force fields perform slightly better than
AMBER03 in both mean and standard deviation.

Conclusions

The current B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d,p) with
PCM model approach is able to generate potential energy
contour maps of AD in gas phase and in water that is at
least as accurate as the previous MP2 approaches. The cost-
efficient hybrid DFT method has also allowed us to generate
FESs by calculating free energy corrections on a 50 × 50
grid base. The error range, from the free energy corrections,
is estimated at around 0.2-0.4 kcal/mol. The average free
energy difference of 0.9 kcal/mol between the first two
conformational basins, LeRI (C5-�-C7eq) and LeRII (�2-RR),

on the ab initio-DFT FES in aqueous phase agrees excellently
with a 80-20 probability distribution from recent experi-
mental/computational investigations.27,38

Metadynamics simulations, in combination with five
commonly used MM force fields, have been carried out to
obtain FESs of AD in both gas phase and water. The error
range of these FESs is calculated to be 0.3-0.4 kcal/mol
and in some conformational areas goes up to 0.7 kcal/mol
due to sampling. Quantitative assessment of these force field
FESs in three low-energy conformational basins, LeRI (C5-
�-C7eq), LeRII (�2-RR), and LeRIII(RL-C7ax-RD) as well as
three transition-state regions was made according to the ab
initio DFT FESs. The average free energy differences
between the LeRI and LeRII basins, among several force
fields, agree well with previous MD simulations,24 which
gives validation to the partition of conformational basin and
the assessment method. The quantitative assessment reveals
variations in performance from one conformational region
to another and from force field to force field or from gas to
aqueous phase. Although not one MM force field is able to
outperform all others in all conformational areas, the overall
best performer is the OPLSAA/L force field, followed by
OPLSAA and AMBER03. The results also indicate a certain
degree of transferability of performance from gas to aqueous
phase. However, there are also areas where a better fit in
one phase leads to a decrease performance of another phase,
such as AMBER03 or OPLSAA/L.

In summary, we have presented a new method of assessing
force field performance not only in the energies of conform-
ers but also transition-state barriers. The method presented
and results obtained here should be useful for improving the
parametrization of force field. More specifically, the ab initio-
DFT FESs, the partitions of conformational basins, and the
transition-state regions as well as the method of quantitative
assessment can be used in force field parametrization to
improve the force field description of all areas of the (φ-ψ)
conformational map.
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Abstract: A method for the conformational analysis of furanose rings that involves the prediction
of 3JH,H that can be compared directly to experimental values is investigated. This method, which
differs from the traditional PSEUROT approach for conformational studies of furanose rings,
was previously applied to a number of R-D-arabinofuranosides and enabled the direct comparison
of 3JH,H values to those obtained from NMR spectroscopy. In this paper, the use of this approach
to study the conformational preferences of oligosaccharides containing �-linked arabinofuranose
residues is reported. Density functional theory (DFT) calculations were carried out to derive
Karplus relationships that are specifically tailored for these ring systems. In addition, probability
distributions obtained from GLYCAM/AMBER molecular dynamics simulations were employed
to calculate 3JH,H values from these Karplus relationships. However, unlike the results obtained
with R-arabinofuranosides, the 3JH,H values computed for �-arabinofuranosides agreed poorly
with experimental values. This prompted the exploration of other methodologies including
reevaluation and optimization of the initial MD protocol, use of various force field models, and
recalculation of the DFT-derived coupling profiles using an optimized basis set. After extensive
investigations, we established that the conformer distributions obtained from MD simulations
with the GLYCAM force fields and the furanoside-specific CHARMM force field in combination
with the DFT Karplus equations, determined using an augmented basis set (B3LYP/aug-cc-
pVTZ-J), produced the best agreement compared to experimental 3JH,H values. Using these
protocols, there is relatively good agreement in 3JH,H for all coupling pathways with the exception
of 3J2,3 and 3J3,4, which are underestimated.

Introduction
Furanose (or five-membered ring) carbohydrates are impor-
tant constituents of a number of glycoconjugates in many
microorganisms.1-4 Our group has a long-standing interest
in conformational analysis of furanoside-containing polysac-
charides found in the complex cell wall of the pathogenic
species Mycobacterium tuberculosis, the causative agent of
tuberculosis.5-8 Due to the critical role that these glycocon-
jugates play in the viability and virulence of mycobacteria,9

it is essential to study their conformation in order to
understand their biological functions.

Furanose rings assume various twist (T) and envelope (E)
conformations that can be depicted using the pseudorotational
wheel (Figure 1). Each conformer is described by its
Altona-Sundaralingam (AS) phase angle of pseudorotation
(P), which represents the atoms that are displaced from the
plane, and its AS puckering amplitude (φm), a measure of
the maximum displacement from the planar ring form. Given
five endocyclic torsion angles of a particular conformer, P
and φm can be calculated.10 These conformers interconvert
readily because of the relatively low-energy barriers separat-
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ing them (<5 kcal mol-1).11 This ring flexibility poses a
challenge for the theoretical description of furanosides as
both ring torsion angles as well as any exocyclic dihedral
angles must be considered.

NMR spectroscopy has played a key role in the determi-
nation of the solution conformation of carbohydrates.12-14

In particular, for furanosides, three-bond hydrogen-hydrogen
coupling constants (3JH,H) obtained from NMR spectroscopy
are commonly used in conjunction with a computer program,
PSEUROT, to predict their conformational preferences.10,15-18

This program assumes an equilibrium between two low-
energy conformers, often located in the northern and southern
hemispheres of the pseudorotational wheel, which intercon-
vert through pseudorotation (Figure 1). This program takes
experimental 3JH,H values for the ring hydrogens and
calculates, using the appropriate Karplus relationships, two
conformations and their mole fractions that fit the data the
best. Although PSEUROT has been commonly employed
for conformational analysis of five-membered rings, there
are drawbacks to its use. For example, the two-state model
is not valid in all cases, and the analysis may sometimes
provide physically unrealistic conformations.8,19,20 As an
alternative, we have used theoretical models, such as
molecular dynamics (MD) simulations together with density
functional theory (DFT) calculations, to study conformation
and dynamics.6-8

In a previous investigation,8 we reported MD simulations
of a number of oligosaccharides containing R-arabinofura-
nose (R-Araf) residues. �-Arabinofuranose (�-Araf) moieties
are also found in nature, and these glycosidic residues play
important roles within the cell wall structure of M. tuber-
culosis. In fact, �-Araf residues (e.g., 1-5, Figure 2) are
usually found at the periphery of mycobacterial cell wall
polysaccharides and are typically substituted with other
groups that play key roles in the survival and pathogenicity
of the organism.1 In the arabinogalactan (AG), this group is
esterified with mycolic acids,1 while in the lipoarabinoman-
nan (LAM), this position is capped by short mannopyranosyl
oligosaccharides that are important in interactions with
human mannose binding receptors.21-23 One of our interests

Figure 2. Studied �-Araf-containing molecules.

Figure 1. Pseudorotational itinerary for a D-furanose ring.
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is a hexasaccharide motif found at the nonreducing end of
AG and LAM that is comprised of both R- and �-Araf
residues (5, Figure 2). It has been suggested that this
hexasaccharide plays an important role in a number of
immunological events that occur upon infection by myco-
bacteria.24,25 For example, we have demonstrated that this
motif is recognized by the anti-LAM antibody CS-35,26,27

and thus this structure elicits an immune response.
Previously, we reported the use of the AMBER/GLYCAM

approach to study the conformation of methyl �-D-arabino-
furanoside (1, Figure 2), and in the course of these studies
we demonstrated that the water model used had an important
influence on the ability of this method to reproduce experi-
mentally determined conformer populations.7 More recently,
we reported an alternative method to study the conforma-
tional preferences of R-Araf systems.8 This protocol involves
the use of probability distributions from MD simulations to
calculate Boltzmann-averaged 3JH,H values in combination
with DFT-derived Karplus equations. The resulting coupling
constants can be directly compared to those obtained from
NMR spectroscopy. Better agreement with experiment was
found using the DFT-derived Karplus equations compared
to the use of the empirical Haasnoot-Altona Karplus
relationship.28 This approach provided an alternative to the
use of PSEUROT for studying furanose conformation;
notably, it does not require the two-state assumption.

In concert with MD simulations performed on oligosac-
charides containing R-Araf residues,8 the use of the AMBER/
GLYCAM approach is employed here to study the confor-
mation of oligofuranosides containing �-Araf residues (1-5,
Figure 2). Although the use of this method was successful
in probing the conformation of R-Araf gycosides, its use in
probing �-Araf conformation proved problematic. In the
present report, we investigate the potential sources of these
problems, and a discussion of the various methods employed
toward finding solutions is included.

Nomenclature

The three ideally staggered rotamers about the C4-C5 bond
(gt, tg, and gg) in the Araf residues are defined as shown in
Figure 3.

Methods

DFT 3JH,H Coupling Profiles. In a manner similar to
previously reported for methyl R-D-arabinofuranoside,8 10
envelope conformers of methyl �-D-arabinofuranoside (1)
corresponding to all envelope structures indicated on the
pseudorotational wheel (Figure 1) were constructed. For each

envelope structure, three C4-C5 rotamers (gt, tg, gg) and
three C5-O5 rotamers (ψ ) 180°, -60°, and 60°, where ψ
is defined by the H5-O5-C5-C4 torsion angle) were
generated, resulting in a total of 90 conformations. The
geometries of all 90 conformations were then optimized with
Gaussian 0329 using the B3LYP functional30 with the 6-31G*
basis set. The torsion angle representing the four-atom plane
of each envelope conformer was fixed at 0° to maintain the
envelope structure. For example, the E0 conformer was
generated by fixing C1-C4 in the plane. All other geometric
parameters were allowed to vary during the geometry
optimizations.

DFT calculations of the spin-spin coupling constants in
1 were initially performed using Gaussian 0329 at the B3LYP/
cc-pVTZ level of theory.30,31 All four contributions to the
3JH,H were computed (Fermi contact, diamagnetic spin orbit,
paramagnetic spin orbit, and spin dipolar). The resulting J
data were extracted for all conformations (see Table S-1 in
the Supporting Information for complete coupling constant
data).

The same spin-spin coupling calculations were also
performed with an augmented basis set (aug-cc-pVTZ-J) that
contains additional primitive s and p functions (compared
to cc-pVTZ) and has been optimized for calculation of
spin-spin coupling constants.32-34 For comparison, a basis
set [5s2p1d|3s1p] developed in the Serianni and Carmichael
groups, designed to recover the Fermi contact contribution
to the coupling,35 was also employed. This basis set has been
shown to provide good agreement with experimental 3JH,H.35

In addition, calculations with this basis set were much faster
compared to the aug-cc-pVTZ-J calculations.

The Marquardt-Levenberg nonlinear least-squares algo-
rithm36 was used to fit the acquired coupling constants to
the following truncated Fourier series in the H,H dihedral
angle, φ:37

The coefficients a-c are obtained, corresponding to the
five 3JH,H coupling pathways in 1. In the particular cases of
3J1,2, 3J2,3, and 3J4,5R, a phase shift to the dihedral angle (φ)
was required to obtain improved fits.

GLYCAM04 MD Simulations. Initial simulations of 1
were carried out using the PMEMD implementation in the
AMBER 10 suite of programs38 with the AMBER force field
and the GLYCAM carbohydrate parameter set (version
04f).39 A four-step equilibration scheme was performed on
1 with an initial minimization step where the sugar was held
fixed and the positions of water molecules were relaxed. A
subsequent minimization allowed for all atoms to move for
50 steps of steepest descent followed by 950 steps of
conjugate gradient to minimize the system as a whole.

Once sufficiently relaxed, the system underwent 100 ps
of simulated annealing. The volume was kept constant, and
the SHAKE40 algorithm was used to constrain bonds
involving hydrogen atoms. The final step before production
dynamics involved equilibration of the physical parameters,
such as temperature, pressure, and density of the system.
This equilibration period was run over 240 ps using NPT

Figure 3. Definition of staggered rotamers about the C4-C5
bond.

3JH,H ) a + b cos(φ) + c cos(2φ) (1)

422 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Taha et al.



conditions, where temperature and pressure were held
constant using a constant temperature thermostat with the
weak coupling algorithm (ntt ) 1)41 and a constant pressure
barostat with isotropic position scaling (ntp ) 1), respectively.

The production phase was run for 250 ns under identical
NPT conditions as the final equilibration step. This longer
simulation time was chosen to ensure sufficient equilibration
of the system and proper convergence. SHAKE was used,
and long-range electrostatic interactions were calculated using
the particle mesh Ewald (PME) algorithm42,43 with a cutoff
of 8 Å. Coordinates were printed to the trajectory file every
1000 steps (every 2 ps).

GLYCAM06 MD Simulations. MD simulations of 1-5
were also performed using the GLYCAM06 force field44 and
the AMBER 10 suite of programs.38 Oligosaccharides 2-5
were constructed from multiple units of the R and � anomers
of 1 using additive atomic charges as described previously.8

All other procedures are identical to the GLYCAM04
simulations.

Langevin Thermostat Simulations. MD simulations of
1 were carried out using a Langevin dynamics temperature
regulation scheme45 (ntt ) 3) with a collision frequency (γ)
of 2.0 ps-1 to address the validity of the algorithm used for
maintaining a constant temperature throughout the simula-
tions. Other simulation parameters remained unchanged.

Biased MD Simulations. A biased set of 200 conforma-
tions having P values in the range of P ) -5° to 30° was
generated from a 50 ns MD simulation. Partial atomic
charges for these conformers were calculated as previously
reported;6,7 the procedure and the resulting charges are
included in the Supporting Information (Table S-2 and related
discussion). Using this biased set of charges, MD simulations
of 1 were carried out as before with no changes to the
parameters indicated above.

CHARMM MD Simulations. MD simulations of 1 were
also performed with the CHARMM program46 in the
constant pressure-constant temperature (NPT) ensemble using
a Nosé-Hoover thermostat47,48 with a reference temperature
of 300 K and a Langevin piston barostat49 with a reference
pressure of 1 atm. The system was built using the force field
parameters reported by Hatcher et al. for aldopentofurano-
sides50 and was solvated via the CHARMMing web inter-
face51 with a cubic solvation of TIP3P water52 molecules
with a crystal dimension of 17.57 Å. The system then
underwent 50 steps of steepest descent and 950 steps of
conjugate gradient minimization, which was followed by a
100 ps period of gradual heating to a final temperature of
300 K. The system was equilibrated for 240 ps under NPT
conditions. The production dynamics were run for 250 ns at
300 K, and the SHAKE algorithm was used to constrain all
hydrogen atom bonds to their equilibrium length and to
maintain rigid TIP3P water geometry. The long-range
electrostatic interactionswere treatedwith thePMEsummation.

QM/MM Simulations. Hybrid quantum mechanical and
molecular mechanical (QM/MM) simulations of 1 were
performed in a cubic box of 264 TIP3P water molecules52

using the SANDER module in the AMBER 10 suite of
programs.38 The carbohydrate was treated using the semiem-
pirical PM3CARB-1 parameter set,53 and the solvent mol-

ecules were modeled classically. The PM3CARB-1 QM level
of theory has been shown53 to provide improved predictions
for intramolecular hydrogen bonds, which are essential for
correctly describing carbohydrates in an aqueous environ-
ment. Moreover, this level of theory was shown to improve
predictions of structure and energetics of small carbohydrate
analogues when compared to PM3.53,54 In our simulations,
there are no bonds that cross the QM/MM boundary, and
therefore, hydrogen link atoms were not required (i.e., there
are no covalent bonds between QM and MM atoms).
Preparation of the system for production dynamics included
a 1000 step minimization, followed by a 100 ps simulated
annealing period and a 240 ps equilibration. All steps were
run using QM/MM. The SHAKE algorithm was used to
constrain all hydrogen atom bonds, and long-range electro-
statics were treated with the PME algorithm using a cutoff
of 8 Å. Coordinates were printed to the trajectory file every
500 steps (every 1 ps).

GROMACS MD Simulations. MD simulations of 1 were
also performed using the GROMACS program55 together
with the GROMOS96 force field56 and the SPC/E water
model.57 Partial atomic charges calculated using our modified
GLYCAM approach (as described previously)6,7 were used.
The simulated system was composed of one molecule of 1
surrounded by 431 water molecules in a cubic box simulated
under periodic boundary conditions. Newton’s equations of
motion were integrated using the GROMACS MD integrator
with a 2 fs time step. The LINCS algorithm58 was applied
to constrain all bond lengths. The simulations were carried
out in the NPT ensemble (at a constant temperature of 300
K and a pressure of 1 atm). The temperature and pressure
were maintained constant using the weak-coupling Berendsen
thermostat41 and the Berendsen barostat via isotropic coor-
dinate scaling.41 The PME algorithm was used for treatment
of electrostatics with a cutoff of 8 Å. Prior to production,
the system was subjected to the three-step protocol (mini-
mization, annealing, and equilibration) used in the other
simulations. MD simulations were then conducted in the NPT
ensemble for 200 ns, and data were collected every 2 ps.

3JH,H from MD Conformer Ensembles. For an accurate
comparison of the DFT/MD-derived 3JH,H values to experi-
ment, ensemble averaging must be carried out. This was done
by calculating 3JH,H values for each relevant fragment in
compounds 1-5 using DFT-determined Karplus equations
(J(φ), eq 2) in combination with the continuous probability
distributions (F(φ), eq 2) of the respective φH,H obtained from
MD simulations. In a similar manner as before,8 these 3JH,H

values were then ensemble-averaged using the following
relation:

Direct DFT Coupling Calculations. A representative set
of 200 conformations was extracted from a GLYCAM
simulation of 1. Coupling constants were then computed for
each of these conformers in the Gaussian 03 program29 using
the B3LYP functional30 and the [5s2p1d|3s1p] basis set.35

〈J〉 ) ∫
0

360

J(φ)F(φ)dφ (2)
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The resulting 3JH,H values were then averaged over all 200
conformations.

Results and Discussion

Karplus Relationships for 3JH,H in D-Arabinofurano-
sides. In our previous report,8 Karplus equations were
developed for methyl R-D-arabinofuranoside, the R-anomer
of 1. In the interest of generalization to all D-arabinofura-
nosides, Karplus relationships that can be applied to both
R- and �-Araf residues were developed. To do this, 3JH,H

values for both anomers of methyl D-arabinofuranoside were
plotted together as a function of φH,H. The data were fitted
to obtain overall curves (Figures 4 and 5) and their
corresponding parametrizations (eqs 3-7).

The ring protons display well-fitted curves (Figure 4 and eqs
3-5). The curve for 3J3,4 is symmetrical about 0° and exhibits
a global maximum of 10 Hz. In contrast, 3J1,2 and 3J2,3 curves
are both shifted (nonsymmetry about 0°), and both required
phase shifts for better fits (11° and -18°, respectively). In
our previous report,8 the 3J1,2 Karplus curve for R-Araf was
not well parametrized around 0° because conformers with
φ1,2 near 0° were not possible given the constraints of the
ring system. With the addition of data points for 1, this lack
of parametrization at 0° has greatly improved.

The exocyclic hydroxymethyl groups in both R- and
�-Araf exhibit similar coupling profiles and well-fitted
Karplus curves (Figure 5, eqs 6-7). The curve for 3J4,5R is
shifted from the 3J4,5S curve, and a phase shift of 15° was
added to φ for a better fit.

MD/DFT-determined 3JH,H in 1. Using the DFT-derived
relationships determined above, we computed averaged 3JH,H

values using the distribution of conformers that were obtained
from MD simulations of 1 using the GLYCAM04 carbohy-
drate parameter set. Presented in Table 1 (G04) is a
comparison of these calculated 3JH,H values for 1 with those
measured by NMR spectroscopy. The 3JH,H values computed
using the conformer ensemble obtained from simulations
using the GLYCAM06 force field are also included in Table
1 (G06).

Analysis of these data reveals that the combination of the
MD conformer ensembles and the DFT-derived equations
is able to reproduce experimental 3J1,2 and 3J4,5S values with
near perfect accuracy. However, as was observed in the
analysis of R-arabinofuranosides,8 the computed 3J4,5R is
underestimated compared with experiment (1.7 Hz devia-
tion). This can be attributed to an underestimation of the gt
rotamer population (i.e., the largest contributor to 3J4,5R) by
the MD simulations, which results in a lower overall average
coupling constant.8 For 2-5, similar trends are observed for
3J4,5 values (see Table S-4 in the Supporting Information)
with deviations ranging from 1.7-2.6 Hz for 3J4,5R and 0-0.6
Hz for 3J4,5S.

Unlike in the R-Araf case,8 the calculated 3J2,3 and 3J3,4

couplings in the present �-Araf system also exhibit significant
discrepancies compared to experimental values (deviations
of 5.1 and 2.6 Hz, respectively). Analysis of the 3JH,H values
obtained from the GLYCAM06 simulations reveals similar
trends with slight improvements in the agreement of the ring
couplings (3J1,2, 3J2,3, and 3J3,4).

To investigate the source of the discrepancies in 3J2,3 and
3J3,4 values, the respective dihedral angle distributions (φ2,3

and φ3,4) obtained from MD simulations of 1 were examined
(Figure 6); for comparison, the distribution of φ1,2 is also
included in Figure 6.

For φ1,2, two populations are observed in the MD
conformer ensemble, with the most populated angles ob-
served at -32° (67%) and 36° (33%). The DFT-derived

Figure 4. Karplus curves of 3J1,2 (eq 3), 3J2,3 (eq 4), and 3J3,4

(eq 5) for methyl R-D-arabinofuranoside (filled circles, b) and
methyl �-D-arabinofuranoside (unfilled circles, O) obtained
from B3LYP/cc-pVTZ calculations.

Figure 5. Karplus curves of 3J4,5R (eq 6) and 3J4,5S (eq 7) for
methyl R-D-arabinofuranoside (filled circles, b) and methyl �-D-
arabinofuranoside (unfilled circles, O).

3J1,2(R, �) ) 3.15 - 0.55 cos(φ + 11°) +

3.30 cos(2φ + 22°) (R2 ) 0.98) (3)

3J2,3(R, �) ) 4.21 - 0.72 cos(φ - 18°) +

4.26 cos(2φ - 36°) (R2 ) 1.00) (4)

3J3,4(R, �) ) 4.46 - 0.65 cos(φ) +

4.31 cos(2φ) (R2 ) 0.99) (5)

3J4,5R(R, �) ) 5.22 - 0.15 cos(φ + 15°) +

4.73 cos(2φ + 30°) (R2 ) 0.97) (6)

3J4,5S(R, �) ) 4.94 - 0.20 cos(φ) +

4.21 cos(2φ) (R2 ) 0.97) (7)

424 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Taha et al.



Karplus curve obtained for 3J1,2 along with the two-
population distribution for φ1,2 produce coupling constants
that is in good agreement with experiment. In contrast, the
distributions for φ2,3 and φ3,4 each exhibit two-state popula-
tions that negatively impact the value of the average 3JH,H.

The most populated state for φ2,3 (72%) is centered at 160°
and that for φ3,4 is centered on -148° (77%). Using the DFT-
determined Karplus curves for these coupling fragments,
these dihedral angle distributions give a relatively large
coupling constant because the respective hydrogen atoms are
in a near-trans relationship. However, the second population
of conformers for both angles is centered near 90° (or -90°
for φ3,4). These distributions produce coupling values that
are near 0 Hz. Therefore, ensemble averaging over the two
populations in each case results in a low overall 3JH,H value.
These two-state populations are more heightened in the
GLYCAM04 distributions (see Figure S-1 in the Supporting
Information), where essentially identical populations are
observed for the φ2,3 angle (55:45) and similar populations
for φ3,4 (66:34) compared to the GLYCAM06 distributions.
This is reflected in the worse agreement between the
calculated and experimental 3J2,3 and 3J3,4 values with the
conformer ensemble obtained from the GLYCAM04 simula-
tions (Table 1, G04).

It should be noted that the major conformation about each
of these angles (φ1,2 ) -32°, φ2,3 ) 160°, and φ3,4 ) -148°)
corresponds to conformers in the northern hemisphere of the
pseudorotational wheel (P ) -31°-22°). These structures
are similar to the major conformer of 1, as determined earlier
using the PSEUROT approach, which predicts a conforma-
tional equilibrium biased heavily (∼90:10) to a northern
conformer (E2/3T2; P ) -9).10 This structure is also in good
agreement with the conformation of the ring in the crystal
structure of the molecule.59 Thus, the simulations appear to
predict the correct major conformer but underestimates its
population in the conformational equilibrium.

Direct DFT 3JH,H Calculation. To evaluate whether the
errors in 3JH,H values stem from the Karplus curve fitting
procedure, we investigated a direct method that bypasses this
step. Rather than fitting φH,H and 3JH,H data computed for
each fragment in 1 and using the generated equations with
the MD conformer ensembles, a representative set of
conformers was instead chosen, and 3JH,H values were
directly calculated for this set. Subsequently, the final 3JH,H

values were obtained by averaging over all conformers in
the set. Table 1 (DDFT) shows the 3JH,H values obtained
from these calculations and their comparison to 3JH,H values
from our original approach as well as to experiment.

In terms of the 3J4,5 couplings, this direct approach shows
better agreement with experiment. A comparison of C4-C5
rotamer distributions reveals that the same relative trend is
observed in both conformer ensembles (gt > gg > tg);
however, small differences are detected (45 gt: 15 tg: 40 gg
using the full conformer set vs 51 gt: 11 tg: 38 gg for the
200 conformer set). This finding suggests that, although not
ideal, the conformer distribution could be refined (by
selecting “better” conformations) to more accurately repro-
duce the experimental result. Analysis of the ring couplings
(3J1,2, 3J2,3, and 3J3,4) demonstrated that the direct DFT
approach results in better agreement with experiment for 3J3,4

values but in poorer agreement for 3J1,2; no differences in
agreement were observed between the two sets for 3J2,3.
These results suggest that this small set of conformers is
not sufficient to properly represent the distribution of H-H
dihedral angles along each coupling pathway. Although a
closer value was observed for 3J3,4, this may be fortuitous
from the random selection of conformers for this set.

It is obvious from these results that proper sampling of
conformers was not achieved; certain conformers were not
sampled sufficiently and others more than desired. It is
probable that a larger conformer set, or a more biased
selection of the set, is required to obtain better agreement.
This is, however, a rather unsatisfying approach, which
requires insight into the conformation of the molecule before
it is studied.

Langevin Thermostat Simulations. Given the results
presented above, we reevaluated our previously employed
protocol6-8 for carrying out the MD simulations of Araf
rings. In addition to the simulations performed using the
Berendsen thermostat (used in all our previous simulations),
MD simulations of 1 were also carried out using the Langevin
thermostat. However, upon analysis of the resulting con-
former ensembles, negligible differences were observed in

Table 1. 3JH,H Values (in Hz) in 1 Obtained from
Experiment and from MD Simulation Conformer
Populationsa

EXP G04 G06 DDFT B30 BIA CHM QMM GRO
3J1,2 4.5 4.1 4.4 5.1 4.9 4.4 4.0 5.5 4.6
3J2,3 7.9 2.8 3.6 3.7 5.8 3.8 4.1 2.3 4.9
3J3,4 6.7 4.1 4.4 5.2 6.2 4.5 4.1 3.1 5.3
3J4,5R 6.7 5.1 5.0 5.7 4.5 4.9 5.0 6.4 4.8
3J4,5S 3.4 3.5 3.6 3.3 3.3 3.6 3.0 3.8 6.1

a EXP ) experimental values; G04 ) using GLYCAM04
conformer ensemble; G06 ) using GLYCAM06 conformer
ensemble; DDFT ) average 3JH,H from 200 conformations from
MD conformer ensemble; B30 ) using a biased set of conformers
having P values in the range of -30° to 30°; BIA ) using
conformer ensemble from simulations with biased set of atomic
charges; CHM ) using CHARMM conformer ensembles of 1;
QMM ) using QM/MM conformer ensembles of 1; and GRO )
using GROMACS conformer ensembles of 1.

Figure 6. Distributions of ring protons obtained from the
GLYCAM06 MD simulations of 1.
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both the rotamer populations as well as the distribution of
ring conformations. For a discussion of the results, see
Supporting Information (Figure S-2, Tables S-5 and S-6, and
related discussion).

Biasing the MD Simulations. Further investigations to
improve the predicted 3J2,3 and 3J3,4 values included the
refinement of partial atomic charges to correspond to a biased
set of conformations. In Figure 7, a plot of these couplings
as a function of pseudorotational phase angle, P, is shown.
In this plot, it can be seen that conformers that lie in the
undesired φ2,3 ) 90° or φ3,4 ) -90° regions and give rise to
3JH,H near 0 Hz (Figure 6) correspond to P values in the
southern hemisphere of the pseudorotational wheel (i.e.,
90°-270°), and the desired conformers are in the northern
P range of -90° to 90°.

To assess whether better agreement in 3J2,3 and 3J3,4 values
can be obtained if only a particular set of conformers is used
for the charge calculations, we extracted all conformations
that adopted a P value falling in the desired range of -30°
to 30° from the entire 250 ns trajectory. Indeed, we observed
significant improvements in 3JH,H when using these confor-
mations compared with the use of the entire trajectory (Table
1, compare B30 and G06).

With this result in hand, we modified our atomic charge
calculation procedure so that ensemble averaging of charges
was performed on only the conformations that adopted
preferred P values. This was done in the hope that these
biased charges would lead to an improved MD conformer
ensemble and therefore better agreement in 3JH,H. However,
when the MD simulation of 1 was carried out using this
biased set of charges, similar conformer ensembles were
observed compared to the unbiased case; 3JH,H values were,
therefore, also similar (Table 1, BIA). This result essentially
reiterates the highly flexible nature of these furanoside
systems. In fact, a time-dependence plot of the P angle (See
Figure S-3 in Supporting Information) clearly indicates that
even at short simulation times, all values of P can be readily
visited (low-energy barriers); this is in contrast to the C4-C5
rotamers, which require long simulation times for proper
sampling, especially the lower populated ones. These results
are consistent with those previously described for MD

simulations on arabinofuranosides6-8,60 as well as reported
DFT calculations on these systems, which have revealed that
the barrier to pseudorotation is small (∼5 kcal/mol in the
case of 1)61 and lower than the energy required to rotate
about the C4-C5 bond.62

In light of the above results, we questioned whether the
use of the GLYCAM force fields exhibited some limitations
for their application to furanosides. Therefore, we explored
three alternate methods for carrying out simulations of 1:
MD simulations using a furanoside-specific force field50 in
the CHARMM program,46 QM/MM simulations in the
AMBER program,63 and MD simulations using the
GROMOS96 force field56 in the GROMACS program.64

Use of the CHARMM Force Field. In a recent report,50

Hatcher et al. reported an additive all-atom empirical force
field parametrized for aldopentofuranoses and their methyl
glycosides as well as for fructofuranose rings. Exocyclic
rotamer populations and puckering distributions were pre-
dicted from aqueous-phase MD simulations of both anomers
of methyl D-arabinofuranoside. Therefore, we utilized this
force field for our own simulations of 1 and found that we
qualitatively reproduced the results reported by Hatcher et
al. (Table 2). The C4-C5 rotamer populations follow the
same trend, though differing percentages are observed. This
discrepancy is likely a result of the length of the MD
simulations. In our protocol, simulation times of g200 ns
were carried out to ensure convergence of C4-C5 rotamer
populations,6-8 whereas 20 ns simulations were employed
in the Hatcher et al. report.50 With regards to ring conforma-
tion, our simulations predicted north and south conformer
populations that are almost identical to those previously
reported50 with the most populated conformers differing
slightly.

With the MD conformer ensemble from the CHARMM
simulations in hand, we carried out 3JH,H calculations as
before, and the results are presented in Table 1 (CHM). This
analysis reveals that, although slightly better agreement in
3J2,3 is observed (4.1 Hz compared to 3.6 Hz), the remaining
coupling constants exhibit similar or slightly worse agree-
ment with experiment compared to those calculated with the
GLYCAM06 conformer distributions. This discrepancy again
can be attributed to the large percentage of southern
conformers predicted by the simulations that correspond to
near perpendicular φ2,3 and φ3,4 dihedral angles (see Figures
S-3 and S-4 in the Supporting Information for a plot of the
distributions). The near zero couplings resulting from these
conformers give rise to a low overall 3JH,H.

QM/MM Simulations of 1. The next method attempted
toward a potential solution to the discrepancies in predicted

Figure 7. Plot of φ2,3 and φ3,4 as a function of P angle
obtained from MD simulations of 1.

Table 2. MD Simulation Conformer Ensembles of 1 using
the CHARMM Force Field

C4-C5 rotamersa ring conformationb

current Hatcher et al.50 current Hatcher et al.50

Xgt 45 64 PN -7° -15°
Xtg 15 6 %N 60 62
Xgg 40 30 PS 160° 183°

%S 40 38

a Experimental values: 57% gt, 8% tg, and 35% gg.
b Experimental values: PN ) -7°, 86%; PS ) 162°, 14%.
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3JH,H values involved the use of a combined QM/MM
approach where 1 was treated using QM, and the solvent
was modeled with MM. The PM3CARB-1 parameter set was
used in these simulations as it has shown improved prediction
of intramolecular hydrogen-bond strength, ring conformation,
and energetics compared to PM3.53,54 In previous reports,
this parameter set was used to accurately predict hydroxym-
ethyl group conformation in gluco- and galactopyranose
using QM/MM simulations54 as well as adequate prediction
of glycosidic linkage conformation in three disaccharides:
(�-D-glucopyranosyl-(1f4)-�-D-glucopyranose, R-D-glu-
copyranosyl-(1f4)-R-D-glucopyranose, and R-D-galactopy-
ranosyl-(1f4)-R-D-galactopyranose).65

Using the same convergence criteria as we employed
previously (i.e., errors of e3% in C4-C5 rotamer popula-
tions), we observed that a simulation time of 100 ns was
sufficient for proper convergence in these QM/MM simula-
tions (see Figure S-6 in the Supporting Information for
convergence plot). Figure 8 shows a histogram of the
resulting rotamer distributions about the C4-C5 bond in 1.

Integration of the peaks in the histogram produces a
distribution of 66:27:7 for the gt:tg:gg rotamers. Unlike in
previous MD simulations of 1, this trend in the populations
(gt > tg > gg) contradicts the experimental result (gt > gg >
tg). The gg rotamer is found to be the least populated,
indicating that the gauche effect,66 the preference for adjacent
electronegative substituents along a two-carbon fragment to
adopt the gauche orientation, is not properly considered in
the calculations. Moreover, hydrogen-bond analysis of the
resulting conformer ensemble (see Table S-7 in the Sup-
porting Information) showed no significant occupancy of
intramolecular hydrogen bonds.

Upon analysis of the 3JH,H using the B3LYP/cc-pVTZ-
determined Karplus equations with the conformer ensemble
from the QM/MM simulations, we observed excellent
agreement in the 3J4,5 couplings (Table 1, QMM). This result
suggests errors in the experimental model used to calculate
rotamer populations. Having correctly reproduced the 3J4,5

obtained from NMR spectroscopy, it would appear that these
QM/MM simulations are the ideal choice for determining
the hydroxymethyl group conformation in this system.

However, as will be seen later when more accurate Karplus
equations are used, this is not the case.

Analysis of the ring 3JH,H (Table 1, QMM) revealed much
worse agreement with experiment than those calculated from
the other MD simulations. To understand this discrepancy,
we again looked at the dihedral angle distributions of the
ring protons obtained from these QM/MM simulations
(Figure 9). For all ring protons, the Hx-Cx-Cx+1-Hx+1

distributions each exhibit single-state populations, which is
in contrast to what was observed in the classic MD
simulations (See Figure 6).

For φ1,2, the distribution is centered about -13°, which
corresponds to a larger 3J1,2 than observed in experiment (see
Karplus curve for 3J1,2, above). Similarly, the distributions
of φ2,3 and φ3,4 show the most probable dihedral angles at
140° and -127°, respectively, both of which correspond to
low 3JH,H values (2.7 and 2.9 Hz, respectively). Upon
examination of the distributions of ring conformations
(Figure 10), the source of these discrepancies in the dihedral
angle distributions became clear.

The distribution of P produces an average of -37° that
corresponds to a conformation in the northwestern region

Figure 8. Histogram plot of the C4-C5 rotamer distributions
obtained from QM/MM simulations of 1.

Figure 9. Distributions of ring protons obtained from the QM/
MM simulations of 1.

Figure 10. Distribution of the pseudorotational phase angle,
P, and the puckering amplitude, φm (inset), obtained from QM/
MM simulations of 1.
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of the pseudorotational wheel (1E/1T2). This value is com-
parable to the northern P values predicted from the other
simulations. More interestingly, however, is the predicted
puckering amplitude, φm, which gives an average of 22°. A
statistical analysis of a large number of �-D-furanoside X-ray
structures suggest the �-Araf ring adopts an optimal φm of
38°.59,67 Therefore the QM/MM simulations predict a ring
that is too flat, which we propose results in undesired ring
H-C-C-H dihedral angle distributions. From these results,
we can conclude that although the use of PM3CARB-1 in
QM/MM simulations of 1 appears to correctly predict
hydroxymethyl group conformation, it is not sufficient for
determining ring conformation in 1.

GROMACS Simulations of 1. In a recent report, uncon-
strained MD simulations of 2-O-sulfo-R-L-iduronic acid
(IdoA2S) were carried using the GLYCAM06 and GRO-
MOS96 force fields to investigate their ability to reproduce
conformational distributions of the idopyranose ring, another
flexible monosaccharide.68-71 It was found that the predicted
ring conformation using GROMOS96 was in better agree-
ment with experiment than the use of the GLYCAM06 force
field. Moreover, the predicted hydroxymethyl group confor-
mation was similar in both cases. Therefore, to probe its
performance in our systems, the GROMOS96 force field was
utilized in MD simulations of 1.

The resulting distribution of ring conformations as well
as the C4-C5 rotamer populations is presented in Figures
11 and 12, respectively. Analysis of the puckering (Figure
11) shows a heavily biased distribution (92%) of northern
conformers centered about PN )-14° and a small population
(8%) of southern conformers centered on PS ) 144°.
Moreover, the predicted puckering amplitude agrees well
with previous simulations (with the exception of QM/MM),
DFT theory calculations,11 and X-ray data.59

Analysis of the ring 3JH,H values (Table 1, GRO) shows
that with this puckering distribution, we indeed observe better
agreement with experiment compared to the other simula-
tions. Although the 3J2,3 and 3J3,4 values remain too small,
the resulting values are now much closer to experiment

compared to the other simulations, and we observe near
perfect agreement in 3J1,2.

Upon analysis of 3J4,5, however, we observe significant
deviation from experiment; the predicted values are now in
reverse order. This result can be explained in a similar
manner to that reported previously.8 Looking at the C4-C5
rotamer distributions obtained from the MD simulations
(Figure 12), it can be seen that the tg rotamer is predicted to
be the most populated (58%). This rotamer is the largest
contributor to 3J4,5S, as opposed to the gt rotamer which
produces the largest 3J4,5R. Hence, the observed trend in 3J4,5

couplings is a result of significant overestimation of the tg
rotamer by the MD simulations.

More Accurate DFT Coupling Profiles. The significantly
lower magnitudes in 3J2,3 and 3J3,4 compared to experiment
prompted reinvestigation of the Karplus relationships cal-
culated for the �-Araf system. Upon analysis of all coupling
constants calculated using the B3LYP/cc-pVTZ level of
theory, we discovered that the maximum 3J2,3 value that could
be obtained was 6.8 Hz. This indicated that, regardless of
which conformer ensemble is chosen, the predicted 3J2,3 will
not likely reach the experimental value of 7.9 Hz. Therefore,
additional coupling profiles for 1 were computed using DFT
calculations and an augmented basis set (aug-cc-pVTZ-J).
This basis set has been optimized for calculation of spin-spin
coupling constants and has been shown to produce accurate
one-, two-, and three-bond J values in a number of small
molecules containing electronegative substituents.34 The
spin-spin coupling constant data calculated using this
augmented basis set were plotted as a function of the
respective H-C-C-H torsion angles and fitted to eq 1 (the
resulting curves along with their parametrizations are pre-
sented in the Supporting Information, Figure S-12 and
equations S-1-5).

With these revised Karplus relationships in hand, we
carried out calculations of averaged 3JH,H values using the
distribution of conformers from all previous simulations of
1. Analysis of the resulting data (Table 3, A) clearly shows
that, overall, the 3JH,H magnitudes are larger than those
obtained using the original DFT-derived Karplus relation-
ships (eqs 3-7). In general, there is good agreement with

Figure 11. Distribution of the pseudorotational phase angle,
P, and the puckering amplitude, φm (inset), obtained from
GROMACS simulations of 1.

Figure 12. Histogram plot of the C4-C5 rotamer distributions
obtained from GROMACS simulations of 1.
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experiment for 3J1,2 (with the exception of QM/MM) and
3J4,5S (with the exception of GROMACS). Moreover, both
of the GLYCAM and the CHARMM simulations predict
comparatively accurate 3J4,5R values.

Overall, there is generally better agreement in 3J2,3 and
3J3,4 values; however, significant underestimation of the
magnitudes remains. The GROMACS simulations predict the
closest 3J2,3 and 3J3,4 values, although the trend remains in
reverse compared to experiment, and 3J1,2 has deviated away
from the experimental value. Moreover, as discussed above,
the GROMACS-predicted 3J4,5 couplings are inconsistent
with experiment.

The QM/MM simulations provide the worst agreement
overall; using these new Karplus relationships, not a single
3JH,H shows reasonable agreement. In contrast, the best
agreement in 3J1,2, 3J4,5R, and 3J4,5S, and the correct trend in
3J2,3 and 3J3,4 is provided by the CHARMM simulations. For
the sake of completeness, we also used Karplus equations
using the Serianni-Carmichael [5s2p1d|3s1p] basis set to
calculate 3JH,H. In fact, similar results compared to the
augmented basis set were obtained using this basis set (Table
3, B).

Conclusions

We report here the combined use of conformer ensembles
obtained from MD simulations and DFT-derived Karplus
relationships for subsequent calculation of 3JH,H (3J1,2, 3J2,3,
3J3,4, 3J4,5R, and 3J4,5S) as a conformational probe. This
approach allows for the direct comparison of vicinal coupling
constants obtained from NMR spectroscopy, thereby avoiding
possible sources of errors encountered in the models used
to analyze NMR data (e.g., the two-state model inherent in
PSEUROT15 or the “discrete” model).72

The coupling constant values calculated from the DFT-
derived 3JH,H relationships for R-Araf residues, as reported
previously,8 showed reasonable agreement with experiment.
This result reiterates the ability of the AMBER/GLYCAM
simulations to provide accurate conformer distributions of

oligosaccharides containing R-Araf rings. However, studies
on the �-Araf system using this approach displayed a number
of difficulties.

Conformer ensembles obtained from MD simulations using
the GLYCAM04 parameter set and the GLYCAM06 force
field were used to calculate 3JH,H in 1. The results show that
reasonable agreement can be obtained for 3J1,2 and 3J4,5, but
significant deviations are observed for 3J2,3 and 3J3,4. To
understand this discrepancy, we evaluated the dihedral angle
distributions predicted by the MD simulations along these
fragments and found that a large population of conformers
adopt near perpendicular φ2,3 and φ3,4 angles, which result
in negligible 3JH,H values. These distributions arise from ring
conformations that are present in the southern region of the
pseudorotational wheel, which, on the basis of previous
experimental work,10,61,73 appear to be populated only to a
small degree in solution. In fact, an analysis of 3JH,H for
northern conformers showed significant improvements for
the ring couplings over the use of the entire trajectory.
However, when a set of northern-biased partial atomic
charges was used in MD simulations of 1, no change in the
distribution of puckering was observed.

To find a potential solution to the discrepancy in 3JH,H,
we explored a direct DFT method, which avoids generating
Karplus equations and instead calculates 3JH,H from a
representative set of conformations. We envisioned that this
protocol would circumvent any errors that may be introduced
in the fitting procedure. The resulting 3JH,H from this method
showed slightly better agreement with experiment, in general.
A larger set of conformers may be required to accurately
represent the phase space of this molecule. However, as the
numbers of conformers required for good agreement with
experiment increases, the practicality of this approach
decreases due to the large cost of the DFT spin-spin
coupling calculations. Potentially, the MD conformer en-
semble can be tailored so as to reproduce the experimental
data. This is, in principle, similar to a time-averaged
restrained molecular dynamics (tar-MD) simulation where
NMR restraints are used to bias the simulation to reproduce
experimental data. This procedure was, in fact, recently used
to study the conformation of a number of ribofuranose-based
molecules.19 However, this requires prior knowledge of NMR
data and therefore would be insufficient for large oligosac-
charides where experimental data can be difficult to obtain,
due to spectral overlap. Furthermore, use of these approaches
may hinder the development of an unbiased and general
model to accurately probe the conformational preferences
of these Araf systems.

Different force fields were also investigated in simula-
tions of 1 for their ability to predict accurate conformer
ensembles. The recently developed CHARMM force field
for aldopentofuranosides50 predicted average 3JH,H values
that were in similar agreement with experiment compared
to GLYCAM06. The predicted C4-C5 rotamer populations
as well as ring conformer distributions were similar to those
reported by Hatcher et al.50 Use of the GROMOS96 force
field showed 3J2,3 and 3J3,4 values that are closer to experi-
ment than those predicted by CHARMM, but the couplings
along the C4-C5 fragment deviated significantly. The

Table 3. 3JH,H Values (in Hz) for 1 using DFT-Derived
Karplus Curves with Various MD Conformer Ensemblesa

EXP G04 G06 CHM QMM GRO

A B3LYP/aug-cc-pVTZ-J-Derived Karplus Curves
3J1,2 4.5 4.9 5.1 4.7 6.7 5.4
3J2,3 7.9 3.5 4.6 5.3 2.9 6.3
3J3,4 6.7 5.2 5.5 5.1 3.8 6.6
3J4,5R 6.7 6.3 6.1 6.2 7.9 5.6
3J4,5S 3.4 4.0 4.1 3.3 4.5 7.4

B B3LYP/5s2p1d|3s1p-Derived Karplus Curves
3J1,2 4.5 4.6 4.9 4.5 6.2 5.1
3J2,3 7.9 3.2 4.3 4.8 2.6 5.9
3J3,4 6.7 4.8 5.1 4.8 3.4 6.2
3J4,5R 6.7 5.8 5.7 5.8 7.4 5.3
3J4,5S 3.4 3.7 3.8 3.2 4.2 7.0

a EXP ) experimental values; G04 ) using GLYCAM04
conformer ensembles of 1; G06 ) using GLYCAM06 conformer
ensembles of 1; CHM ) using CHARMM conformer ensembles of
1; QMM ) using QM/MM conformer ensembles of 1; and GRO )
using GROMACS conformer ensembles of 1.
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predicted conformation of the hydroxymethyl group showed
a distribution of 18:58:24 for gt:tg:gg. This result is peculiar,
as the tg rotamer (which is the most populated in this case)
lacks any stabilizing stereoelectronic effects that are present
in the gt or gg rotamers, such as the gauche effect or
intramolecular hydrogen bonds. Recent investigations on
IdoA2S conformation showed that both GROMOS96 and
GLYCAM06 force field are able to accurately predict
hydroxymethyl group conformation.74 In our simulations,
however, these two force fields predict significantly different
conformer distributions.

QM/MM simulations of 1 showed conflicting results. With
the original DFT Karplus equations (from the B3LYP/cc-
pVTZ calculations), these simulations appeared to have
correctly predicted the hydroxymethyl group conformation.
However, with the use of the augmented basis set or the
Serianni-Carmichael basis set, both of which gave reason-
able agreements using the classical MD conformer en-
sembles, the semiempirical QM/MM simulations resulted in
contradictory results. It is possible that a different QM theory
(other than PM3CARB-1) may be needed for better agree-
ment. Alternatively, a DFT-MD approach that was recently
applied to study the conformation of glucopyranose and all
its epimers75 may also be useful in this system. However,
the use of this methodology for larger systems (such as 2-5)
is not practical from a computational perspective.

A final attempt at obtaining accurate 3JH,H from MD
conformer ensembles involved the reevaluation of the DFT-
derived Karplus equations. In the earlier work on R-Araf-
containing molecules, the coupling profiles generated using
the Dunning cc-pVTZ basis set proved to be sufficient for
predicting 3JH,H.8 However, for the present �-Araf case, an
augmented basis set (aug-cc-pVTZ-J) was required to obtain
closer 3JH,H values; similar agreement was also observed
using the Serianni-Carmichael [5s2p1d|3s1p] basis set. In
comparison, use of the Serianni-Carmichael basis set offers
a more superior method in terms of its relatively smaller
size, and therefore, its more efficient calculation of spin-spin
coupling profiles. In both cases, the CHARMM simulations
appear to provide the best agreement in 3JH,H with experi-
ment, although significant deviations were still observed, and
GLYCAM06 performs similarly.

In conclusion, the range of simulation methods used here
to model the �-Araf ring demonstrated that the conformer
populations obtained predict 1H-1H vicinal coupling con-
stants that were in less good agreement with experiment,
compared to previous investigations of R-Araf rings. It is,
of course, possible that other fixed charged force field models
not attempted here, such as MM4,76,77 could result in better
agreement with experiment. Moreover, reparameterization
of force field torsional functions may also be performed to
obtain possibly better conformer distributions and work in
this direction is currently underway. Other possibilities
include the use of polarizable force field models to capture
electronic polarization effects. The use of such force fields
has not been required in the case of oligosaccharides
containing pyranose residues.78-82 However, as shown in
previous reports,6,7 fluctuations in fixed partial atomic
charges in five-membered rings can change significantly as

a function of ring pucker of both R- and �-Araf rings, and
therefore, inclusion of polarization in the model may result
in better prediction of ring conformation. Models that include
explicit treatment of electronic polarizability have been
developed that can be used to treat alcohols.83-88 Polarizable
empirical force fields that are based on the classical Drude
model86,88 have also been reported for primary and secondary
alcohols89 as well as for linear and cyclic ethers.90 Moreover,
a general purpose polarizable model, AMOEBA, which
replaces the fixed partial charge model with polarizable
atomic multipoles through the quadrupole moments, has also
been recently developed.91 Therefore, we anticipate that a
more accurate electrostatic representation together with force
field torsional reparameterization would benefit the depiction
of the conformational preferences of both R- and �-Araf
systems.
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Brooks, B. R.; Woodcock, H. L. J. Chem. Inf. Model. 2008,
48, 1920.

(52) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey,
R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926.

(53) McNamara, J. P.; Muslim, A. M.; Abdel-Aal, H.; Wang, H.;
Mohr, M.; Hillier, I. H.; Bryce, R. A. Chem. Phys. Lett. 2004,
394, 429.

J. Chem. Theory Comput., Vol. 7, No. 2, 2011 431



(54) Barnett, C. B.; Naidoo, K. J. J. Phys. Chem. B 2008, 112,
15450.

(55) van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark,
A. E.; Berendsen, H. J. Comput. Chem. 2005, 26, 1701.

(56) van Gunsteren, W. F.; Billeter, S. R.; Eising, A. A.; Hünen-
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Abstract: Herein we introduce a novel practical strategy to overcome the well-known challenge
of modeling the divalent zinc cation in metalloproteins. The main idea is to design short-long
effective functions (SLEF) to describe charge interactions between the zinc ion and all other
atoms. This SLEF approach has the following desired features: (1) It is pairwise, additive, and
compatible with widely used atomic pairwise force fields for modeling biomolecules; (2) It only
changes interactions between the zinc ion and other atoms and does not affect force field
parameters that model other interactions in the system; (3) It is a nonbonded model that is
inherently capable to describe different zinc ligands and coordination modes. By optimizing two
SLEF parameters as well as zinc van der Waals parameters through force matching based on
Born-Oppenheimer ab initio quantum mechanical/molecular mechanical (QM/MM) molecular
dynamics (MD) simulations, we have successfully developed the first SLEF force field (SLEF1)
to describe zinc interactions. Extensive MD simulations of seven zinc enzyme systems with
different coordination ligands and distinct chelation modes (four-, five-, and six-fold), including
a binuclear zinc active site, yielded zinc coordination numbers and binding distances in good
agreement with the corresponding crystal structures as well as ab initio QM/MM MD results.
This not only demonstrates the transferability and adequacy of the new SLEF1 force field in
describing a variety of zinc proteins but also indicates that this novel SLEF approach is a
promising direction to explore for improving force field description of metal ion interactions.

1. Introduction

Zinc proteins constitute approximately 10% of the total
human proteome1 and play a variety of essential biological
roles,2-5 such as transcription factors, signaling proteins, and
transport/storage proteins as well as enzymes. Their function
and/or structural organization are critically dependent on the
zinc binding site,4,6-8 which can be classified as catalytic,
structural, inhibitory, and protein interface zinc sites based
on the role of the divalent zinc cation. Typical zinc ligands
include side chains of Cys, His, Glu, and Asp, water
molecules, and other small molecules. A key feature of the

zinc coordination is its flexibility:4,9-12 it can adopt multiple
binding modes, including tetrahedral-, penta-, or hexacoor-
dination geometry. Especially for the zinc coordination to
the carboxylate group, it could be either bidentate or
monodentate. This inherent flexibility of zinc coordination
poses a daunting challenge for all currently available pairwise
atomic force fields to describe zinc interactions,13-18 includ-
ing bonded,19-24 nonbonded,25 and semibonded26 models.

In the bonded model,19-24 zinc-ligand coordination
interactions are modeled as covalent bonds, and the desired
zinc coordination geometry is maintained by employing
explicit bonding and angle bending terms. This clearly
prevents any change of the zinc coordination mode or ligand
exchange, therefore not suitable for describing the dynamics
of zinc coordination. For the nonbonded model,25 in which
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interactions between the zinc ion and all other atoms are
described by electrostatics and van der Waals (vdW) terms,
it has been notoriously known for its failure in describing
the tetra- or pentacoordinated zinc cation.13-18 Previous
simulations of several zinc-containing proteins with non-
bonded models have led to very different coordination modes
in comparison with corresponding X-ray structures.13-15,17

In the semibonded model,26,27 virtual fractional charges around
a metal atom are employed to mimic valence electrons. It has
been shown to describe the tetracoordinated zinc ion well, but
its capability to model penta- and hexacoordination has not been
demonstrated. Currently, it has been widely thought that
pairwise atomic force fields may be inherently unsuitable for
describing flexible zinc coordination, and it would be necessary
to employ polarizable force fields or quantum mechanical/
molecular mechanical (QM/MM) methods to explicitly take
account of polarization and charge-transfer effects between Zn2+

and its ligands.13,17,28-33

In this work, we are motivated to develop a novel practical
strategy to tackle this well-known challenge of modeling the
divalent zinc cation in metalloproteins. The working hy-
pothesis is that the main deficiency of existing nonbonded
models comes from the 1/r function form for the charge-
charge interaction term. It is not appropriate to describe zinc
coordination bonding, although it may be reasonable to
describe long-range electrostatic interactions between the
Zn2+ ion and other atoms beyond the first coordination shell.
Thus our main idea is to design short-long effective
functions (SLEF) to describe charge interactions between the
zinc ion and all other atoms. The short-range is designed to
describe the coordination bonding between the zinc ion and
its ligands, while the other behaves similar to 1/r for long-
range electrostatic interactions. Herein by optimizing a total
of four parameters through force matching34-37 based on
Born-Oppenheimer ab initio QM/MM molecular dynamics
(MD) simulations,10,38-43 we have successfully developed
the first SLEF force field (SLEF1) to describe zinc interac-
tions compatible with the amber99SB force field44-46 and
the TIP3P47 water model and demonstrated its good transfer-
ability and adequacy in describing a variety of zinc proteins.

2. Methods

A. Nonbonded SLEF Force Field to Model Zinc
Interactions. In the current work, we have introduced the
following novel short-long effective function (SLEF) to
describe charge interactions between a divalent zinc ion i
and any other atom j:

where ri,j is the distance, qZn refers the charge of the zinc
ion which has a value of 2.0, qj is the MM charge of the
atom j, R* refers to the vdW radii, and R and � are two new
positive parameters which need to be determined. As shown
in Figure 1, the first term only makes a contribution at the
short range, while the second term employing a similar
damping function used in DFT dispersion correction
approach48,49 is relatively flat in the short range but turns
into 1/r in the long range (>4.5 Å). Thus the main difference
between our introduced SLEF function and the coulomb
function form 1/r is at the short-range, where the coordination
interaction is expected to be dominant.

Besides the charge-interaction term, the conventional
Lennard-Jones 12-6 function form has been employed to
describe the vdW interactions between a zinc ion i and any
other atom j:

We can see that the above SLEF approach to describe zinc
interactions has the following desired features: (1) It is

Ees,SLEF
Zn,j (ri,j) )

1
4πε0 { qZnqj

�ri,j
2 + R ×

qj
2

(Ri* + Rj*)
× exp(� × ri,j

2 )

+

1

1 + exp(-2(2ri,j

3
- 1.0))

×
qZnqj

ri,j } (1)

Figure 1. Illustration of the difference between SLEF and the
conventional 1/r Coulomb function in describing charge
interactions between Zn2+ and the oxygen of TIP3P water:
(A) energy and (B) force. The parameters in the SLEF1 force
field were employed.

EvdW
Zn,j (ri,j) ) εij{(R*i,j/ri,j)

12 - 2(R*i,j/ri,j)
6},

R*i,j ) R*i + R*j, εij ) √εiεj (2)
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pairwise, additive, and compatible with widely used atomic
pairwise force fields for modeling biomolecules; (2) It only
changes interactions between the zinc ion and other atoms
and does not affect force field parameters that model other
interactions in the system; and (3) It is a nonbonded model
that is inherently capable to describe different zinc ligands
and coordination modes. Thus to extend the widely employed
atomic pairwise force fields to simulate zinc metalloproteins
with the SLEF approach, it only needs to determine four
additional parameters: R and � in the SLEF function (eq 1)
and two zinc vdW parameters: ε and R* (eq 2).

B. Parameterization with Force Matching Based on
Ab initio QM/MM MD Simulations. Force matching
(FM)34-37 has become a powerful and increasingly popular
approach to parametrize atomic force fields based on high-
level quantum mechanical calculations. Here we have
adapted the ab initio QM/MM force matching approach36,37

to determine the four parameters (two vdW parameters for
Zn, ε and R* and two parameters in SLEF function, R and
�) by minimizing the following target function:

where FI,J,k
ref refers the reference force from ab initio QM/

MM calculations on the k atom with the Jth configuration of
the I enzyme system in the training set, and fI,J,k

SLEF is the
corresponding force calculated based on the SLEF force field.

In the current study, our training set consists of three zinc
enzyme systems: HDAC8-SAHA,50 TLN-apo,51 and TLN-
TIO,52 as shown in Figure 2. These three systems represent
five-, six-, and four-fold zinc coordination, respectively, and
the ligands are typical in zinc proteins: His, Glu/Asp, Cys,
hydroxamate, and water. All chosen configurations are

snapshots from Born-Oppenheimer ab initio QM/MM MD
simulations, as described in detail in our previous work.10

For each enzyme system, 25 ps B3LYP(SDD,536-31G*) QM/
MM MD simulations had been carried out, and 200 snapshots
from the last 20 ps have been chosen for force matching.
This level of QM treatment has been extensively tested and
employed successfully to describe the zinc coordination
shell10,43,54-57 and is similar to other recent ab initio QM/
MM studies of zinc enzymes.58,59 A total of 600 configura-
tions have been employed in parametrization with the
amber99SB force field44-46 for modeling proteins and the
TIP3P47 water model. For each configuration, the reference
forces on selected atoms, including the zinc cation, all
directly and potentially coordinated atoms (illustrated in
Figure 2), have been calculated by performing two B3LYP-
(SDD,6-31G*) QM/MM calculations. One calculation is on
the whole system, and the other is on the same system
without the zinc ion. The force difference between two
calculations can be considered as the force coming from its
interaction with zinc and has been employed as the reference
force FI,J,k

ref . Correspondingly, the fI,J,k
SLEF is calculated with the

SLEF1 force field. The advantage of employing this force
difference is that the parametrization of the four parameters
would be solely dependent on zinc interactions, which is and
should be much desired. In addition, such an ab initio QM/
MM MD force matching approach allows us to employ a
large amount of information from a first principle description
of zinc interactions, while properly taking account of the
heterogeneous enzyme environment and the dynamic fluc-
tuations. All ab initio QM/MM calculations were performed
with modified Q-Chem60 and Tinker61 programs, and the
QM/MM boundaries were described by the pseudobond ap-
proach62-65 with the improved parameters.62

Figure 2. Illustration of various coordination shells in three zinc enzyme systems in our training set used for optimizing SLEF1
force field parameters. Those atoms selected for force matching include the zinc cation and directly/potentially coordinated
atoms (colored in brown/red).

�2 ) ∑
I

∑
J

∑
k

| |fI,J,k
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The four parameters, including two vdW parameters ε and
R* for zinc and two parameters R and � in the SLEF function
(eq 1), were determined by the parameter scan combined
with local minimization procedure to effectively explore the
parameter space. Specifically, ε value has been scanned from
0.05 to 0.50 with 0.01 step size and the other three parameters
are optimized at each scan step. The simplex algorithm66

implemented in GNU Scientific Library (GSL) and the
modified Tinker program61 were employed in the param-
etrization procedure. The resulting four parameters for this
new SLEF1 force field describing the zinc interactions
compatible with the amber99SB force field44-46 and the
TIP3P47 water model are listed in Table 1.

C. Tests. We have implemented the new SLEF1 force
field in the modified Tinker program.61 In order to examine
its transferability and performance, we have carried out
extensive MD simulations of seven zinc enzyme complexes
with different coordination ligands (Asp/Glu, His, Cys, water,
and small molecules) and distinct chelation modes (four-,
five-, and six-fold), including the binuclear zinc active site.
Besides three systems in the training set, as illustrated in
Figure 2, the four additional models are: (A) an HDAC8-
substrate complex system67 which has a five-fold coordinated
zinc catalytic site; (B) an HDAC7-SAHA complex68 which
has two four-fold coordinated zinc binding sites, one catalytic
site and one Cys-rich structural site; (C) a carbonic anhydrase
(CAII) enzyme system69 which has a tetrahedral coordinated

zinc catalytic site; and (D) an L-rhamnose isomerase en-
zyme70 containing a binuclear zinc coordination shell.

For each enzyme system, the initial structure was prepared
based on the corresponding crystal structure.67-70 Then 4
ns MD simulations with the SLEF1 force field describing
zinc interactions were carried out at 300 K with a time step
of 1 fs. Amber99SB force field44-46 was used for protein
residues, TIP3P model47 for water molecules, and generalized
AMBER force field (GAFF)71 for the other small molecules.
The 18 and 12 Å cutoffs were employed for electrostatic
and vdW interactions. For comparison, 4 ns MD simulations
with the conventional nonbonded zinc model25 (called as the
Coulomb scheme) have also been performed.

3. Results

A. Performance of the SLEF1 Force Field on Three
Zinc Enzymes in the Training Set. By optimizing two
SLEF parameters as well as zinc vdW parameters through
force matching based on ab initio QM/MM MD simulations,
we have successfully developed the first SLEF force field
to describe zinc interactions compatible with the amber99SB
force field and the TIP3P water model. The four parameters
are presented in Table 1, with R and � as 2.23 Å3/e2 and
1.04 Å-2, respectively, and the vdW parameters of Zn are
R*)1.21 Å; ε)0.23 kcal/mol.

The force errors on the selected ligand atoms from the
SLEF1 force field as well as other MM models and QM/
MM calculations with different basis sets (denoted as “DBS”)
for three zinc enzymes in the training set are summarized in
Tables 2-4. Not surprisingly, the Coulomb scheme, in which
Stote’s parameters25 for zinc and Amber99SB force field for
other atoms were used, gives the largest force errors for each
model. For the vdW FM scheme, in which vdW parameters
of selected atoms (Zn and four kinds of ligand-atom:
His-N, water-O, Glu/Asp-O, S) were optimized by FM,

Table 1. Resulting Four Parameters of the SLEF1 Force
Field to Model Zinc Interactionsa

R � R* ε

2.23 1.04 1.21 0.23

a Units: R, Å3/e2; �, 1.04 Å-2;R*, Å; and ε, kcal/mol; R and �
are parameters in the SLEF function (eq 1) and R* and ε are vdW
parameters of zinc.

Table 2. Force Error Calculated for the HDAC8-SAHA System with a Pentacoordinated Zinc Binding Sitea

rms force error (kcal/mol/Å)

ligand atom (the force derived from Zn)

HDAC8-SAHA(model 1) Zn (total force) H180 (N) D178 (Oa/Ob) D267 (Oa/Ob) SAHA (O1/O2)

Coulomb + LJ-R12,6 (Zn, Stote) b (Coulomb scheme) 57.8 11.8 56.7/18.3 30.5/18.2 34.7/21.2
Coulomb + LJ- R12,6 (Zn+Ligands, FM) c (vdW FM scheme) 48.7 14.5 19.2/15.7 50.1/21.3 19.1/17.1
SLEF(R; �) + LJ- R12,6 (Zn, FM) d (SLEF scheme) 23.2 9.5 24.7/10.4 11.1/7.8 14.1/9.1
Different Basie Set in QM/MM e (DBS) 3.4 4.0 2.4/2.5 2.6/2.0 5.0/1.8

a The reference forces are calculated with B3LYP(SDD,6-31G*) QM/MM calculations. b Stote’s vdW parameters25 for the zinc ion: R* )
1.09 and ε ) 0.25. c Used the Coulomb function to describing charge interactions; vdW parameters of the zinc ion and the 4 types of
coordinated atoms (a total of 10) were optimized by force matching. d Using the developed SLEF1 force field. (a total of 4 parameters have
been optimized: R ) 2.23; � ) 1.04; σ )1.21; and ε ) 0.23;). e DBS indicates the force difference derived from using different basis sets
(DBS) in QM/MM calculations (level 1: SDD for zinc, other atoms by 6-31G*;and level 2: 6-311G** for all atoms).

Table 3. Force Error Calculated for the TLN-Apo System with a Hexacoordinated Zinc Binding Sitea

rms force error (kcal/mol/Å)

ligand atom (the force derived from Zn)

TLN-apo (model 2) Zn (total force) H142 (N) H146 (N) E166 (Oa/Oa) water1 (O) water2 (O)

Coulomb + LJ-R12,6 (Zn, Stote)b (Coulomb scheme) 29.3 10.1 22.3 30.9/39.4 57.1 56.2
Coulomb + LJ- R12,6 (Zn+Ligands, FM)c (vdW FM scheme) 15.9 5.7 10.6 19.0/5.1 16.7 15.7
SLEF(R; �) + LJ- R12,6 (Zn, FM)d (SLEF scheme) 18.4 6.7 12.4 9.3/12.6 18.7 18.3
Different Basie Set in QM/MMe (DBS) 2.5 3.9 3.6 1.7/0.9 4.0 3.8

a The reference forces are calculated with B3LYP(SDD,6-31G*) QM/MM calculations. For other descriptions see Table 2.
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the force errors are reduced for all models. The SLEF scheme
gives the smallest force errors overall among the three MM
schemes. It should be noted that there are a total of 10
parameters optimized in the vdW FM scheme, while only 4
parameters optimized in the SLEF1 force field. As shown
in Tables 2 and 4, the force errors of several reference atoms
in the vdW FM scheme are significantly larger than those in
the SLEF1 force field, such as those of Zn and D267(Oa/
Ob) in the model 1 which has a five-fold zinc coordination
and E166 (Oa/Ob) and TIO (S) in the model 3 which has a
four-fold zinc coordination. Therefore, the SLEF function
plays an important contribution to decrease the force errors
for four- and five-fold zinc coordination shells. As a result,
we found that MD simulations with the vdW FM scheme
could not reproduce the similar zinc coordination as observed
in crystal structures and in ab initio QM/MM MD simulations
for models 1 and 3, while the SLEF1 force field yields good
results in MD simulations of all three systems, as shown in
Figure 3. These results lend further support for our working
hypothesis that the difficulty of the conventional nonbonded
zinc model in describing zinc-coordination may come from
the 1/r function form for the charge interaction term.
Meanwhile, we can see that the error with the SLEF1 force
field is still significantly larger than the DBS error, which
indicates that there is significant room to further improving
the description of zinc interactions.

The test results of the amber99SB-SLEF1 force field in
describing the zinc coordination shell for three enzymes in
the training set are presented in Figure 3. We can see that
for all three systems, simulations with the amber99SB-SLEF1
force field yield zinc coordination geometries consistent with
both experimentally determined X-ray structures and ab initio
QM/MM MD simulation results. On the other hand, for the
conventional nonbonded model with the 1/r form for zinc
charge interactions, it yields very different coordination
geometries. Meanwhile, with the corresponding crystal
structure as the reference, we can see that the root-mean-
square deviation (rmsd) of heavy atoms in the first zinc
coordination shell is significantly smaller for simulations with
the amber99SB-SLEF1 force field.

Model 1 (HDAC8-SAHA System). As shown in Figure 3,
a five-fold coordination geometry is observed in the crystal
structure50 and has been reproduced well by ab initio QM/
MM MD simulations.10 A similar coordination structure as
well as important hydrogen-bond interactions between SAHA
and His142/His143 are also well maintained in our simula-
tions with the new SLEF1 force filed. But for the conven-
tional Coulomb scheme, it yields a six-fold coordination
geometry for zinc and significantly changes the active site

geometry. Due to the wrong bidentate chelation of the two
Asp residues, O2 of SAHA is no longer bonded with zinc in
simulations with the conventional nonbonded zinc model,
and there is no hydrogen bond between SAHA and His142.

Model 2 (TLN-apo System). The six-fold zinc coordination
structure51 was reproduced well in our previous QM/MM
simulations and with the SLEF scheme. But for simulations
with the conventional Coulomb scheme, the coordination
interaction between His142 and Zn was replaced by another
water molecule instead, and its Zn coordination shell is much
different from the crystal structure, which is also demon-
strated by the rmsd curve. It should be noted that the flexible
behavior of Glu166 observed in our ab initio QM/MM MD
simulations was not be observed in our simulations with the
amber99-SLEF1 force field, which indicates its limitation.

Model 3 (TLN-TIO System). Both ab initio QM/MM MD
simulations10 and the SLEF scheme yielded a similar
tetrahedral coordination geometry as in the crystal structure.52

But the Glu166 was bidentate with zinc in the Coulomb
scheme, resulting in a five-fold zinc coordination geometry.
Meanwhile, the Zn-S coordination bond, which is obviously
too short in the Coulomb scheme (2.02 Å), is significantly
improved in simulations with the SLEF1 force field (2.24
Å).

B. Tests of the Transferability of SLEF1 on Other
Zinc Enzyme Models. To further test the transferability and
the performance of the resulting amber99SB-SLEF1 force
field, we have further carried out MD simulations on four
additional zinc enzyme systems including: Model A, a
HDAC8-substrate complex system which has a five-fold
coordinated zinc catalytic site; Model B, a HDAC7-SAHA
complex which has two four-fold coordinated zinc binding
sitessone catalytic and one Cys-rich structural site; Model
C, a carbonic anhydrase (CAII) enzyme system which has a
four-fold coordinated zinc catalytic site; and Model D, a
L-rhamnose isomerase enzyme containing a binuclear zinc
coordination site. The results are presented in Figures 4-7.
We can see that simulations with the SLEF scheme yield
zinc coordination geometries consistent with crystal structures
and are significantly better than those results from MD
simulations using the conventional Coulomb scheme. The
various coordination numbers observed in crystal structures
are well maintained in simulations with the SLEF scheme,
while the Coulomb scheme tends to yield higher coordination
numbers for most zinc coordination shells.

Model A (HDAC8-Substrate). As shown in Figure 4,
Model A is a substrate-bound HDAC8 system. Our previous
QM/MM simulations43 yielded a five-fold zinc coordination
shell, consistent with the observations from the crystal

Table 4. Force Error Calculated for the TLN-TIO System with a Tetracoordinated Zinc Binding Sitea

rms force error (kcal/mol/Å)

ligand atom (the force derived from Zn)

TLN-TIO (model 3) Zn (total force) H142 (N) H146 (N) E166 (Oa/Ob) TIO (S)

Coulomb + LJ-R12,6 (Zn, Stote)b (Coulomb scheme) 47.3 18.6 13.6 35.5/15.2 43.6
Coulomb + LJ- R12,6 (Zn+Ligands, FM)c (vdW FM scheme) 29.6 13.2 10.6 37.5/14.7 26.8
SLEF(R; �) + LJ- R12,6 (Zn, FM)d (SLEF scheme) 26.1 10.3 7.9 13.3/11.0 9.5
Different Basie Set in QM/MMe (DBS) 11.5 5.6 5.5 8.1/3.2 10.6

a The reference forces are calculated with B3LYP(SDD,6-31G*) QM/MM calculations. For other descriptions see Table 2.
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structure.67 With the SLEF scheme, both the coordination
number and the important hydrogen-bonds around the p-53
peptide substrate are kept very well during the MD simula-
tion. On the other hand, for simulations with the Coulomb
scheme, although the rmsd value is also small, the penta-
coordinated structure is not maintained due to the bidentate

chelation of Asp178, and there is no hydrogen bond between
Y306 and the p-53 peptide.

Model B (HDAC7-SAHA). In comparison with the Model
1 (HDAC8-SAHA) complex in the training set, the coor-
dination residues and inhibitors are the same, but different
SAHA-zinc chelation modes have been observed in crystal

Figure 3. Test results on the three zinc enzyme systems in the training set. XRD refers to results in crystal structures;50-52

Coulomb refers to results calculated from 4 ns MD simulations with the amber99SB force field and the nonbonded Coulomb
model for zinc; and SLEF denotes results from 4 ns MD simulations with the amber99SB force field and our parametrized
SLEF1 model for zinc interactions. QM/MM indicates the results from 25 ps B3LYP(SDD, 6-31G*) QM/MM MD simulations.10
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structures: monodentate and a four-fold zinc coordination
shell in HDAC7,68 while bidentate and a five-fold coordina-
tion in HDAC8.50 Such a distinct coordination mode has also
been confirmed by ab initio QM/MM MD simulations and
thus serves as a stringent test for the force field description.
From Figure 5, we can see that MD simulations with the
SLEF scheme yield a zinc coordination shell consistent
with the X-ray structure and ab initio QM/MM MD

simulations, maintain the important hydrogen-bond net-
work, and show a smaller rmsd value. On the other hand,
the conventional Coulomb scheme leads to a six-fold
coordinated structure.

Besides the catalytic zinc site, there is another Cys-rich
structural zinc coordination motif in HDAC7. The SLEF
scheme can describe this coordination shell very well, as
shown in Figure 5. Although the Coulomb scheme can also

Figure 4. Test results on the Model A system. XRD refers to the crystal structure.67 QM/MM indicates the results from 25 ps
B3LYP(SDD, 6-31G*) QM/MM MD simulations.43 For other descriptions see Figure 3.

Figure 5. Test results on the Model B system. XRD refers to the crystal structure.68 For other descriptions see Figure 3.

Zinc Interactions in Metalloproteins J. Chem. Theory Comput., Vol. 7, No. 2, 2011 439



obtain the correct coordination number, the Zn-S coordina-
tion distance is very short.

Model C (CAII-Apo). The apo structure of carbonic
anhydrase (CAII) has a tetrahedral zinc active site,69 as
shown in Figure 6. Herein our SLEF scheme also reproduces
the four-fold coordination shell very well, but the Coulomb
scheme leads to the hexacoordination. It seems that Coulomb
scheme overestimates the electrostatic interaction between
E106 and the divalent zinc cation, which is ∼4 Å apart in
the crystal structure.69

Model D (L-RhI). L-Rhamnose isomerase, which can
efficiently catalyze the isomerization between various aldoses
and ketoses, has a binuclear zinc coordination shell.70

Although no such binuclear zinc active site has been
employed in the parameter optimization, the resulted SLEF1
force field can describe this challenging case72 relatively well,
including the zinc-zinc distance. As seen in Figure 7, it
improved significantly against the conventional coulomb

scheme in terms of both the zinc coordination spheres and
the rmsd from the crystal structure. Meanwhile, these test
results indicate that the SLEF1 force field still needs to be
further improved, and a binuclear zinc active site should also
be included in the training set in the future development.

4. Discussion
The above tests clearly demonstrated that the conventional
coulomb scheme has two main deficiencies in describing zinc
coordinations: (1) Its strong preference of water coordination
and bidentate chelation of Asp/Glu residues leads to higher
coordination numbers for most zinc coordination shells; and
(2) its coordination to the neutral His residue can be
substituted by a water molecule or a carboxylate ligand, such
as in Model 2. Both deficiencies have been overcome by
our developed SLEF1 force field, which has yielded zinc
coordination structures in very good agreement with the
corresponding crystal structures as well as ab initio QM/

Figure 6. Test results on the Model C system. XRD refers to the crystal structure.69 For other descriptions see Figure 3.

Figure 7. Test results on the Model D system. XRD refers to the crystal structure.70 For other descriptions see Figure 3.

440 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Wu et al.



MM MD results. As summarized in Table 5, the mean
deviation between the coordination distances in crystal
structures and the corresponding average MD value from
our SLEF1 simulations is 0.04 and -0.09 Å, respectively,
and the largest deviation is +0.41/-0.48 Å, which is from
the binuclear zinc binding site of L-RhI. For all seven zinc
enzyme complexes, the coordination modes observed in
crystal structures are well reproduced in simulations with
the SLEF1 force field. In particular, for HDAC8-SAHA
(Model 1) and HDAC7-SAHA (Model B) systems, their
coordination ligands are the same, but different coordination
modes have been observed in crystal structures: a four-fold
zinc coordination shell in HDAC7,68 while a five-fold
coordination in HDAC8.50 Such two distinct coordination
modes with the same coordination ligands have been well
reproduced in our simulations with the SLEF1 force field.
Meanwhile, this would pose a fundamental challenge for
bonded models19-24 to describe zinc interactions, which
usually assumes that the same set of coordination ligands
would adopt the same coordination mode.

In comparison to the conventional Coulomb function 1/r,
the key difference of our introduced SLEF function is in the
short range (<4.5 Å), where the coordination interaction is
expected to be dominant. From Figure 1, we can see that
the resulted energy and force from the SLEF approach do
not parallel those from the Coulomb function in the short-
range regime. Meanwhile, the difference of the SLEF
function to 1/r is varied with the magnitude of charges since
the charge also appears in the denominator of the short-range
function in eq 1. Thus, the SLEF function cannot be
considered as simply scaling the charge in the short-range
regime and then returning to the 1/r form in the long range.

Since the SLEF approach is a nonbonded model to model
zinc interactions and only changes interactions between the
zinc ion and other atoms, it would be quite straightforward
to implement it into typical MD simulation packages: the
replacement of the Coulomb function with the SLEF function
to describe charge interactions between the zinc ion and all
other atoms, and the employment of vdW parameters
developed here for the zinc ion.

5. Conclusion

In this work, we have introduced a novel practical strategy
to meet the challenge of describing zinc interactions: the
design of new short-long effective functions (SLEF) to treat
charge interactions between the zinc ion and all other atoms.
By optimizing a total of four parameters based on ab initio
QM/MM MD simulations and force matching, we have

developed the first transferable nonbonded pairwise SLEF
force field to describe zinc interactions for modeling zinc
metalloproteins compatible with the amber99SB force field
and the TIP3P water model. We have carried out MD
simulations with the amber99SB-SLEF1 force field on seven
different enzymes complexes (a total of nine zinc coordina-
tion shells), which include four common kinds of ligands
(His, Asp/Glu, Cys, and Water) and various coordination
numbers (4, 5, or 6). Most simulations yielded zinc coordi-
nation numbers and binding distances in very good agreement
with the corresponding crystal structures as well as ab initio
QM/MM MD results. These very encouraging results indicate
that this novel SLEF approach is a promising and attractive
direction to explore for further improving force field descrip-
tion of metalloproteins.
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Abstract: The simplest cyanine dye series [H2N(CH)nNH2]+ with n ) 1, 3, 5, 7, and 9 appears
to be a challenge for all theoretical excited-state methods since the experimental spectra are
difficult to predict and the observed deviations cannot be easily explained with standard
arguments. We compute here the lowest vertical excitation energies of these dyes using a variety
of approaches, namely, complete active space second-order perturbation theory (CASPT2),
quantum Monte Carlo methods (QMC), coupled cluster linear response up to third approximate
order (CC3), and various flavors of time-dependent density functional theory (TDDFT), including
the recently proposed perturbative correction scheme (B2PLYP). In our calculations, all
parameters such as basis set, active space, and geometry dependence are carefully analyzed.
We find that all wave function methods give reasonably close excitation energies, with CASPT2
yielding the lowest values, and that the B2PLYP scheme gives excitations in satisfactory
agreement with CC3 and DMC, significantly improving on the generalized gradient and hybrid
approximations. Finally, to resolve the remaining discrepancy between predicted excitation
energies and experimental absorption spectra, we also investigate the effect of excited-state
relaxation. Our results indicate that a direct comparison of the experimental absorption maxima
and the theoretical vertical excitations is not possible due to the presence of nonvertical
transitions. The apparent agreement of earlier CASPT2 calculations with experiments was an
artifact of the choice of active space and the use of an older definition of the zero-order
Hamiltonian.

1. Introduction

Cyanine dyes are characterized by a conjugated π-electron
system connecting two nitrogen atoms and carrying a positive
charge.1 They are naturally occurring as red colorants in fly
agaric mushrooms or red beets2 and are of great industrial
interest for their application in solar cells,3 optical storage
media (CDs, DVDs),4 cancer cell recognition,5 nonlinear

optics,6 and as biomarkers for nucleic acid detection.7 This
wide range of important applications has made cyanine dyes
an early target of theoretical studies aimed at demonstrating
the predictive power of computational approaches.8

In the past two decades, efficient computational approaches
for excited states have been developed, which allow the descrip-
tion of large dyes and the fast screening of molecular libraries
in search of specific excited-state properties.9 In particular, time-
dependent density functional theory (TDDFT)10-12 has become
the method of choice for the study of large molecular systems
and has been successfully employed to search for highly
specialized chromophores and investigate several dye
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families.13,14 The efficiency of TDDFT comes in some cases
at the price of lower accuracy as compared to conventional
highly correlated quantum chemistry methods. It is, for
instance, well-known that the description of excitations with
charge-transfer, multireference, or Rydberg character is
generally problematic in TDDFT. Since none of these
features appears to characterize the lowest excited state of
the cyanine dyes, one would expect TDDFT to be well suited
for the description of this class of systems.

Surprisingly, as early as 2001, Schreiber et al.15 showed
that the excitation energies of the cyanine dyes obtained by
TDDFT deviate by more than 1 eV from the values obtained
with the CASPT2 method, which is often regarded as one
of the most accurate excited-state approaches available. Since
the examples chosen in ref 15 were the simplest models of
cyanine dyes, the result suggests that TDDFT is not
applicable to any member of this dye family. Until today,
none of the available density functionals significantly
improved the agreement with the reference CASPT2 values
given in ref 15. The reasons for the large errors in the
TDDFT results for the cyanine dyes are not understood.

Since the early work by Schreiber et al.,15 excited-state
methods have seen several important developments: (i) The
efficient implementation of coupled-cluster (CC) response
methods in combination with the resolution-of-the-identity
(RI) approximation represents a powerful single-reference
complement to TDDFT,16 (ii) Efficient excited-state gradient
methods render a large number of excited-state properties
accessible.17,18 (iii) Developments in algorithms and hard-
ware allow for the use of larger basis sets and higher-level
theories. (iv) Quantum Monte Carlo (QMC) methods can
be used as an alternative to CASPT2 and independent
validation of TDDFT.19-22 (v) The CASPT2 method has
been modified and generally improved by the introduction
of a novel definition of the zeroth-order Hamiltonian.23

None of these developments have been fully exploited in
recent calculations of the cyanine dyes, where most efforts
have instead been directed to apply different flavors of
density functionals in order to improve the excitations and
gain insight into the shortcomings of TDDFT. Unfortunately,
none of the used functionals has yielded significant improve-
ment, and the insight gained has therefore been limited. The
only exception is the B2PLYP scheme by Grimme, which
incorporates a perturbative correction based on Kohn-Sham
orbitals in a form similar to wave function treatments.24,25

We note that the extensive excitation benchmark of wave
function methods of ref 26 unfortunately does not include
any member of the cyanine dye family.

The present work represents a comprehensive treatment
of the simple cyanine dye series using several state-of-the-
art excited-state methods such as CASPT2, QMC, and CC
response methods up to third approximate order; TDDFT
also in the long-range corrected and B2PLYP flavors; and
the Tamm-Dancoff approximation. We give a detailed
account of all parameters which may affect the calculation
of the excitations in the various approaches. Our discussion
focuses on the lowest bright excited state, and we enclose
results for higher excited states in the Supporting Information.

All computational details are given in section 2. We
describe the dependence of the excitation energies on the
basis set and the method used to optimize the ground-state
geometry in section 3.1. This is followed by the excitation
energies calculated with CC methods (section 3.2), CASPT2
(section 3.3), QMC (section 3.4), and TDDFT (section 3.5).
In section 4, we discuss the relative performance of the
theoretical approaches and their comparison with experi-
ments. Our conclusions are summarized in section 5.

2. Computational Details

The ground-state structures are optimized within Hartree-Fock
(HF), second-order Møller-Plesset (MP2), and density
functional theory (DFT). To compute the excitation energies,
we employ coupled-cluster (CC) methods, time-dependent
density functional theory (TDDFT), the complete active
space self-consistent field (CASSCF) method with its per-
turbative extension (CASPT2), and quantum Monte Carlo
(QMC) methods. The CC response calculations27,28 are
performed at the singles (CCS), singles and doubles
(CCSD),29 approximate second (CC2),16,30-32 and ap-
proximate third (CC3)33,34 orders. In the DFT calculations,
the PBE,35 PBE0,36-38 CAM-B3LYP,39 and B2PLYP24,25

functionals are employed. The Tamm-Dancoff approxima-
tion is employed in some of the TDDFT calculations and
denoted with the prefix TDA.40

The resolution-of-the-identity (RI) approximation41 is used
in all MP2 and in some CC2 calculations and is indicated
by the abbreviations RI-MP242 and RI-CC2.31 All RI-MP2,
RI-CC, and DFT calculations are performed with the
TURBOMOLE code.43 B2PLYP calculations are based on
an unreleased TURBOMOLE implementation and the ad-
ditional on top program RICC by Grimme.24,25 The CC and
CAM-B3LYP excitation energies calculated without the RI
approximation are obtained with the DALTON program
suite.44 The CAM-B3LYP excitation energy of the largest
dye with the triple-� basis is computed with the Gaussian
09 code.45

The complete active space calculations are performed
using MOLCAS 7.2.46 In the CASPT2 calculations, we
employ the default IPEA zero-order Hamiltonian23 unless
otherwise stated and indicate if an additional constant level
shift47 is added to the Hamiltonian. In the CASPT2 calcula-
tions, we do not correlate as many of the lowest σ orbitals,
as there are heavy atoms in the molecule. For some models,
we use the Cholesky decomposition of the two-electron
integrals48 with the threshold of 10-8. The default conver-
gence criteria are used for all calculations.

The program package CHAMP49 is used for the QMC
calculations. We employ scalar-relativistic energy-consistent
Hartree-Fock pseudopotentials50 where the carbon and
nitrogen 1s electrons are replaced by a nonsingular s-nonlocal
pseudopotential and the hydrogen potential is softened by
removing the Coulomb divergence. Different Jastrow factors
are used to describe the correlation with different atom types,
and for each atom type, the Jastrow factor consists of an
exponential of the sum of two fifth-order polynomials of the
electron-nucleus and the electron-electron distances, re-
spectively.51 We also test the effect of including an
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electron-electron-nuclear term. The starting determinantal
components are obtained in CASSCF calculations, which are
performed with the program GAMESS(US),52 and the final
CAS expansions are expressed on the CASSCF natural
orbitals. The CAS wave functions of the states of interest
may be truncated with an appropriate threshold on the CSF
coefficients for use in the QMC calculations. The Jastrow
correlation factor and the CI coefficients are optimized by
energy minimization within VMC, and when indicated in
the text, also the orbitals are optimized along with the Jastrow
and CI parameters. The pseudopotentials are treated beyond
the locality approximation,53 and an imaginary time step of
0.05 au is used in the DMC calculations.

2.1. Basis Sets and Ground-State Structures. To in-
vestigate the basis-set dependence of the ground-state
structures and of the CC and TDDFT excitations, we use
the ANO-L-VXZP basis sets54 and Dunning’s correlation
consistent cc-pVXZ and aug-cc-pVXZ basis sets.55-58 For
the ANO basis sets, the MOLCAS contraction scheme is
employed, namely, ANO-L-VDZP [3s2p1d]/[2s1p], ANO-
L-VTZP [4s3p2d1f]/[3s2p1d], and ANO-L-VQZP [5s4p3d2f]/
[4s3p1d]. The ANO-L-VXZP series is used in the CASSCF
and CASPT2 calculations.

In the QMC calculations, we use the Gaussian basis sets50

specifically constructed for our pseudopotentials. In particu-
lar, we employ the cc-pVDZ basis, denoted by D, and the
T′ and Q′ basis sets, which consist of the cc-pVDZ for
hydrogen combined respectively with the cc-pVTZ and cc-
pVQZ basis sets for the heavy atoms. The D+, T′+, and
Q′+ basis sets are constructed by augmenting the corre-
sponding basis with diffuse s, p, and d functions59 on the
heavy atoms. Basis functions with higher angular momentum
than d are not included in the T′, T′+, Q′, and Q′+ basis
sets.

Unless indicated otherwise, the CC, CASPT2, and TDDFT
excitation energies are calculated with the ANO-L-VTZP
basis set and the QMC excitations with the T′+ basis set.
All excitation energies are computed on the RI-MP2/cc-
pVQZ ground-state structures with the exception of the
TDDFT excitations, which are obtained using the PBE0/cc-
pVQZ structures.

2.2. Auxiliary Basis Sets. In the RI-MP2/ANO-L-VXZP
and RI-CC2/ANO-L-VXZP calculations, the corresponding
auxiliary basis sets are not available. To assess the impact
of using the ANO-L-VXZP basis sets in combination with
the available aug-cc-pVXZ auxiliary basis sets, we calculate
the error in the correlation energy introduced by the RI
approximation for carbon and nitrogen atoms and for H2.
The quantity commonly used to access the quality of an
auxiliary basis set is defined as

where ∆E(MP2) is the MP2 correlation energy and δRI is
given by

The values of R obtained by combining the ANO-L-VXZP
basis with the auxiliary aug-cc-pVXZ basis sets are given
in the Supporting Information. When the aug-cc-pVQZ
auxiliary basis is employed, R < 0.05 ppm, which is in line
with standard auxiliary-basis-optimization conditions.58 There-
fore, we adopt this auxiliary basis in all of our RI calculations.

2.3. Extrapolation of Excitation Energies. The extrapo-
lated CC3/ANO-L-VTZP (exCC3) excitation energies are
obtained as

This extrapolation formula is motivated by the observation
that triple excitations are less basis-set-sensitive than single
and double excitations.60-62

3. Vertical Excitation Energies

The cyanine dye molecules studied in this work are shown
in Figure 1. We consider hydrogen-terminated dyes of
increasing size, which we denote as CN3, CN5, CN7, CN9,
and CN11. All hydrogen-terminated dyes have C2v symmetry.
For these molecules, we also construct the equivalent dyes
where the terminating hydrogens are substituted by methyl
groups.

3.1. Basis Set Convergence and Geometry Dependence.
We employ the cc-pVXZ, aug-cc-pVXZ, and ANO-L-VXZP
series to investigate the basis set dependence of the CC and
CASPT2 excitations and give a complete survey of the results
in the Supporting Information (SI). In this section, we focus
on the smallest molecule, CN3, since it displays the largest
dependence on the basis set. The basis-set dependence of
the TDDFT and QMC excitations will be discussed separately.

The CC2 excitations of CN3 as a function of the basis set
are shown in Figure 2. The correlation-consistent basis series
gives the slowest convergence in the excitation energy as a
function of basis set size, and an error which is still as large
as 0.15 eV when a quadruple-� basis is employed. The
inclusion of augmentation completely cures the problem since
the energy obtained with the double-� basis only differs from
the augmented quadruple-� value by 0.02 eV. The excitations
computed with the ANO series converge similarly to the
augmented correlation consistent values, and the use of a
triple-� basis yields the quadruple-� value within better than
0.01 eV.

The behavior of the CASPT2 excitations as a function of
the basis set is shown for CN3 in Figure 3. The excitations
are obtained with the standard IPEA Hamiltonian (S-IPEA)
as well as with the IPEA shift set to zero (0-IPEA), as in
versions of MOLCAS prior to 6.4. The energies obtained
with the IPEA Hamiltonian are 0.2 eV higher than the values
obtained without the shift, and the difference is independent
of the choice of the basis set. The behavior of the CASPT2
values with and without the IPEA shift closely parallels what
is observed for the CC2 excitations. In particular, the
inclusion of diffuse augmentation is absolutely necessary
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when employing the correlation consistent series, while the
ANO energies are well converged when a triple-� basis is
employed.

The optimal basis set for the present system is a correla-
tion-consistent triple-� basis with diffuse augmentation or
an ANO triple-� basis. Depending on the program, segmented
or generally contracted basis sets can be more efficient. As
MOLCAS is optimized for generally contracted basis sets,
the discussion in the following is based on ANO triple-�
basis sets. These give CC2 and CASPT2 excitations which
are well converged in the basis sets for CN3 as well as for
the other molecules (see the SI). In the SI, we also include
excitation energies calculated with the correlation consistent
Dunning basis sets, more common in CC calculations. The

most efficient choice in segmented contracted basis sets is
the recent property-optimized basis sets by Rappoport and
Furche.63 These became available very recently, so we only
include a table with the corresponding excitations in the SI.

The dependence of the CC2 and CASPT2 excitation
energies on the method employed to optimize the ground-
state geometry is shown for CN3 in Figure 4. As in the case
of the basis set size, the dependence is most significant for
the smallest molecule, CN3, as shown at the CC2 level in
the SI. Indepedently of the approach used to compute the
excitations and for all chain lengths, PBE and HF geometries
give the lowest and highest excitations, respectively, while
PBE0 and MP2 geometries are in between. The largest
difference between the excitations computed on PBE and
HF geometries is 0.24 eV at the CC2 level, as obtained for
CN3, and is comparable at the CASPT2 level. The use of
PBE0 and MP2 geometries gives very similar excitations
with the largest difference of 0.03 eV obtained for CN5.
Throughout this work, we use MP2 or PBE0 geometries to
reduce the influence of the choice of the ground-state
structure on the vertical excitation and focus on the perfor-
mance of the approach employed to compute the excitations.

3.2. Coupled Cluster Results. For all dyes, we give the
convergence of the CC excitation energies with respect to
the size of the ANO basis set and the order of the CC
expansion in Table 1. As already discussed in section 3.1,
the triple-� basis set is the most cost efficient choice as an
increase to quadruple-� only changes the excitation energies
by less than 0.01 eV. The CC3 calculations for the largest
dye, CN11, are not feasible at the ANO-L-VTZP level, so
we also compute the triple-� extrapolated CC3 results
(exCC3) using eq 3. When available, the CC3 results deviate
from their extrapolated counterparts by less than 0.03 eV,
and the error in the extrapolation is therefore comparable to
the residual basis-set error.

The behavior of the excitation energies at different CC
levels reflects the typical convergence of the correlation
energy contribution.26 With the ANO-L-VTZP basis, this
convergence is characterized by an increase of less than 0.03
eV when going from CC2 to the full inclusion of doubles
amplitudes in CCSD and a decrease of less than 0.14 eV
when going from CC2 to CC3. The decrease in excitation
energies when going from CC2 to CC3 is larger than the

Figure 1. Hydrogen-terminated cyanine dyes considered in
this work. Only one of the two resonant structures of each
molecule is shown. The other structure can be obtained by
having the first double bond at the other nitrogen atom.

Figure 2. CC2 vertical excitation energies of CN3 computed
with different basis sets. The ground-state MP2/cc-pVQZ
geometry is used.

Figure 3. CASPT2 vertical excitation energies of CN3
computed with (S-IPEA) and without (0-IPEA) IPEA shift, and
different basis sets. The ground-state MP2/cc-pVQZ geometry
is used.

Figure 4. CC2 and CASPT2 vertical excitation energies of
CN3 computed on different geometries. The ANO-L-VTZP
basis is used.

Electronic Excitations of Simple Cyanine Dyes J. Chem. Theory Comput., Vol. 7, No. 2, 2011 447



one observed for the corresponding bright state in butadiene
(0.04 eV) or in the protonated Schiff base models (0.01
eV).64,65 The T1 diagnostic66 remains lower than the empiri-
cal threshold of 0.02, indicating that the Hartree-Fock
determinant is a good zeroth-order description of the ground
state, and CC2 and CCSD results can therefore be considered
reliable.

Further insight into our calculations can be gained by the
amount of single- and double-excitation contribution in the
CC3 excitation energies. The single-excitation contributions
decrease from 89% to 84% when going from CN3 to CN11.
The double-excitation contributions increase from 11% to
16% when going from CN3 to CN11. This finding is in line
with the growing difference between CC2 and CC3 results
upon lengthening of the chain. The correlation energy
strongly depends on double excitations for all molecules, and
triple excitations contribute more than in the analogous
polyenes and protonated Schiff bases. The ground-state
correlation energy shows, on the other hand, little dependence
on the chain length. For all molecules, 92% of the CC3
correlation energy is obtained already at the CC2 level, and
the CC3 correlation energy per electron is identical up to
0.1 mH for all dyes. This finding indicates that electron
correlation effects are important mainly in the description
of the excitation, for which an accurate description of
correlation is therefore essential.

3.3. CASPT2 Results. The choice of the active space
significantly affects the CASPT2 energies of the cyanine
dyes, particularly of the smallest ones. As shown below,
previous calculations15 employed active spaces that were too
small and led to underestimated CASPT2 excitation energies.

We extensively investigated the dependence of the excita-
tions on the choice of the active space, and we give a
complete account of our calculations in the SI. In Table 2,
we present the most relevant subset of our results where the
number of active π orbitals of a2 and b2 symmetry included
in the CAS is l times the number of heavy atoms. This
construction corresponds to l atomic orbitals of p character
per heavy atom and produces a series of balanced active
spaces. We observe that choosing l equal to 2 offers a good

compromise between accuracy and computational cost since
the corresponding excitations are always converged to better
than 0.05 eV. For the largest dye, CN11, we cannot perform
a calculation with l equal to 2, as the use of 22 active orbitals
is not feasible. However, the excitation energy of CN11
computed with l equal to 1 is converged within 0.05 eV, as
can be seen from the excitations computed with larger CAS
dimensions given in the SI.

Our optimal active space must be contrasted to the use of
an active space with an equal number of active electrons
and active orbitals, as adopted in ref 15. We illustrate the
shortcomings of this alternative construction by plotting the
excitation of CN3 as a function of the dimension of the active
space in Figure 5. The use of a CAS(4,4) space as in ref 15
yields an excitation which is underestimated by as much as
0.4 eV, while the excitation computed with a CAS(4,6)
expansion is perfectly well converged. The dependence on
the size of the CAS is slightly more pronounced when the
zero-order Hamiltonian with no IPEA shift is employed as
in ref 15, and as expected, the difference between the
excitations computed with and without IPEA shift diminishes
with increasing CAS size.

We summarize the CASPT2 excitations for our optimal
choice of active space as a function of the ANO basis sets
in Table 3. As discussed previously, the use of an ANO
triple-� basis gives well converged excitations whether one
uses the zero-order Hamiltonian with or without the IPEA
shift. The excitations computed without the IPEA shift are
0.2 eV lower than the values obtained with the standard IPEA
Hamiltonian, independent of the basis. For CN11, the
difference between the values computed with and without
IPEA shift appears to be larger than for the smaller dyes,
and equal to 0.36 eV. The use of larger active spaces would

Table 1. Coupled Cluster Vertical Excitation Energies (eV)
for the 11B1 State of the Cyanine Dye Series Computed at
the CC2, CCSD, and CC3 Levels with the ANO-L-VXZP
Basis Setsa

molecule basis CC2 CCSD CC3 exCC3

CN3 D 7.36 7.32 7.27
T 7.26 7.29 7.18 7.16
Q 7.26 7.30 7.18

CN5 D 5.02 4.98 4.89
T 4.97 4.98 4.86 4.84
Q 4.96 4.99 4.86

CN7 D 3.83 3.79 3.69
T 3.79 3.81 3.68 3.65

CN9 D 3.13 3.09 2.99
T 3.10 3.11 2.96

CN11 D 2.66 2.62 2.52
T 2.64b 2.53

a The extrapolated CC3 values (exCC3) are obtained by adding
the difference between the double- � CC3 and CC2 values to the
triple- � CC2 results. The ground-state RI-MP2/cc-pVQZ structures
are employed. b Computed with the RI approximation.

Table 2. CASPT2 Vertical Excitations (eV) of the 11B1

State Computed with (S-IPEA) and without (0-IPEA) IPEA
Shift and with Different CAS(m,n) Expansionsa

CAS(m,n) CASPT2

molecule m [a2, b2] n [a2, b2] CASSCF 0-IPEA S-IPEA

CN3 4 [2, 2] 3 [1, 2] 8.12 6.55 6.90
6 [2, 4] 7.56 6.99 7.19
9 [3, 6] 7.63 6.97 7.14

CN5 6 [2, 4] 5 [2, 3] 5.46 4.23 4.62
10 [4, 6] 5.32 4.46 4.69
15 [6, 9] 5.33 4.49 4.68

CN7 8 [4, 4] 7 [3, 4] 3.92 3.17 3.56
14 [6, 8] 3.91 3.30 3.52
21 [9, 12] 3.96 3.30 3.49

CN9b 10 [4, 6] 9 [4, 5] 2.99 2.55 2.92
18 [8, 10] 3.13 2.59 2.81

CN11b 12 [6, 6] 11 [5, 6] 2.39 2.10 2.46

a All π electrons (m) in the reference are included, and the
number of active π orbitals is n ) i + j, where i and j are orbitals
of a2 and b2 symmetry, respectively, as specified by the notation [i,
j]. The number of active orbitals is a multiple l of the number of
heavy atoms as obtained by using l atomic orbitals of p character
per heavy atom. We denote in boldface the optimal choice of
active space in cost and accuracy for CN3-CN7. For CN9 and
CN11, the maximum feasible values of l are 2 and 1, respectively.
Additional active spaces not constructed as a multiple of l are
listed in the SI. The ANO-L-VTZP basis set and the ground-state
RI-MP2/cc-pVQZ structures are employed. b Cholesky decom-
position with 10-8 threshold.
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however reduce the difference to less than 0.25 eV also for
CN11 (see the SI). This finding reflects the fact that CASPT2
excitations computed with the IPEA shift converge faster to
the values obtained with larger CAS dimensions.

3.4. QMC Results. In the determinantal component of
the Jastrow-Slater wave functions, we choose the active
space identified as optimal in the CASPT2 calculations and
always optimize at least the Jastrow and linear coefficients
in energy minimization within variational Monte Carlo. Other
ingredients in the trial wave function may impact the
excitation, such as the choice of basis set, the truncation
threshold on the CAS expansion, the form of the Jastrow
factor, and whether one optimizes also the orbitals in the

determinantal component. We investigate the effect of
changing these parameters in the wave function and sum-
marize the results in Table 4.

Most tests are performed for the smallest dye, CN3, whose
excitation appears to be most sensitive to the features of the
wave function. We find that including electron-electron-
nucleus terms in the Jastrow factor has little effect on the
excitation of CN3. While the VMC excitation slightly
increases, the DMC excitation is unchanged by the presence
of these additional terms in the Jastrow factor. Therefore,
given the higher computational cost of these three-body
terms, we only include electron-electron and electron-nucleus
correlations in the Jastrow factor for all other dyes. Concern-
ing the basis, we find that the D+ basis leads to excitations
which are clearly overestimated in VMC, while T′+ gives
converged excitations when compared to the Q′+ values both
in VMC and DMC. Even though the shortcomings of a D+
basis are more visible for CN3 than for CN5, we employ a
T′+ as the default basis to compute the excitations of all
dyes.

More critical for CN3 is the choice of the truncation
threshold on the CAS expansion, especially if one does not
reoptimize the orbitals. When only the linear coefficients are
reoptimized in the presence of the Jastrow factor, the DMC
excitation obtained with the full CAS expansion is 0.1 eV
lower than the value computed with a threshold of 0.02. If
the orbitals are reoptimized, the DMC excitations computed
with a full CAS and a truncated expansion become 0.1 and
0.2 eV lower than the corresponding values obtained with
CASSCF orbitals, and one recovers the same DMC value
when employing the full or truncated CAS expansion. For
CN5, the optimization of the orbitals does not significantly
affect the excitations, and reducing the truncation threshold
on the CAS expansion has a smaller effect on the excitation
than for CN3. Therefore, for the larger dyes, we do not
reoptimize the orbitals but only make sure we have conver-
gence with respect to the number of configuration state
functions included in the determinantal component. For all
dyes, we collect the best available QMC results computed
with a T′+ and a two-body Jastrow factor in Table 5.

3.5. TDDFT Results. The TDDFT excitations are com-
puted with the PBE, PBE0, and long-range corrected CAM-
B3LYP functionals. We also employ the PBE0 hybrid
functional in the Tamm-Dancoff approximation (TDA-
PBE0) as well as the hybrid functional with a perturbative
correction as proposed in Grimme’s non-self-consistent
B2PLYP scheme.

The TDDFT results are listed in Table 6, where we report
the values computed with the ANO triple-� basis, which are
converged with respect to the basis set to better than 0.02
eV (see the SI). The difference between the PBE and PBE0
functionals is largest for the smallest CN3 dye, where the
PBE excitation is 0.22 eV lower than the PBE0 result. With
increasing chain length, the PBE and PBE0 excitations
approach each other, only differing by 0.06 eV for CN9.
For all dyes, the CAM-B3LYP results lie between the PBE
and PBE0 results, with PBE giving the lowest excitation.
The Tamm-Dancoff approximation and the B2PLYP scheme
significantly change the excitation energies of the cyanine

Figure 5. CASPT2 vertical excitation energies of CN3
computed with (S-IPEA) and without (0-IPEA) IPEA shift and
with different CAS(4,n) expansions. The number of π electrons
in the reference configuration is 4. The number of active
orbitals is n ) i + j, and i and j are orbitals of a2 and b2

symmetry, respectively, as specified by the label [i,j]. The
arrow indicates a balanced CAS size, which corresponds to
the use of two atomic orbitals of p character per heavy atom
and represents an optimal compromise in accuracy and cost.
The CAS(4,4) chosen in ref 15 is clearly inadequate. The
ground-state MP2/cc-pVQZ geometry is used.

Table 3. CASSCF and CASPT2 Vertical Excitation
Energies (eV) for the 11B1 State of the Cyanine Dye Series
Computed with the ANO-L-VXZP Basis Sets and the
Optimal Active Spacea

CAS(n,m) CASPT2

molecule basis n [a2, b2] m [a2, b2] CASSCF 0-IPEA S-IPEA

CN3 D 4 [2, 2] 6 [2, 4] 7.59 7.07 7.26
T 7.56 6.99 7.19
Q 7.56 6.99 7.20

CN5 D 6 [2, 4] 10 [4, 6] 5.25 4.53 4.74
T 5.32 4.46 4.69
Q 5.32 4.46 4.69

CN7 D 8 [4, 4] 14 [6, 8] 3.85 3.35 3.55
T 3.91 3.30 3.52
Qb 3.92 3.30 3.53

CN9 Db 10 [4, 6] 18 [8, 10] 3.08 2.63 2.83
Tb 3.13 2.59 2.81
Qb 3.14 2.59 2.81

CN11 Db 12 [6, 6] 11 [5, 6] 2.37 2.13 2.46
Tb 2.39 2.10 2.46

a A CAS(n,m) expansion is used to compute the ground- (11A1)
and excited-state (11B1) energies, where n and m denote the
number of electrons and molecular orbitals, respectively. The
ground-state RI-MP2/cc-pVQZ structures are employed.
b Obtained with the Cholesky decomposition with 10-8 threshold.

Electronic Excitations of Simple Cyanine Dyes J. Chem. Theory Comput., Vol. 7, No. 2, 2011 449



dyes, as already pointed out in ref 25. The TDA-PBE0
excitations are higher than the PBE0 results by about 0.4
eV for CN3 and 0.5 eV for the other dyes. The B2PLYP
excitation energies are 0.25-0.32 eV lower than the PBE0
results.

The excitation of the smallest dye, CN3, shows the
strongest dependence on the choice of the functional and, in

particular, on the amount of exact exchange included in the
functional. While this finding appears to support the sug-
gestion in ref 25 that the self-interaction error is significant
for these dyes, we note that the inclusion of exact exchange
yields the same excitations as conventional generalized
gradient approximations (GGA) for the larger dyes. There-
fore, as we discuss in section 4, the discrepancy between
TDDFT and correlated methods observed also for the larger
dyes cannot be simply attributed to self-interaction error.

Finally, our results follow the general trend observed for
a larger set of functionals by Jacquemin et al.,67 namely,
that GGA excitation energies are lower than long-range
corrected hybrid-GGA values, while hybrid GGAs give the
largest excitation energies. We also note that our excitation
energies deviate less than 0.08 eV from those of ref 67, and
these small differences can be attributed to the use of
different basis sets and ground-state structures.

4. Discussion

In this section, we first focus on the relative performance of
the theoretical approaches employed to compute the vertical
excitation energies of the cyanine dyes and then discuss their
comparison with the available absorption spectra in solution.

4.1. Theoretical Comparison. In Table 7, we summarize
our most representative theoretical results for the vertical
excitation energies of the cyanine dyes, namely, the extrapo-
lated CC3 excitation energies (exCC3), the CASPT2 values
computed with the standard IPEA Hamiltonian (CASPT2/
S-IPEA), and the TDDFT energies obtained with the PBE0
functional and the B2PLYP scheme, all computed with the
ANO-L-VTZP basis. We also list the best available DMC
excitations computed with the T′+ basis set. For an extensive
comparison with CC2 or CCSD, CASPT2 with no IPEA
shift, and other DFT functionals and the dependence on the

Table 4. VMC and DMC Vertical Excitation Energies (eV) for the 11B1 State of the Cyanine Dye Seriesa

CAS(m,n) CSF/det.

molecule m [a2, b2] n [a2, b2] basis thr. 11A1 11B1 CASSCF VMC DMC

CN3 4 [2, 2] 6 [2, 4] T′+ 0.02 7/11 8/22 7.62 7.58(1) 7.58(2)
T′+ 0.02 7/11 8/22 7.62 7.63(1) 7.58(2)b

T′+ 0.02 7/11 8/22 7.62 7.47(1) 7.40(2)c

D+ 0.00 57/113 48/144 7.63 7.61(1) 7.50(2)
T′+ 0.00 57/113 48/144 7.62 7.52(1) 7.48(2)
T′+ 0.00 57/113 48/144 7.55 7.52(1) 7.48(2)d

Q′+ 0.00 57/113 48/144 7.58 7.51(1) 7.46(2)
T′+ 0.00 57/113 48/144 7.62 7.56(1) 7.47(2)b

T′+ 0.00 57/113 48/144 7.62 7.48(1) 7.38(2)c

CN5 6 [2, 4] 10 [4, 6] T′+ 0.08 4/7 5/12 5.30 5.21(1) 5.11(2)
T′+ 0.04 8/17 14/38 5.30 5.13(1) 5.05(2)
D+ 0.02 20/51 27/102 5.29 5.13(1) 5.08(2)
T′+ 0.02 22/59 28/106 5.30 5.15(1) 5.04(2)
T′+ 0.02 22/59 28/106 5.30 5.09(1) 5.03(2)c

CN7 8 [4, 4] 14 [6, 8] T′+ 0.02 40/111 42/156 3.89 3.90(1) 3.83(2)
CN9 10 [4, 6] 9 [4, 5] T′+ 0.04 13/39 17/42 2.98 3.22(1) 3.11(2)

T′+ 0.02 43/101 65/254 2.98 3.18(1) 3.09(2)
CN11 12 [6, 6] 11 [5, 6] T′+ 0.04 17/54 21/98 2.37 2.68(2) 2.62(2)

a A CAS(m,n) expansion is used to compute the ground-state (11A1) and excited-state (11B1) energies, where m and n denote the
number of electrons and molecular orbitals, respectively. The threshold on the expansion and the corresponding number of CSFs and
determinants are also listed. Unless indicated, only the Jastrow and CI parameters are optimized, and the Jastrow factor includes only
electron-nuclear and electron-electron terms. The ground-state RI-MP2/cc-pVQZ structures are employed. b Including Jastrow e-e-n
term. c Orbitals optimized including all external orbitals. d T′+ basis set with f functions.

Table 5. VMC and DMC Vertical Excitation Energies (eV)
for the 11B1 State of the Cyanine Dye Seriesa

Molecule

CAS(m,n)

CASSCF VMC DMCm [a2, b2] n [a2, b2]

CN3 4 [2, 2] 6 [2, 4] 7.62 7.48(1) 7.38(2) b,c

CN5 6 [2, 4] 10 [4, 6] 5.30 5.09(1) 5.03(2) b,d

CN7 8 [4, 4] 14 [6, 8] 3.89 3.90(1) 3.83(2) d

CN9 10 [4, 6] 9 [4, 5] 2.98 3.18(1) 3.09(2) d

CN11 12 [6, 6] 11 [5, 6] 2.37 2.68(2) 2.62(2) e

a For each molecule, we show the best available value from the
QMC calculations obtained using the T′+ basis set and a Jastrow
factor including electron-nuclear and electron-electron terms. A
CAS(m,n) expansion is used to compute the ground-state (11A1)
and excited-state (11B1) energies, where m and n denote the
number of electrons and molecular orbitals, respectively. The
threshold on the expansion is also listed. Unless indicated, only
the Jastrow and CI parameters are optimized. The ground-state
RI-MP2/cc-pVQZ structures are employed. b Orbitals optimized
including all external orbitals. c Thr. of 0.0. d Thr. of 0.02. e Thr. of
0.04.

Table 6. TDDFT Excitation Energies (eV) of the Cyanine
Dye Series Computed with the ANO-L-VTZP Basis Set and
Different Functionalsa

molecule PBE PBE0 CAM-B3LYP B2PLYP TDA-PBE0

CN3 7.40 7.62 7.55 7.30 8.03
CN5 5.22 5.33 5.26 5.05 5.84
CN7 4.11 4.18 4.12 3.92 4.71
CN9 3.44 3.50 3.44 3.25 4.02
CN11 2.98 3.03 2.97 2.80 3.54

a The ground-state PBE0/cc-pVQZ structures are employed.

450 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Send et al.



basis, CAS spaces, and geometries, we refer the reader to
the previous sections.

Comparing wave function methods, CASPT2 gives the
lowest and DMC the highest excitation energies, while
exCC3 falls in between. This energetic order holds for all
chain lengths except for CN3, where CASPT2 and exCC3
give almost identical results. The difference between CASPT2
and exCC3 ranges between 0.03 and 0.15 eV, and the
differences are smallest for CN3 and CN11. The difference
between DMC and exCC3 is of opposite sign and lies
between 0.09 and 0.22 eV and decreases steadily from CN3
to CN11.

To establish the relative accuracy of the wave function
approaches, we recall that the CASPT2 method is generally
quite sensitive to the choice of the zero-order Hamiltonian.
For the cyanine dyes, the use of a Hamiltonian with no IPEA
shift, as was standard prior to MOLCAS 6.4, yields excitation
energies that are on average 0.2 eV lower than the values
obtained with the recommended IPEA shift of 0.25 (see Table
3). When the standard IPEA value is adopted, CASPT2 is
in better agreement with other wave function methods,
indicating that this novel definition of the zero-order Hamil-
tonian is more accurate and represents an improvement as
compared to previous CASPT2 calculations.

Previous CASPT2 calculations of the cyanine dyes by
Schreiber et al.15 are also affected by another problem,
namely, an inadequate choice of the CAS space (see Figure
5). The combined effect of the choice of zero-order Hamil-
tonian and the insufficient CAS dimension explains why the
CASPT2 energies of ref 15 are underestimated, in particular
for CN3, where their excitation of 6.63 eV must be compared
to our value of 7.19 eV. Our excitations of the cyanine dye
series should therefore be regarded as more reliable CASPT2
reference values due to the use of the IPEA Hamiltonian
and a well converged size of active space.

The agreement between the exCC3 and DMC excitation
energies is very satisfactory, with a difference of only 0.1
eV for the largest dyes. The larger discrepancy of 0.2 eV
for the smallest dye can be explained by the fact that the
high excitation of CN3 is clearly more sensitive to the de-
scription of static correlation and other parameters in the
wave function. For CN3, the DMC calculations were
performed employing the full active space and optimizing
also the orbital parameters. The results are stable and further
improvement not obvious. When comparing with DFT
methods, we will refer to the exCC3 numbers, as they fall
in between the CASPT2 and DMC, keeping in mind that

the exCC3 excitations, in particular for the smallest dyes,
might be slightly underestimated.

The TDDFT excitations computed with the hybrid GGA
PBE0 are about 0.35-0.5 eV above the exCC3 results. As
discussed in section 3.5, the use of the nonhybrid GGA PBE
or the long-range corrected CAM-B3LYP does not lead to
a significantly closer agreement with wave function methods.
The same holds for the larger number of GGA functionals
including the highly parametrized Minnesota functionals
tested by Jacquemin et al.67,68 These findings indicate that a
closer agreement with wave function methods can only be
obtained by going beyond the GGA and hybrid-GGA levels.

It is evident that the excitation energies of the cyanine
dyes are sensitive to the correlation energy treatment. This
can be seen in the spread observed among the wave function
methods and, at the TDDFT level, from the TDA-PBE0
results. Application of the TDA further deteriorates the
agreement with the wave function methods (see Table 6).
Within the Tamm-Dancoff approximation, matrix elements
that mix excitations and de-excitations are neglected so that
the excited state is described by excitations only. It has
already been stressed by Grimme and Neese25 that the present
cyanines are one of the rare cases where de-excitations
substantially contribute to the excitation energy. Clearly, with
the omission of the de-excitations, an important component
of correlation energy is neglected.

The only TDDFT approach that significantly improves the
agreement with the wave function methods is B2PLYP. The
deviation from the exCC3 results ranges between 0.14 and
0.29 eV and increases from CN3 to CN11. The agreement
between B2PLYP and DMC is almost perfect for the smaller
dyes, and the difference increases to 0.2 for the larger models.
Therefore, the discrepancy with either exCC3 or DMC
increases for excitations that have a larger double excitation
character (as seen in the exCC3 calculations). The improve-
ment given by the use of the B2PLYP scheme comes
however at the cost of an increase in computational scaling,
the introduction of an additional empirical parameter, and
other well-known limitations.25

The improved behavior of B2PLYP with respect to GGA
or hybrid functionals can be understood from the presence
of the additional perturbative correction. The non-self-
consistent B2PLYP correction is analogous to the (D)
correction in CIS(D) excitation energies, or the MP2 energy
correction in the ground state, but computed with Kohn-Sham
and not Hartree-Fock orbitals. B2PLYP is therefore an
empirical perturbative way to incorporate some double-
excitation character into the TDDFT excitation energies. In
the ground state, the opposite-spin part of the MP2 energy
correction is identical to the first nonvanishing order of the
RPA correlation energy, as shown by Eshuis et al.69 In the
excited state, the good performance of B2PLYP is thus an
indication that the use of exact RPA correlation may cure
the shortcomings of TDDFT in the cyanine dyes by a
satisfactory description of double-excitation character. A
nonempirical route to incorporate double excitations into
TDDFT has been formulated and applied for instance by
Cave et al. on polyenes.70

Table 7. Vertical Excitation Energies (eV) for the 11B1

State of the Cyanine Dye Seriesa

Molecule PBE0 B2PLYP exCC3 CASPT2 DMC

CN3 7.62 7.30 7.16 7.19 7.38(2)
CN5 5.33 5.05 4.84 4.69 5.03(2)
CN7 4.18 3.92 3.65 3.52 3.83(2)
CN9 3.50 3.25 2.96 2.81 3.09(2)
CN11 3.03 2.80 2.53 2.46 2.62(2)

a The CC, CASPT2/S-IPEA, and TDDFT excitations are
computed with the ANO-L-VTZP basis set. The best available
QMC values obtained with the T′+ basis set are shown.
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Finally, as is customary when discussing the cyanine dye
series, we show the theoretical excitation energies in nano-
meters in Figure 6. All methods appear to follow the almost
linear behavior traditionally called the vinyl shift.

4.2. Comparison with Experiments. We collect the
experimental absorption maxima for comparison with the
computed vertical excitation energies in Table 8. The
experimental spectra were recorded in different solvents in
the presence of CIO4

- counterions, and all show broad
absorption maxima for the lowest excited state. The position
of the absorption maxima depends only negligibly on the
dielectric constant of the solvent with variations smaller than
0.07 eV. Most experimental values were recorded for cyanine
dyes with two methyl substituents on each nitrogen, and the
absorption maxima of the methylated species are shifted to
lower energies compared to the values of the unmethylated
counterparts. The experimental methyl shift is 0.33-0.38 eV
for CN5 and 0.26-0.30 eV for CN7 depending on the
solvent.

As shown in Table 9, the experimental shifts upon
methylation are theoretically well reproduced at the CC2
level with a value of 0.39 and 0.26 eV for CN5 and CN7,
respectively, but largely overestimated by TDDFT/PBE0.
The methyl shift in the CC2 excitations diminishes from 1.19
eV for CN3 to 0.17 eV for CN11, as expected since the
influence of the end groups should vanish in large molecular

chains. The geometries of the methylated dyes are obtained
in C2v symmetry, but relaxing the symmetry constraint does
not change the structure of the dyes, with the exception of
CN3, where steric interaction between methyl groups at
different nitrogens forces the CN3 dye into a nonplanar
structure of C2 symmetry. Recomputing the excitation
energies at the CASPT2 and CC2 levels on the C2 structure
of CN3 only increases the excitations by 0.07 and 0.06 eV,
respectively.

The basis for a comparison between computed vertical
excitation energies and experimental absorption maxima is
the assumption that the transition probability is largest at
the ground-state minimum and when the transition is vertical,
that is, when ground- and excited-state structures are
identical. Examples where these assumptions are not satisfied
are numerous,71,72 but we restrict the discussion here to the
validity of the comparison for the cyanine dye series.

The calculation of the absorption spectrum of the cyanine
dyes using standard schemes is not possible here since it
requires the existence of an excited-state minimum. Relaxing
the excited state in C2v symmetry at the CC2 level yields
Stokes shifts of almost 1 eV, as shown in Table 10. Further
relaxation of CN3 and CN5 without symmetry constraints
leads to the highly twisted structures shown in Figure 7.
Clearly, absorption spectra based on harmonic potentials in
the excited state cannot be calculated for these systems.

The large Stokes shifts given in Table 10 explain the broad
absorption maxima in the experiments. Within slight variation
of the ground-state geometry, a large number of vibrational
states at different energies can be reached if the Franck-
Condon region of the excited state is distant from any

Figure 6. Vertical excitation energies of the cyanine dye
series in nanometers. The exCC3, CASPT2/S-IPEA, and
TDDFT results are computed with the ANO-L-VTZP basis set.
The best available DMC values obtained with the T′+ basis
set are shown.

Table 8. Experimental Absorption Maximum (eV) of the
Cyanine Dye Series for Different Solutions and
Substitutions at the Nitrogen Atoms (R1, R2)a

nitrogen termination (R1, R2)

molecule (H, H) (H, Me) (Me, Me)

CN3 5.54e

CN5 4.34c 4.20,c 4.19d 3.97,b 4.01,d 3.96e

CN7 3.28c 3.15,c 3.14d 3.01,f 2.99,b 3.02,d 2.98e

CN9 2.53,c 2.51d 2.40,b 2.44,d 2.39e

CN11 1.96,b 2.03,d 1.98e

a The dielectric constant and the corresponding experimental
temperature are given in brackets. b Ref 73, measured in
methylendichloride (9.1, 20.0 °C). c Ref 74, measured in H2O
(80.4, 20.0 °C). d Ref 75, measured in methanol (32.6, 25 °C).
e Ref 76, measured in methylendichloride (9.1, 20.0 °C). f Ref 77,
measured in ethanol (24.3, 25 °C).

Table 9. RI-CC2 and TDDFT/PBE0 Excitation Energy (eV)
of the 11B1 State for the Methylated Streptocyanine Dye
Series Computed with the ANO-L-VTZP Basis Setsa

CC2 TDDFT/PBE0

molecule (H, H) (Me, Me) (H, H) (Me, Me)

CN3 7.26 6.07 7.62 6.00
CN5 4.97 4.58 5.33 4.75
CN7 3.79 3.53 4.18 3.81
CN9 3.10 2.90 3.50 3.23
CN11 2.64 2.47 3.03 2.82

a The RI-MP2/cc-pVQZ and PBE0/cc-pVQZ ground-state
structures in C2v symmetry are employed for the CC2 and TDDFT
calculations, respectively.

Table 10. Vertical and Constrained-Adiabatic Excitation
Energies (eV) for the 11B1 State, Obtained with RI-CC2
and the ANO-L-VTZP Basis Setsa

Eexc (eV)

molecule vertical adiabatic C2v Stokes shift C2v

CN3 7.26 6.29 0.97
CN5 4.97 4.64 0.33
CN7 3.79 3.65 0.14
CN9 3.10 3.01 0.09
CN11 2.64 2.58 0.06

a Excited-state geometry optimizations are restricted to C2v

symmetry. The Stokes shift is the difference between vertical and
C2v-constrained adiabatic excitation energy. Relaxing the planarity
constraint for CN3 and CN5 indicates that there is no planar
minimum.
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minimum. Moreover, the fact that a relaxed long-lived
excited-state structure is most likely nonexistent also in-
creases the likelihood of nonvertical transitions. We therefore
conclude that the comparison between the computed vertical
excitation energies and the experimental absorption maxima
is not reliable, and certainly not suitable to assess the
performance of high-level computational methods.

In fact, the direct comparison of calculated vertical
excitation energies and experimental absorption maxima
shows that CC2 results for the methylated dyes are on
average 0.5 eV above the experimental data. The differences
range from 0.44 eV for CN11 to 0.62 eV for CN5 and are
dependent on the solvent. The deviations of the vertical
excitations from the absorption maxima for the methylated
species are consistent with the values obtained for the
unmethylated dyes. Our CASPT2 excitation energies com-
puted with the recommended IPEA zero-order Hamiltonian
and carefully converged dimensions of the active space lie
0.34-0.35 eV above the experimental values. The apparently
better agreement obtained in the older work by Schreiber et
al. can be explained with their use of an inadequate active
space as well as the use of a different zero-order Hamiltonian.
The zero-order Hamiltonian used in our work was introduced
a few years after the publication of Schreiber’s results and
is on average more accurate.

In summary, all methods give vertical excitation energies
above the experimental absorption maxima with CASPT2
yielding the lowest values but still more than 0.3 eV higher
than the experiments. The different wave function approaches
yield very similar results, and all lie well above the
experimental values. This supports our notion that the
experimental absorption maxima correspond to nonvertical
transitions. The influence of the solvent and the counterion
are not included in our computational description and may
further contribute to the discrepancy between theory and
experiment.

5. Conclusion

For almost a decade, the simple cyanine dyes studied in
this work have represented an intriguing and problematic
case for TDDFT and a challenge for the development of
new density functionals. The availability of accurate
theoretical vertical excitations for these dyes is therefore
very important in the assessment of the performance of
existing or novel TDDFT approaches. With the present
work, we offer carefully benchmarked reference values

computed with CASPT2, QMC, CC, and various flavors
of TDDFT as an aid for future developments. Our analysis
based on such a large variety of excited-state methods
gives a broad perspective on the parameters influencing
the excited-state description.

We find that previous CASPT2 calculations15 do not offer
a reliable benchmark for the cyanine dyes since the chosen
active space was inadequate and led to a severe underestima-
tion of the CASPT2 excitations, with errors as large as 0.6
eV for the smallest CN3 dye. Our CASPT2 calculations are
superior to these older studies in the use of the improved
zero-order IPEA Hamiltonian and a balanced and well
converged choice of the active space. Even though the
empiricism introduced by the choice of zeroth-order Hamil-
tonian renders the assessment of CASPT2 calculations more
difficult, the CASPT2 excitations obtained with the recom-
mended IPEA shift appear to be more reliable than those
computed without this shift, as the IPEA values are energeti-
cally closer to the extrapolated CC3 and DMC results. With
our improved CASPT2 vertical excitations, we find that the
agreement among all wave function methods is generally
quite reasonable, with the largest deviations being observed
for the smaller dyes, which appear most sensitive to the
treatment of static correlation.

Consequently, the overestimation attributed in the past to
TDDFT when comparing to older CASPT2 calculations is
now not as severe. Nevertheless, the performance of standard
GGA and hybrid GGA functionals is not satisfactory, and
our calculations indicate that the discrepancy between
TDDFT and wave function methods is due to an insufficient
description of double-excitation character at the GGA level.
The B2PLYP functional is an empirical scheme to partially
incorporate double excitation character, and it significantly
improves the description in the cyanine dyes, showing the
best agreement with CC3 and DMC results.

Since all wave function methods are in close agreement
and the calculations appear rather robust, we consider the
corresponding excitations trustworthy. It therefore remains
an open question as to why the theoretical results disagree
with the location of the absorption maxima in the experi-
mental spectra in solution. Quite surprisingly, we find that
the addition of methylation significantly lowers the vertical
excitations of the smallest dyes, bringing them in closer
agreement with the experimental absorption maxima of the
methylated species. Nevertheless, the remaining discrepancy
between theory and experiment is quite large, and we
attribute it to the presence of nonvertical transitions. In
principle, one could prove or disprove this statement by a
direct simulation of the absorption spectra. However, these
simulations are not straightforward due to the lack of excited-
state harmonic potentials and excited-state minima. We find
that the relaxation of some of the smaller dyes in planar
symmetry leads to Stokes shifts as large as 1 eV, and further
unconstrained relaxation yields highly distorted structures
that render the reconstruction of the spectra impossible.
Clearly, a direct comparison of the experimental absorption
maxima and the vertical excitation energies is not reliable
and should not constitute the basis for the assessment of
theoretical methods.

Figure 7. Excited-state minimal geometries of the CN3 and
CN5 dyes obtained with RI-CC2 and the ANO-L-VTZP basis
sets.
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Int. Ed. 2009, 48, 2474.

(4) Mustroph, H.; Stollenwerk, M.; Bressau, V. Angew. Chem.,
Int. Ed. 2006, 45, 2016.

(5) Weissleder, R.; Ntziachristos, V. Nat. Med. 2003, 9, 123.

(6) Würthner, F.; Schmidt, J.; Stolte, M.; Wortmann, R. Angew.
Chem. 2006, 118, 3926.

(7) Ikeda, S.; Kubota, T.; Yuki, M.; Okamoto, A. Angew. Chem.,
Int. Ed. 2009, 48, 6480.

(8) Bayliss, N. S. Q. ReV. Chem. Soc. 1952, 6, 319.

(9) Paci, I.; Johnson, J. C.; Chen, X.; Rana, G.; Popovic, D.;
David, D. E.; Nozik, A. J.; Ratner, M. A.; Michl, J. J. Am.
Chem. Soc. 2006, 128, 16546.

(10) Casida, M. E. Time-dependent density-functional response
theory for molecules. In Recent AdVances in Density
Functional Methods, Part I; Chong, D. P., Ed.; World
Scientific: Singapore, 1995; p 155.

(11) Furche, F. J. Chem. Phys. 2001, 114, 5982.

(12) Rappoport, D.; Furche, F. Excited states and Photochemistry.
In Time-Dependent Density Functional Theory; Marques,
M. A. L., Ullrich, C. A., Nogueira, F., Rubio, A., Burke, K.,
Gross, E. K., Eds.; Springer: Berlin, 2006; Lecture Notes in
Physics 706, p 337.

(13) Rappoport, D.; Furche, F. Phys. Chem. Chem. Phys. 2009,
11, 6353.

(14) Fabian, J. Dyes Pigm. 2010, 84, 36.

(15) Schreiber, M.; Bu�, V.; Fülscher, M. P. Phys. Chem. Chem.
Phys. 2001, 3, 3906.
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Abstract: In this work, we compare a large variety of density functionals against the equation
of motion coupled cluster singles and doubles (EOM-CCSD) method for the calculation of
oscillator strengths. Valence and Rydberg states are considered for a test set composed of 11
small organic molecules. In our previous work, the same systems and methods were tested
against experimental results for the excitation energies. The results from this investigation confirm
our previous findings, i.e., that there is a large difference between the functionals. For the
oscillator strength, the average best agreement with EOM-CCSD is provided by CAM-B3LYP
followed by LC-ωPBE and, to a lesser extent, B3P86 and LC-BLYP.

1. Introduction

Molecular UV/vis spectroscopy is routinely used in many
areas of experimental research, and computational simula-
tions of spectra have become an increasingly important, often
essential tool for the interpretation of experiments. Nonethe-
less, the accurate simulation of molecular UV/vis spectra still
represents a theoretically difficult challenge. Many methods
and approximations have been developed to tackle this
challenge. In particular, the advent of the time-dependent
density functional theory (TDDFT)1–3 within the adiabatic
approximation has allowed the study of a large variety of
molecules in different fields. Since the exact functional is
not known, a myriad of approximate functionals has been
proposed, and new ones are introduced every year. This
constitutes a problem for the investigators, especially for
nonspecialists, who want to take advantage of the compu-
tational efficacy of TDDFT.

Several papers have appeared in recent years that compare
different functionals on different molecular systems for the
calculation of vertical excitation energies.4–16 In our previous
work on this property,12 we examined 11 small organic
molecules for which extensive experimental and theoretical

data in the gas phase are available:17–29 a total of 69 states,
30 valence and 39 Rydberg in nature. Our set included a
variety of density functionals: local spin density approxima-
tion (LSDA), generalized gradient approximation (GGA),
GGA with kinetic energy density or meta-GGA (M-GGA),
hybrid GGA (H-GGA), and hybrid meta-GGA (HM-GGA)
as well as functionals that separate short- and long-range
exchange contributions (with and without the correct long-
range limits). Additionally, we considered four single refer-
ence wave function (WF) methods: configuration interaction
with single excitations (CIS),30 CIS with perturbative double
excitations correction (CIS(D)),31 random phase approxima-
tion (RPA),32 and the highly accurate and computationally
demanding equation of motion coupled cluster singles and
doubles (EOM-CCSD).33–35 Only single reference methods
were considered because their results are unambiguous;
therefore, they represent useful computational tools even for
nontheoretically trained investigators. The computed data
were compared to experimental results. As expected, EOM-
CCSD was revealed to be the most accurate among the
selected methods. This level of theory is often regarded as
the best compromise between accuracy and computational
cost for small- and medium-sized molecules, and it has the
advantage that the quality of the wave function can be
systematically improved by including more excitations in the
wave operator.33–35 On the other hand, there is not a
systematic way to improve a particular functional, and its
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ability to compute a particular property must be tested against
experimental results or a high ab initio level of theory. The
results of our previous work12 demonstrated that there are
large differences between the functionals and that new
functionals do not necessarily outperform older ones, at least
for the range of transitions we studied. In fact, a relatively
old functional, B3P86, performed as well as more recent ones
such as CAM-B3LYP and LC-ωPBE; although the latter two
were designed for the description of excited states, while
the former was not.

Nevertheless, the excitation energy is only one part of a
UV/vis spectrum; the other part is the intensity of the bands.
This depends on the oscillator strength, which is related to
the probability of the transition from the ground to an excited
state when the molecule interacts with an electric field.32 In
the present literature, there are few comparisons of the
performance of functionals for the calculation of this
property.7–10,36–43 In principle, the oscillator strength can be
directly extracted from experimental results. Unfortunately,
this is often difficult because of line broadening and
overlapping of the excitation bands, and often the comparison
with experimental oscillator strengths can only be qualitative.
Therefore, in this work, the functionals are tested against
the EOM-CCSD results. We only focus on single reference
methods since their use is straightforward, as mentioned
above. Although it is not expected that this level of theory
is exact, EOM-CCSD is a well-defined reference7–9 and can
be systematically improved. The same states and molecules
used in ref 12 are tested in the first part of the paper, and in
the second part, a portion of the spectra is simulated by
superimposing Gaussian line shapes in order to mimic the
experimental bands (neglecting the vibronic structure, which
is beyond the scope of the present work).

This paper is organized as follows. Section 2 describes
the methods, the test systems, and other details of the
calculations. Section 3 reports the results for the states used
in ref 12, while section 4 contains the simulated spectra. An
overall discussion of the results and concluding remarks are
reported in section 5.

2. Computational Details

The selected methods are the same as those employed in ref
12. There are four WF methods: CIS, CIS(D), RPA, and

EOM-CCSD. The approximate density functionals are listed
in Table 1. The molecules we consider are also those from
ref 12. There are three alkenes: ethylene (D2h), isobutene
(C2V), and trans-1,3-butadiene (C2h, we refer to this molecule
simply as “butadiene” in the following); three carbonyl
compounds: formaldehyde (C2V), acetaldehyde (Cs), and
acetone (C2V); and five azabenzenes: pyridine (C2V), pyrazine
(D2h), pyrimidine (C2V), pyridazine (C2V), and 1,2,4,5-tetrazine
(D2h, s-tetrazine). Their geometries were optimized at the
MP2/6-311+G(d,p) level of theory (the geometries are
available in the Supporting Information of ref 12). The
vertical excitation energies and oscillator strengths are
computed with the 6-311(3+,3+)G(d,p) basis set (the extra
diffuse functions are available in the Supporting Information).
All of the calculations are performed with a development
version of the Gaussian suite of programs.75 CIS(D) only
corrects the CIS transition energy, but not the CIS transition
dipole; therefore, the oscillator strengths for this method are
computed as

where fi is the oscillator strength for the ith state, µi0 is the
transition dipole, and ∆Ei is the transition energy in atomic
units.

The data in section 3 only refer to the states that we
considered in ref 12, which have experimental data for the
excitation energies. As outlined in section 1, experimental
oscillator strengths are often nonquantitative; thus, the
benchmark in this work is EOM-CCSD/6-311(3+,3+)G(d,p),
which has shown great reliability in the study of excited states
of small organic molecules.7–9,76,77 We did not consider the
transition properties computed with the linear response CCSD
approach (LR-CCSD)78,79 because it has been shown that
the difference between LR- and EOM-CCSD is negligible
for small molecules.80,81 Since many states and many
methods are compared, and oscillator strengths may differ
by several orders of magnitude between different states, we
perform a linear least-squares fit between the oscillator
strengths computed with a particular method as a function
of the reference (EOM-CCSD). The data reported in section
3 (XL) are given as the slope of the line (with zero intercept)

Table 1. List of Functionals Used in This Work

year type % HF year type % HF

LSDA44,48 1951 LSDA B3VP8645,47,48,50 1993 H-GGA 20
BLYP45,46 1988 GGA PBE1PBE53,54,69,70 1997 H-GGA 25
OLYP49,46 2001 GGA THCTHHYB57 2002 HM-GGA 15
BP8645,50 1988 GGA TPSSh59,73 2003 HM-GGA 10
BVP8645,48,50 1988 GGA M0560 2005 HM-GGA 28
PBEPBE53,54 1997 GGA BH&H,44,46,48 a 1993 H-GGA 50
HCTH51,55,56 2001 GGA BH&HLYP,44–46,48 a 1993 H-GGA 50
THCTH57 2002 M-GGA BMK62 2004 HM-GGA 42
VSXC52 1998 M-GGA M05-2X61 2006 HM-GGA 56
TPSSTPSS59 2003 M-GGA HSE1PBE63 2003 H-GGA 25-0a

O3LYP46,49,58 2001 H-GGA 11.61 CAM-B3LYP64 2004 H-GGA 19-65b

B3LYP45–47,71,72 1994 H-GGA 20 LC-BLYP45,46,65,66 2001 H-GGA LCc

B3P8645,47,50 1993 H-GGA 20 LC-ωPBE65–68 2006 H-GGA LCc

a Note that these are not the same as the half-and-half functionals proposed by Becke.74 b Short-range-long-range. c The percentage of
HF exchange increases as described in refs 65–68.

fi
CIS(D) ) 2

3
|µi0

CIS|2∆Ei
CIS(D) (1)
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that best fits the oscillator strengths computed with a
particular method compared to EOM-CCSD:

We also report the R2 parameter, which indicates how
close the data points are to a line. This choice for the
representation of the results provides the proper weight to
the excited states according to the magnitude of their
oscillator strengths. Indeed, many states in ref 12 have small
oscillator strength or are symmetry-forbidden (they appear
in the experimental spectrum because of vibrational sym-
metry breaking). All of the oscillator strengths are available
in the Supporting Information.

Section 4 contains the simulated spectra obtained from
the oscillator strengths by adding Gaussian line shapes
through the Harada-Nakanishi equation:82

where ε is the extinction coefficient, ν is the excitation energy
in eV, and σ is a parameter that we choose equal to 0.4 eV.
We consider the region of the spectrum spanned by the first
20 states of EOM-CCSD (∆E < 7-9 eV, depending on the
molecule). For the other methods, we include all the states
necessary to have a complete description of the correspond-
ing EOM-CCSD bands. Thus, the number of states consid-
ered is larger than in ref 12 and section 3. Furthermore, since
including all of the methods would make the spectra
unreadable, we only select 11 methods: CIS, LSDA, BLYP,
B3LYP, B3P86, PBE1PBE, M05, CAM-B3LYP, LC-BLYP,
LC-ωPBE, and EOM-CCSD. CIS and LSDA are the simplest
among the WF and DFT methods. The other functionals are
chosen among the various classes, in particular, those for
which a long-range correction is available. We choose not
to compare the simulated spectra with the experimental UV/
vis spectra because the latter contain considerable vibronic
structure, which strongly influences the shape and size of
the bands. In contrast, the simple band structure provided
by eq 3 would make the comparison with the experimental
spectra difficult. Therefore, EOM-CCSD is the reference
method also in this case.

3. Statistical Analysis

The values of XL for alkenes, carbonyls, and azabenzenes
are reported in Tables 2-4, respectively. These data are also
grouped together in a graphical form in Figures 1 and 2.
Figure 1 reports XL - 1 for the single molecules, while
Figure 2 reports XL - 1 collectively for the groups of
compounds (in Figure 1, the WF methods are not included
because their XL values are very large in many instances).
In these figures, a negative value corresponds to a scaling
factor smaller than 1, and a positive value to a factor larger
than 1. The R2 parameters are reported in Figures 3 and 4
for the single molecules and for the molecular groups,
respectively (the numerical values are available in the
Supporting Information). In the following discussion, we
consider “good” the performance of a method that provides

0.66 < XL < 1.5 and 0.8 < R2 e 1. Obviously, the best
performances are those where the XL and R2 parameters
approach 1.

In the alkene group, eleven transitions are considered for
ethylene, two for isobutene, and seven for butadiene. The
most intense states for these molecules are the first B1u state

fi
method ) XLfi

EOM-CCSD (2)

ε(ν) )
fi

3.483 × 10-5√πσ
e-((ν - νi)/σ)2

(3)

Table 2. XL for the Alkenes

ethylene isobutene butadiene all

RPA 1.16 1.94 1.24 1.25
CIS 1.43 1.69 1.45 1.45
CIS(D) 1.49 1.65 1.47 1.48
LSDA 0.73 1.01 0.89 0.86
BLYP 0.53 0.21 0.77 0.69
OLYP 0.42 0.42 0.67 0.60
BP86 0.61 0.31 0.85 0.77
BVP86 0.61 0.31 0.85 0.77
PBEPBE 0.61 0.41 0.83 0.76
HCTH 0.61 0.71 0.85 0.79
THCTH 0.61 0.61 0.87 0.79
VSXC 0.72 0.13 0.90 0.83
TPSSTPSS 0.62 0.28 0.84 0.76
O3LYP 0.48 0.57 0.80 0.71
B3LYP 0.75 0.78 0.92 0.87
B3P86 0.88 1.35 0.97 0.97
B3VP86 0.79 0.81 0.95 0.91
PBE1PBE 0.81 0.93 0.96 0.92
THCTHHYB 0.72 0.78 0.93 0.87
TPSSh 0.55 0.50 0.90 0.80
M05 0.85 1.25 0.95 0.94
BH&H 0.96 1.38 1.07 1.05
BH&HLYP 0.96 1.37 1.07 1.05
BMK 0.88 1.05 1.01 0.98
M05-2X 1.00 2.11 1.06 1.09
HSE1PBE 0.83 0.99 0.96 0.93
CAM-B3LYP 0.95 1.38 1.02 1.02
LC-BLYP 1.06 2.15 1.12 1.15
LC-ωPBE 1.03 2.10 1.09 1.12

Table 3. XL for the Carbonyls

formaldehyde acetaldehyde acetone all

RPA 3.01 1.80 3.32 2.53
CIS 2.72 1.35 5.09 2.65
CIS(D) 2.25 1.01 4.30 2.16
LSDA 0.43 0.74 0.25 0.53
BLYP 0.26 0.50 0.26 0.37
OLYP 0.43 0.62 0.26 0.48
BP86 0.23 0.43 0.26 0.33
BVP86 0.23 0.43 0.26 0.33
PBEPBE 0.24 0.55 0.26 0.38
HCTH 0.26 0.78 0.29 0.50
THCTH 0.27 0.63 0.27 0.43
VSXC 0.20 0.39 0.25 0.29
TPSSTPSS 0.21 0.46 0.25 0.33
O3LYP 0.51 0.66 0.27 0.52
B3LYP 0.51 0.66 0.27 0.52
B3P86 0.58 0.75 0.31 0.59
B3VP86 0.44 0.60 0.26 0.47
PBE1PBE 0.51 0.66 0.26 0.52
THCTHHYB 0.38 0.58 0.25 0.44
TPSSh 0.31 0.51 0.25 0.38
M05 0.67 0.86 0.30 0.67
BH&H 0.74 0.87 0.58 0.76
BH&HLYP 0.78 0.88 0.65 0.80
BMK 0.52 0.53 0.36 0.49
M05-2X 0.85 0.99 0.48 0.83
HSE1PBE 0.47 0.67 0.26 0.51
CAM-B3LYP 0.81 0.90 0.80 0.85
LC-BLYP 1.38 1.39 1.19 1.34
LC-ωPBE 0.95 1.06 0.86 0.98
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for ethylene (f 1B1u
EOM-CCSD ) 0.3520), the A1 state for isobutene

(f A1
EOM-CCSD ) 0.1525), and the first two Bu states for

butadiene (f 1Bu
EOM-CCSD ) 0.6169 and f 2Bu

EOM-CCSD ) 0.1636).
The oscillator strengths for the remaining states are on the
order of 7 × 10-2 and lower. The WF methods overestimate
the oscillator strength for this class of molecules, especially
for isobutene. RPA, however, performs reasonably well for
ethylene and butadiene (see Table 2). On the other hand,
most of the density functionals underestimate the reference
at least until a large percentage of HF exchange is introduced
(see Table 2 and Figures 1 and 2). Hybrid functionals
perform quite well for these molecules, although some
provide a large overestimation for isobutene. This is the case
for M05-2X, LC-BLYP, and LC-ωPBE, and to a lesser extent

for B3P86, M05, BH&H, BH&HLYP, and CAM-B3LYP.
The R2 values are remarkably good with almost all of the
methods for the individual molecules and as a group, as
shown in Figures 3 and 4.

For the carbonyls, we consider eleven transitions for
formaldehyde, six for acetaldehyde, and eight for acetone.
The largest oscillator strengths are on the order of 7 × 10-2.
The WF methods largely overestimate the reference. CIS(D)
reduces the value of XL compared to CIS, but it is still large
for acetone, see Table 3. In contrast, the DFT methods
underestimate the oscillator strengths. The only exceptions
are LC-BLYP for all of the molecules and LC-ωPBE for
acetaldehyde, as shown in Table 3 and Figure 1. This
underestimation is particularly severe for acetone in many

Table 4. XL for the Azabenzenes

pyridine pyrazine pyrimidine pyridazine S-tetrazine all

RPA 2.44 1.65 1.96 2.75 1.02 1.78
CIS 2.79 2.14 2.26 2.94 1.44 2.22
CIS(D) 2.48 1.95 2.03 2.63 1.13 2.01
LSDA 1.02 0.94 1.45 0.65 0.67 0.99
BLYP 1.04 0.92 0.83 0.74 0.70 0.91
OLYP 0.83 0.70 0.52 0.77 0.67 0.69
BP86 1.02 0.98 1.14 0.92 0.71 0.99
BVP86 1.03 0.97 1.14 0.92 0.71 0.99
PBEPBE 1.03 0.95 0.56 0.77 0.67 0.90
HCTH 0.98 0.87 1.29 0.64 0.70 0.91
THCTH 1.12 0.97 1.23 0.73 0.74 1.00
VSXC 1.16 0.89 0.96 0.61 0.77 0.91
TPSSTPSS 1.05 0.74 1.11 0.93 0.73 0.81
O3LYP 1.41 1.16 1.42 1.14 0.68 1.20
B3LYP 1.39 1.17 1.30 1.21 0.74 1.20
B3P86 1.39 1.22 1.43 1.17 0.74 1.24
B3VP86 1.39 1.21 1.41 1.12 0.74 1.24
PBE1PBE 1.46 1.26 1.46 1.18 0.77 1.28
THCTHHYB 1.28 1.15 1.31 0.97 0.71 1.17
TPSSh 1.24 1.02 1.46 0.93 0.70 1.08
M05 1.67 1.39 1.69 1.19 0.66 1.42
BH&H 1.88 1.49 1.77 1.49 0.92 1.54
BH&HLYP 1.81 1.43 1.65 1.48 0.90 1.47
BMK 1.59 1.38 1.64 1.22 0.79 1.41
M05-2X 1.95 1.60 2.01 1.41 0.78 1.65
HSE1PBE 1.46 1.25 1.46 1.16 0.76 1.28
CAM-B3LYP 1.57 1.33 1.58 1.21 0.86 1.36
LC-BLYP 1.76 1.47 1.76 1.42 0.99 1.51
LC-ωPBE 1.66 1.42 1.73 1.31 0.96 1.46

Figure 1. XL - 1 for the single molecules.
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cases. Very good performance is provided by LC-ωPBE and
CAM-B3LYP, followed by BH&H and BH&HLYP. The R2

values are much more scattered for this group, as shown in
Figure 3. A general good behavior is reported for acetalde-
hyde, whereas poor results are obtained for formaldehyde

and especially acetone with most of the pure and hybrid
functionals with a small percentage of HF exchange (see
Figure 3). CAM-B3LYP and LC-ωPBE provide a very good
performance also for R2, followed by BH&H and BH&HLYP.
The XL and R2 values for the entire set (see Figures 2 and 4)

Figure 2. XL - 1 for the molecular groups.

Figure 3. R2 for the single molecules.

Figure 4. R2 for the molecular groups.
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show a better performance moving from pure to hybrid
functionals, especially those with large amounts of HF
exchange. BH&H, BH&HLYP, CAM-B3LYP, and LC-
ωPBE provide the overall best performance for this group.

In the azabenzene set, four transitions are considered for
pyridine, five for pyrazine, six for pyrimidine, five for
pyridazine, and four for s-tetrazine. The largest oscillator
strengths are on the order of 8 × 10-2. The XL values are
often larger than 2 for the WF methods, although RPA and
CIS(D) provide rather good results for s-tetrazine (see Table
4). For the functionals, the magnitude of XL seems to increase
moving from left to right in Figure 1, i.e., going from pure
functionals to hybrids with an increasing amount of HF
exchange to functionals with short- and long-range separa-
tion. In this case, many pure functionals perform rather well,
as do most of the hybrids with a small amount of HF
exchange. CAM-B3LYP is the best among the long-range
separated functionals. The R2 values are reasonably good
for almost all of the functionals with the exception of
pyrimidine with OLYP and PBEPBE. The WF methods also
show some difficulty with this molecule. The collective XL

results in Figure 2 show good performance of the pure
functionals; this degrades for hybrid functionals, especially
for those with a larger amount of HF exchange and

short-long-range separation. On the other hand, the collec-
tive R2 values in Figure 4 are very close to unity for most
of the functionals.

4. Simulated Spectra

The spectrum of ethylene, Figure 5a, shows that all of the
methods are shifted to lower energy compared to EOM-
CCSD. CIS, LC-BLYP, and LC-ωPBE overestimate the
intensity of the most intense band while the others are very
close to the reference (only BLYP significantly underesti-
mates it). Most of the DFT bands are centered around the
same energy, while M05 and BLYP are shifted to lower
energy. The small band centered at 7.3 eV for EOM-CCSD
is not well reproduced by many methods, i.e., CIS, B3P86,
M05, CAM-B3LYP, LC-BLYP, and LC-ωPBE. For these
methods, the two bands are so close in energy that the large
band covers the small one. For isobutene, Figure 5b, the CIS
band is centered at the same energy of EOM-CCSD, but it
is much more intense. The intensity of the band for LSDA,
B3LYP, and PBE1PBE is similar to that for EOM-CCSD
but shifted to lower energy. B3P86, M05, and CAM-B3LYP
overestimate the intensity of the band, which is also shifted
to lower energy. BLYP provides the worst performance with

Figure 5. Alkenes spectra.
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a very small band at very low energy. LC-BLYP and LC-
ωPBE have the band at the right energy, but the overestima-
tion of its intensity is even greater than that for CIS. The
butadiene spectrum, Figure 5c, is quite well reproduced by
almost all of the functionals as far as the intensity of the
band is concerned (the worst performance is again provided
by BLYP), but the position of the bands is shifted to lower
energy. The long-range corrected functionals overestimate
the intensity of the band also in this case. CIS has the closest
band to EOM-CCSD in terms of energy, but it is also the
method that most overestimates the intensity.

The EOM-CCSD spectrum of formaldehyde has two bands
at 7 and 8 eV (see Figure 6a). LSDA, BLYP, B3LYP,
PBE1PBE, and M05 provide poor performance in this case,
with bands of small intensity and shifted to lower energy.
Poor performance is shown by CIS with very intense bands
that are high in energy. CAM-B3LYP, LC-BLYP, and LC-
ωPBE, on the other hand, satisfactorily reproduce the EOM-
CCSD spectrum. CAM-B3LYP slightly underestimates the
intensity of the band at 8 eV, while LC-BLYP and LC-ωPBE
slightly overestimate it. B3P86 underestimates the intensity
of the 8 eV band (similar to B3LYP and PBE1PBE), but its
position is at the same energy as CAM-B3LYP. The
spectrum of acetaldehyde, Figure 6b, is extremely overes-

timated by CIS both in the position and in the intensity of
the bands (which are out of the energy range of the figure).
The DFT methods do a better job with respect to the
intensity, although only B3P86, CAM-B3LYP, and LC-
ωPBE are close in energy to EOM-CCSD. The best
agreement is provided by CAM-B3LYP with a spectrum
slightly shifted to lower energy. For acetone, Figure 6c, CIS
shows the usual large overestimation of the intensity and
shifts to much higher energy. The opposite behavior is shown
by LSDA and BLYP. The LC-BLYP and LC-ωPBE spectra
are shifted to higher energy; these methods also miss the
EOM-CCSD band at 8 eV. B3LYP, B3P86, and PBE1PBE
similarly underestimate the intensity and position of the
bands. Among these functionals, B3P86 is the closest to
EOM-CCSD in terms of the energy. M05 provides a good
performance for the intensity, but the bands are shifted to
lower energy. The functional that best approximates the
EOM-CCSD spectrum for this molecule in this energy range
is CAM-B3LYP.

The azabenzenes have a small band at 5-5.5 eV and an
intense band at 7.5-8 eV. For pyridine, Figure 7a, CIS
overestimates the intensity of both, and their position is
shifted to higher energy. All of the functionals simulate the
EOM-CCSD spectrum more closely, although the intense

Figure 6. Carbonyls spectra.
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band is shifted to lower energy. For pyrazine, Figure 7b,
the small band around 5 eV is shifted to higher energy with
all of the methods. On the other hand, the more intense band
is shifted to lower energy with all of the functionals (the
CIS band is at higher energy). The best agreement with
EOM-CCSD is obtained with LC-BLYP and LC-ωPBE, both
in the intensity and in the position of the band. The other
functionals underestimate the intensity of this band, although

the intensities of the B3P86 and LSDA bands are close to
that of EOM-CCSD. For pyrimidine, Figure 7c, similar
considerations apply. However, in this case, the difference
in the intensity of the large band is very small for most
functionals. Only LC-BLYP and LC-ωPBE slightly over-
estimate the intensity of the EOM-CCSD band. CIS over-
estimates both bands in position and intensity. Pyridazine,
Figure 7d, has a spectrum very similar to that of pyrimidine.

Figure 7. Azabenzenes spectra.
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All of the methods behave comparably to the previous
molecule, though the intensity of the large EOM-CCSD band
is slightly underestimated by all of the functionals. Finally,
s-tetrazine has a spectrum less intense in the same region
(Figure 7e). LC-BLYP and LC-ωPBE reproduce the EOM-
CCSD spectrum rather well, though the position of the small
band is at higher energy while that of the larger band is at
lower energy. The intensity of the large CAM-B3LYP band
is comparable to that of EOM-CCSD, but it is centered at a
slightly lower energy than those of LC-BLYP and LC-ωPBE.
The third band shown by many functionals is outside the
energy range considered for EOM-CCSD. Note that, with
the exception of B3P86, CAM-B3LYP, LC-BLYP, and LC-
ωPBE, the DFT methods require a large number of states to
completely characterize the intense band for this set of
molecules: around 30-40 states for the hybrid functionals
and around 60-80 states for LSDA and BLYP.

5. Discussion and Conclusion

The results in sections 3 and 4 show that more approximate
WF methods such as RPA, CIS, and CIS(D) consistently
overestimate the oscillator strength compared to EOM-
CCSD, as they do for the excitation energy. Additionally,
the R2 values show that the oscillator strengths are quite
scattered compared to EOM-CCSD for the carbonyls and
part of the azabenzenes. However, the CIS plots in section
4 qualitatively reproduce the EOM-CCSD spectra.

On the contrary, pure functionals mostly underestimate
the oscillator strength (and the excitation energy12), in many
cases dramatically, as is evident in Figure 1. Some good
results are obtained for azabenzenes. The R2 values in Figures
3 and 4 show good alignment for alkenes and azabenzenes
but not for the carbonyls. The performance of LSDA and
BLYP on the simulated spectra in section 4, where many
states had to be included to completely characterize the most
intense bands of the azabenzenes, suggests that several low
lying Rydberg states appear. The underestimation of excita-
tions to Rydberg states is a well-known problem of pure
functionals,41,66,83,84 which makes these functionals compu-
tationally expensive since many states need to be sought in
order to include the ones of interest.

Hybrid functionals with a small percentage of HF ex-
change and no short-long-range separation tend to under-
estimate the oscillator strength for alkenes and carbonyls and
overestimate it for azabenzenes. For these functionals, the
R2 values are close to unity for alkenes and azabenzenes
but not for the carbonyl compounds, in particular, acetone.
A larger amount of HF exchange shifts XL (both individual
and collective) to higher values, such that XL = 1 for the
alkenes, XL < 1 for the carbonyls, and XL > 1 for the
azabenzenes (see Figures 1 and 2). The R2 parameters are
closer to unity than for the pure functionals, but they are
still rather small for the carbonyls, especially acetone. For
the latter, a larger amount of HF exchange provides better
results. The carbonyl set represents a difficult test for these
functionals (and even more for pure functionals) since all
of the relevant excitations considered in section 3 are to
Rydberg states, whereas for the azabenzenes, all of the states

are valence, and for the alkenes the very bright valence states
are predominant. In the simulated spectra in section 4, we
noticed a mixing of valence and Rydberg states, which leads
to a redistribution of the intensity among several transitions
as previously reported by Tozer et al.10 However, this is
hidden in the simulated spectra due to summing of the
Gaussian line shapes. The simulated spectra in section 4
usually show less intense bands than EOM-CCSD with all
of the functionals that do not separate short- and long-range
effects. B3P86 stands out among these functionals as an
excellent choice.

Three of the short-long-range separated functionals
(CAM-B3LYP, LC-BLYP, and LC-ωPBE) perform on
average better than the other functionals in reproducing the
EOM-CCSD results, especially for difficult cases like
acetone. This is shown in both the statistical analysis and
the simulated spectra. In particular, CAM-B3LYP is often
very close to the reference results, although it does not have
the correct asymptotic behavior in the long range. LC-ωPBE
also behaves well despite some difficulty with some aza-
benzenes and the significant overestimation of the isobutene
oscillator strength for the bright A1 state. CAM-B3LYP and
LC-ωPBE also show the R2 value closest to 1. In the
simulated spectra, the two functionals with the correct
asymptotic behavior, LC-BLYP and LC-ωPBE, often show
more intense bands than EOM-CCSD.

For the data set we analyzed, i.e., Rydberg and valence
states for small organic molecules, the magnitude of XL

increases moving from pure functionals to hybrids with more
and more HF exchange. On the other hand, the WF methods
in this work largely overestimate EOM-CCSD. More im-
portantly, the results in Figures 1 and 2 seem to indicate
that it is not possible to define a single scaling factor for the
oscillator strength computed with the approximate function-
als. In fact, 0.5 < XL < 1.5 depending on the set of molecules.
On average, the best performance for the test cases consid-
ered here is obtained with CAM-B3LYP in both the statistical
analysis and the simulation of the spectra, followed by LC-
ωPBE. LC-BLYP also shows quite good agreement with
EOM-CCSD. Among the functionals with no short-long-
range separation, B3P86 provides satisfactory results with
spectra often very close to those of CAM-B3LYP. As
outlined in ref 12, the range of functionals and test cases
considered in this work is certainly not complete. Neverthe-
less, these results provide useful insight on the ability of
many current functionals to produce oscillator strengths of
EOM-CCSD quality and show how much work is still
necessary in the development of density functional theory.
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Abstract: The infrared anharmonic spectra for the H+(H2O)3, H+(H2O)4, and H+(H2O)21 water
clusters have been reported using vibrational second-order perturbation theory at the B3LYP
level with 6-31+G(d) and 6-311++G(3df,3pd) basis sets. The anharmonicity results crucial for
the evaluation of the protonated water clusters and the anharmonic corrections can be larger
than 500 cm-1, resulting in a shift of the H3O+ asymmetric stretchings near the region of 2000
cm-1.

1. Introduction

Understanding the hydrated proton is of paramount impor-
tance for the knowledge of fundamental processes in
chemistry and biology, and the investigation of protonated
water clusters has been proven to be essential for under-
standing the nature of protons in solution.1 From a conceptual
point of view, the proton in the water clusters can be mainly
located in two places. In the Eigen form (H3O+),2 the proton
is strongly linked by a single bond to the oxygen atom of a
water molecule, while in the Zundel form,3 it lies midway
between the oxygen atoms of two water molecules
(H2O-H+-H2O). The Grotthuss mechanism4 has been used
to explain the proton transfer mechanism.

The structure and vibrational spectra of the protonated
water clusters, H+(H2O)n, have been a challenge for chemists
in the recent decades. In the small size regime (n e 11),
experimental and theoretical works have allowed character-
ization of the Eigen and Zundel motifs.5-9 The structural
identification of protonated water clusters with medium and
large sizes has been more complicated. In 2004, as shown
in the seminal works by Miyazaki et al.6 and Shin et al.,7

the authors were capable of isolating the protonated water
clusters H+(H2O)n with n ) 6-27 in gas phase and of
measuring their infrared (IR) spectra from 2000 to 4000
cm-1. Both works confirm that protonated water clusters are
chains, two-dimensional nets, and three-dimensional cage
structures at small, intermediate, and large sizes, respectively.

Moreover, special attention has been paid to the vibrational
spectrum of the H+(H2O)21 cluster.

Mass spectroscopy studies by Lin10 and Searcy and Fenn11

found that H+(H2O)21 shows a large mass peak intensity with
respect to its neighboring clusters. This fact was ascribed to
an exceptional stability of this cluster, and from that moment,
H+(H2O)21 was known as having the “magic number” of
protonated water clusters. It was proposed that its stability
is caused by its structure, and a distorted pentagonal
dodecahedron cage, with a neutral water molecule encaged
in the cavity, and a proton over the surface was suggested
as an Eigen form. This hypothesis has been confirmed by
theoretical calculations,12,13 predicting that dodecahedral with
an Eigen motif located at the cluster surface is the most stable
conformer. Nevertheless, as far as we know, experimental
confirmation of this hypothesis has not been reported yet.

In the infrared predissociation spectra (IRPD) series of
H+(H2O)n, with n ) 6-27, obtained by Miyazaki et al.6 and
Shin et al.,7 it was found that the O-H stretching band of
two-coordinated single-acceptor-single-donor (AD) water
molecules disappears at the magic number cluster. This fact
is significant, because it supports the idea of a highly
symmetric structure for H+(H2O)21, i.e., a pentagonal dodeca-
hedron cage with an internal water. However, these experi-
mental results do not answer the question of whether the
correct model for H+(H2O)21 is an Eigen or a Zundel motif.
The characteristic intense O-H stretching vibration band,
predicted near 2500 cm-1, for the Eigen structure does not
appear in the experimental IR spectrum measured in the
2000-4000 cm-1 range.6,7 This result supports the possibil-
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ity of a Zundel structure. Nevertheless, the peculiar proton
oscillation of the Zundel motif appears around 1100 cm-1,
which is below the experimental measured IR spectrum (in
the 2000-4000 cm-1 range), and therefore, the Zundel motif
cannot be confirmed.

The discrepancy between ab initio results and the experi-
mental spectrum was addressed by the fact that the theoretical
calculations do not include thermodynamic factors, like the
effect of temperature6,7 and the possible contributions from
more than one structural isomer of a given cluster.7,14 After
these works, several authors15 evaluated these thermody-
namic factors for H+(H2O)21, and it has been concluded that
they have an important role in the vibrational spectrum. For
instance, the nonappearance of the OH stretching vibrations
for the hydronium in the experimental IRDP spectrum
ranging from 2000 to 4000 cm-1 has been attributed to a
reduction of their vibrational intensities due to thermody-
namic effects.

In 2009, Duncan and co-workers16 reported the IRPD
spectra of D+(D2O)n (n ) 18-24), including H+(H2O)21,
using a pulsed ring discharge source instead of the pulsed
spark source previously employed.7 The IRPD spectrum of
H+(H2O)21 is expanded to 1000 cm-1, and in accordance
with the previous results, the expected band around 2500
cm-1 of the O-H stretching vibrations of H3O+ was not
detected. No other bands were found in the expanded lower
frequency range of the spectrum. The pulsed ring discharge
source makes larger ion signals, although the ions are not
quite as cold as those produced with the laser spark. Then,
in these new experiments, the role of the temperature
becomes even more important. In addition, Douberly et al.16

pointed out that dissociation energies or the dynamical rate
of dissociation at lower energies might be the problem due
to the lack of a signal of the IRPD spectrum below 3100
cm-1, so that further IR spectroscopy of clusters at a well-
defined cold temperature would be extremely valuable.

In this work, we present a different and complementary
point of view of this problem. We calculate the IR anhar-
monic spectra for the most stable conformers of the
H+(H2O)3, H+(H2O)4, and H+(H2O)21 water clusters, all of

them having an Eigen structure. In the incoming paragraphs,
we will show that the O-H stretching vibrations of H3O+

have red-shifts larger than 500 cm-1, and therefore anhar-
monicity can also play a crucial role in the characterization
of the IR spectra of the H+(H2O)21 water cluster.

2. Computational Methods

The B3LYP17 exchange-correlation functional with 6-31+G(d)
and 6-311++G(3df,3pd) basis sets18 has been used to
optimize the geometries of H+(H2O)3, H+(H2O)4, and
H+(H2O)21 (Figure 1), with the H3O+ sitting on the surface
of the water cage, and to calculate their frequencies. All of
the protonated water clusters of this work show an Eigen
motif. The most stable conformer of H+(H2O)21 with the
hydronium ion sitting on the surface, obtained by Hodges
and Wales,12 has been used as the initial geometry of the
optimization process.

In recent years, many different methodologies have been
implemented to evaluate vibrational wave functions including
anharmonicity. In the VSCF19 procedure, each mode vibrates
at the average potential generated by all other modes. The
correlation between modes can be introduced through post-
VSCF procedures such as perturbation theory (VMP2),20

configuration interaction (VCI),21 and coupled-cluster tech-
niques (VCC).22 The present work is focused on the
vibrational second-order perturbation theory (VPT2)23 treat-
ment implemented by Barone.24 The second-order perturba-
tion theory correction is applied to a potential energy surface
(PES) approximated by a Taylor series with normal coor-
dinates, qi, that includes the quadratic, all cubic, and
semidiagonal quartic force constants.

The cubic and semidiagonal quartic force constants are
computed using a finite difference approach, which linearly
scales with the number of normal modes. For instance, in

Figure 1. Optimized geometries for the protonated water clusters studied in this work. The atoms of the H3O+ cation in H+(H2O)21

are enlarged.
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the case of H+(H2O)21, it implies 373 frequency calculations.
The VPT2 method has been successfully applied to reproduce
the vibrational properties for a large variety of systems.25

All calculations have been carried out using Gaussian 03.26

3. Results and Discussion

The first step of the present work has been devoted to
validating the VPT2 methodology used to evaluate the IR
spectrum of H+(H2O)21 with a potential energy surface (PES)
obtained at the B3LYP/6-31+G(d) level.27 To this end, we
have computed the IR spectra of H+(H2O)3 and H+(H2O)4,
for which accurate experimental IR spectra have been
recently reported.7,9 Tables 1 and 2 contain the experimental
and calculated harmonic and anharmonic vibrational frequen-
cies and harmonic intensities of selected vibrational frequen-
cies for H+(H2O)3 and H+(H2O)4 systems, respectively,
obtained at B3LYP level of theory using 6-31+G(d) and
6-311++G(3df,3pd) basis sets. The Supporting Information
contains all of the harmonic and anharmonic vibrational
modes for the protonated water clusters studied in this work.

The first important conclusion is that the augmentation of
the basis set from 6-31+G(d) to 6-311++G(3df,3pd) is not
crucial for the evaluation of the IR anharmonic spectra of
H+(H2O)3 and H+(H2O)4 (for more details, see the Support-
ing Information). The second important conclusion is that
the H3O+ stretchings present important anharmonic red-
shifts, e.g., around 300 cm-1 for the H+(H2O)4 system and
up to 592.1 cm-1 for the asymmetric stretching of H3O+

for H+(H2O)3.28 Moreover, the introduction of anharmonicity
through the VPT2 methodology produces a considerable
improvement of the harmonic vibrational frequencies. The
differences of the harmonic vibrational frequencies with
respect to the experimental values range between 98.4 and
560.8 cm-1 for H+(H2O)3 and between 88.6 and 204 cm-1

for H+(H2O)4, while the differences between anharmonic and
experimental vibrational frequencies range between 20.6 and

144.1 cm-1 for H+(H2O)3 and between 22.0 and 84.4 cm-1

for H+(H2O)4. These results illustrate the relevance of the
anharmonicity in the evaluation of the vibrational spectra
for protonated water clusters. In addition, we can conclude
that the VPT2 methodology with the PES obtained at the
B3LYP/6-31+G(d) level represents an effective and reliable
choice for obtaining a semiquantitative reproduction of the
experimental spectra of H+(H2O)21.

Finally, it is interesting here to compare the IR spectra of
both clusters, according to the results reported by Headrick
et al.8 In the case of the H+(H2O)3 cluster, the Eigen signature
appears at 1880 cm-1. On the contrary, in the case of the
H+(H2O)4 cluster, the Eigen core is fully hydrated, and the
corresponding band appears at 2665 cm-1. In both cases,
our anharmonic calculations predict quite well the experi-
mental bands, and they are also in good agreement with the
theoretical values reported in the same work. These results
are very interesting because they clearly show that the Eigen
signature can cover a wide range of frequencies. For instance,
the OH stretch of the isolated H3O+ appears near 3500
cm-1,29 and it is red-shifted up to 2665 cm-1 for the
H+(H2O)4 cluster and up to 1880 cm-1 for the H+(H2O)3

and H+(H2O)5 clusters.8

Regarding the H+(H2O)21 cluster, Figure 2 shows the
harmonic and anharmonic computed IR spectra, whereas the
calculated values and relative intensities of the H3O+

stretchings are reported in Table 3.
At the first sight of Figure 2, one can see important

dissimilarities between harmonic and anharmonic IR spectra.
From 3000 to 4000 cm-1, the symmetric and asymmetric
stretchings of water molecules and the OH stretching bands
of three-coordinated double-acceptor-single-donor (AAD)
water molecules appear. These vibrational modes show
different red-shift anharmonic corrections, ranging from 170
to 310 cm-1.28 These red-shift anharmonic corrections lead
to a reorganization of the vibrational modes and an important

Table 1. Calculated Harmonic and Anharmonic Vibrational Frequencies (in cm-1) and Harmonic Intensities (in km ·mol-1) at
the B3LYP Level Using 6-311++G(3df,3pd) and 6-31+G(d) (in parentheses) Basis Sets for H+(H2O)3

mode I (har) ν (har) ν (anhar) ν (exp)a

H2O asym. stretching 374.7 (402.0) 3876.1 (3831.3) 3699.1 (3650.4) 3724
H2O asym. stretching 2.2 (2.6) 3875.6 (3830.8) 3697.9 (3649.7) 3724
H3O+ free OH stretching 164.4 (145.7) 3801.4 (3737.4) 3616.3 (3546.8) 3580
H2O sym. stretching 43.4 (74.3) 3787.6 (3728.8) 3620.5 (3559.4) 3639
H2O sym. stretching 123.1 (121.8) 3787.1 (3729.0) 3621.4 (3564.1) 3639
H3O+ sym. stretching 1116.5 (1175.2) 2566.7 (2611.9) 2564.1 (2542.2) 2420
H3O+ asym. stretching 4137.9 (3990.3) 2382.0 (2440.8) 1802.1 (1848.6) 1880

a The experimental vibrational frequencies are obtained from ref 8, where H+(H2O)3 has been tagged with Ar.

Table 2. Calculated Harmonic and Anharmonic Vibrational Frequencies (in cm-1) and Harmonic Intensities (in km ·mol-1) at
the B3LYP Level Using 6-311++G(3df,3pd) and 6-31+G(d) (in parentheses) Basis Sets for H+(H2O)4

Mode I (har) ν (har) ν (anhar) ν (exp)a

H2O asym. stretching 402.9 (359.4) 3884.1 (3834.7) 3699.0 (3645.6) 3730
H2O asym. stretching 37.1 (49.6) 3883.6 (3834.3) 3697.7 (3643.4) 3730
H2O asym. stretching 32.3 (88.5) 3883.4 (3833.9) 3711.0 (3668.8) 3730
H2O sym. stretching 1.4 (3.9) 3796.3 (3732.6) 3622.0 (3562.5) 3644
H2O sym. stretching 74.1 (72.8) 3795.2 (3731.7) 3616.2 (3556.9) 3644
H2O sym. stretching 73.6 (69.3) 3795.0 (3731.3) 3632.3 (3581.9) 3644
H3O+ asym. stretching 2994.0 (2853.3) 2856.7 (2869.0) 2622.5 (2609.1) 2665
H3O+ asym. stretching 2990.3 (2856.7) 2856.3 (2868.6) 2621.8 (2617.6) 2665

a The experimental vibrational frequencies are obtained from ref 8, where H+(H2O)4 has been tagged with Ar.
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change of the IR spectrum shape, so that the shape of the
anharmonic computed IR spectrum of the H+(H2O)21 cluster
is more similar to the experimental IRPD spectrum reported
by Shin et al.7 and Douberly et al.16 than that predicted by
the harmonic approach.

Below 3000 cm-1, the “problematic” stretching bands of
H3O+ are found. First, our calculations predict a less intense
band (761 km ·mol-1), which is located at 2523.3 cm-1, that
corresponds to the H3O+symmetric stretching. This band has

an important anharmonic correction of 292.5 cm-1. Second,
our calculations predict at 2062.9 and 2033.2 cm-1 two
intense bands (2030 and 2080 km ·mol-1), corresponding
to the fingerprint vibrational frequencies of the H3O+

asymmetric stretchings. It is important to remark here that,
for these two bands, the anharmonic corrections are larger
than 500 cm-1 in a similar way to that previously discussed
for the H+(H2O)3 cluster. Finally, below 1800 cm-1, the
harmonic and anharmonic vibrational IR spectra are quite

Figure 2. Computed harmonic (top) and anharmonic (bottom) spectra for the H+(H2O)21 cluster with H3O+ located on the
surface of the cage, obtained at the B3LYP/6-31+G(d) level of theory.
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analogous, and they contain vibrational bending frequencies
of water molecules with anharmonic corrections smaller than
100 cm-1.

Our predicted anharmonic spectrum shows large differ-
ences with respect to the experimental IRPD spectra reported
in the literature6,7,16 in which neither the H3O+ stretching
frequencies nor the vibrational bending frequencies below
1800 cm-1 are observed. According to previous works,7,14-16

these differences might be attributed to thermodynamic and
dynamic effects, like the temperature and the contributions
from more than one structural isomer of a given cluster. In
addition, it is worth pointing out here that the calculations
and experiments address different situations; namely, the
calculations correspond to one-photon absortion spectra, and
the experiment corresponds to multiphoton (predominantly
two-photon) predissociation spectra. These factors can have
an important role in the vibrational spectrum of H+(H2O)21,
and consequently, they can lead to a reduction of the
vibrational band intensities. For instance, they could explain
the nonappearances of the symmetric H3O+ stretching
vibration predicted around 2500 cm-1 and the asymmetric
H3O+ stretching vibrations predicted around 2000 cm-1 in
the experimental IR spectra. Our computed IR spectrum does
not consider the effect of the temperature, and it corresponds
to the most stable conformation of the H+(H2O)21 cluster.
Thus, our results should mimic a spectrum measured at very
low temperatures, where the thermodynamic and dynamic
effects are reduced.

4. Conclusions

In the present work, we have studied the anharmonic effects
of the H+(H2O)3, H+(H2O)4, and H+(H2O)21 water clusters,
all of them having an Eigen structure, by using the VPT2
methodology with a PES obtained at the B3LYP level of
theory using 6-31+G(d) and 6-311++G(3df,3pd) basis sets.
Our results lead to the following conclusions:

For the H+(H2O)3 and H+(H2O)4 clusters, experimental
and other theoretical data are available, and they are in good
agreement with the results obtained in this work. According
to our calculations, the Eigen signature appears at 1802 cm-1

in the case of the H+(H2O)3 cluster and at 2622 cm-1 in the
case of the H+(H2O)4 cluster (the experimental values are
1880 and 2665 cm-1, respectively). In both cases, the
anharmonic effects are shown to be very important, with red-
shifts up to 580 cm-1 for H+(H2O)3 and up to 234 cm-1 for
H+(H2O)4 with respect to the harmonic spectra.

Regarding to the H+(H2O)21 cluster, our calculations show
that the anharmonic effects produce important red-shifts in

the computed bands. In the 3000 to 4000 cm-1 range, the
computed anharmonic IR spectrum is more similar to the
experimental spectrum than the harmonic one. Moreover, our
calculations predict the symmetric and HO asymmetric
stretchings of the Eigen signature to appear close to 2500
and 2000 cm-1 with red-shifts larger than 250 and 500 cm-1,
respectively, with respect to the computed harmonic value.
The discrepancies between theoretical and experimental IR
spectra have been attributed to thermodynamic and dynamic
effects, and therefore, these results will be valid at very low
temperatures. Regarding this point, and following a review-
er’s comment, it is worth noting here that it will be very
difficult to obtain a high enough concentration of ions to do
a direct IR adsorption measurement, and at temperatures near
0 K, the IRPD technique would take more than two photons
to observe dissociation on the time scale of the experiment.
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Investigación Cientı́fica y Técnica (DGYCIT, grant CTQ2008-
06536/BQU), the Generalitat de Catalunya (Grant 2009-
SGR01472), and the Research Executive Agency (Grant
Agreement no. PERG05-GA-2009-249310). The calculations
described in this work were carried out at the Centre de
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Abstract: The behavior of titanium implants in physiological environments is governed by the
thin oxide layer that forms spontaneously on the metal surface and mediates the interactions
with adsorbate molecules. In order to study the adsorption of biomolecules on titanium in a
realistic fashion, we first build up a model of an oxidized Ti surface in contact with liquid water
by means of extensive first-principles molecular dynamics simulations. Taking the obtained
structure as reference, we then develop a classical potential to model the Ti/TiOx/water interface.
This is based on the mapping with Coulomb and Lennard-Jones potentials of the adsorption
energy landscape of single water and ammonia molecules on the rutile TiO2(110) surface. The
interactions with arbitrary organic molecules are obtained via standard combination rules to
established biomolecular force fields. The transferability of our potential to the case of organic
molecules adsorbing on the oxidized Ti surface is checked by comparing the classical potential
energy surfaces of representative systems to quantum mechanical results at the level of density
functional theory. Moreover, we calculate the heat of immersion of the TiO2 rutile surface and
the detachment force of a single tyrosine residue from steered molecular dynamics simulations,
finding good agreement with experimental reference data in both cases. As a first application,
we study the adsorption behavior of the Arg-Gly-Asp (RGD) peptide on the oxidized titanium
surface, focusing particularly on the calculation of the free energy of desorption.

1. Introduction

The outstanding mechanical and chemical properties of
titanium have attracted for decades the attention of materials
scientists, leading to the development of Ti-based alloys for
a broad range of applications. Besides its wide use in the
aerospace and marine industries, its corrosion resistance and
biocompatibility make titanium a material of choice for
medical and dental implants.1,2 In this case, a thorough
knowledge of the physical and chemical details of the
interface between the implant and the physiological environ-
ment is desired for tailoring the surface properties and
optimizing the adhesion of cells within the body tissues.

Since these processes are governed by the adsorption of
biological macromolecules, such as proteins, an atomic-scale
understanding of the interaction between proteins and the
metal surface is often sought, yet still lacking.3

Complementary to experiments, atomistic molecular dy-
namics (MD) simulations, based on either quantum mechan-
ical or classical formalisms, may provide a powerful method
to gain insight into the microscopic mechanisms involved
in protein adhesion. However, realistic simulations of the
interface between titanium and a physiological environment
have to face the rich chemical complexity of the system,
which prevents the use of simple structural models and
generic interaction potentials. In contact with water and
oxygen, the metallic Ti surface is covered by an oxide layer,
whose composition, structure, and thickness strongly depend
on the oxidation conditions. It is known that high temper-
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atures promote the formation of a thick TiO2 layer, whereas
oxidation at room temperature results in thin layers (e1 nm)
composed of a broad range of titanium oxidation states and
with stoichiometries variable from Ti2O to TiO2.4-9

When considering molecular adsorption on Ti surfaces, it
is crucial to take into account the precise structure and
chemistry of the oxide layer. In particular, since the oxidized
Ti surface does not reveal single crystal features, it might
be a too strong approximation to model it with an ideal TiO2

crystal facet, as done so far in many simulation studies.10-15

Recently, in extensive quantum mechanical MD simulations
of the oxidation reactions of the bare metal, we have obtained
a realistic model for the oxidized Ti(0001) surface, including
two monolayers (ML) of chemisorbed oxygen atoms.16 In
agreement with the available experimental knowledge, this
model reveals a rather amorphous oxide structure and
variable Ti oxidation states and thus appears to capture well
the representative features of Ti surfaces exposed to an
oxidizing environment.

Although the adsorption reactions of small molecules, such
as oxygen, can be simulated accurately by means of quantum
mechanics,11,17,18 the adsorption of large molecules over
correspondingly extended surface areas can nowadays be
investigated only by means of classical simulations. These
require suitable ‘force field’ potentials to model the surface
dynamics and the interactions between surface and adsorbate
molecules. Several approaches are currently in use to model
the interactions at the interfaces between titania and water
or solvated organic molecules.12,19,12 However, the current
models are based on perfect crystal surfaces, and their
transferability to thin oxide layers including various Ti
oxidation states is uncertain. Furthermore, the available
potentials have been scarcely validated for systems including
more than 1 ML of water molecules, and the interactions
with bulk water are rarely tested against suitable experimental
results, such as the heat of immersion. Also the applicability
of combination rules to extend the potentials to arbitrary
molecules is often assumed but not investigated carefully.

As reported in ref 16, we have recently developed a force
field to model the dry oxidized titanium surface in classical
MD simulations. In this paper we present an extension of
this force field to model Ti/TiOx/water interfaces and in
particular solvated organic adsorbate molecules interacting
with oxidized Ti. The simple analytical form of our potential,
based on atomic point charges and Lennard-Jones (LJ)
interactions, is compatible with commonly used water models
and biomolecular force fields and makes feasible the simula-
tion of large systems. The potential parameters are accurately
tuned on the basis of density functional theory (DFT)
calculations of the potential energy surfaces (PES) of various
organic molecules on the dry surface and validated against
experimental results for the heat of immersion of TiO2 as
well as the adhesion force of tyrosine on oxidized Ti. As a
first application, we present simulations of the adsorption
behavior of the amino acid sequence Arg-Gly-Asp (RGD),
which is widely used to functionalize biomaterials surfaces
with the aim of promoting a better surface adhesion of cells
in biomedical implants.

The paper is structured as follows: After a summary of
the computational methods (Section 2), in Section 3 we
describe first-principles molecular dynamics (FPMD) simula-
tions of the interfaces between bulk water and both TiO2

and the oxidized Ti(0001) surface. These calculations are
used as a reference model for the construction of our potential
in Section 4. In particular, we focus on an analysis of the
charges of surface atoms and on how to achieve consistency
with generic biomolecular force fields. We then proceed to
derive appropriate nonbonded interactions and optimal
parameters from DFT calculations of the PES of water and
ammonia on the TiO2 surface. In Section 4.4 we compare
the classical model to DFT results of small organic molecules
adsorbed on the dry oxidized surface. Subsequently, classical
simulations of wet systems are presented and discussed in
comparison to experimental results in Section 5. Finally, the
adsorption behavior of the RGD peptide on the oxidized
titanium surface is investigated in Section 6.

2. Computational Details

2.1. FPMD Simulations. Our FPMD simulations are
performed within the formalism of DFT, employing the
PW91 exchange correlation GGA functional22 and the
projector-augmented wave (PAW) method23 to represent
the interactions between electrons and core ions, as imple-
mented in the Lautrec code.24 The PAW data set for Ti is
generated with 12 explicit valence electrons, including 3, 2,
2 projectors for the s, p, and d angular momentum channels.
The data sets for O, N, and C include six, five, and four
valence electrons and two projectors in each of the s and p
channels. The wave functions are expanded in plane waves
up to a kinetic energy cutoff of 540 eV. Since all systems
under investigation are nonmagnetic, we employ spin-paired
calculations. When considering metallic systems the elec-
tronic states are occupied according to a Fermi-Dirac
distribution using a smearing width of 0.1 eV. Both the
minimization of the electronic states and the MD simulations
are performed using the Car-Parrinello (CP) method,25

making use of special algorithms for the treatment of metallic
systems26,27 where necessary. The surface cells are sampled
using the (0.25, 0.25) point of the Brillouin zone, except for
the static PES calculations of water molecules on the TiO2

surface (Section 3), where a 2 × 2 distribution is employed.
For systems which bear an electric dipole moment (e.g., the
dry oxidized surface), we apply an electrostatic correction
to remove the macroscopic dipole along the z supercell
direction.28 In all geometry relaxations we ensure that all
force components on all unconstrained atoms are less than
0.05 eV/Å. Convergence of total energy differences with
respect to the chosen cutoff is checked in all cases to be
within 0.01 eV.

2.2. Classical MD Simulations. All our classical MD
simulations are performed using the program package
DLPOLY29 (version 3.09), in which we have implemented
the force field for the dry oxidized surface. The electrostatic
interactions are treated using the smoothed particle mesh
Ewald (SPME) method with a precision of 10-6 and a real
space cutoff of 12.0 Å. If not stated otherwise, for the short-
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ranged interactions a cutoff radius of 12.0 Å is used.
Dynamic simulations at finite temperature are performed in
a NVT ensemble using the Berendsen thermostat30 with a
relaxation time of 0.5 ps and an integration time step of 1
fs. The surface slab is constructed by repeating the DFT dry
surface cell structure in each direction of the surface plane
and by applying a mirror operation along the perpendicular
direction in order to obtain a symmetric system without net
dipole moment. The resulting surface areas of the supercells
comprise 17.62 × 20.34 Å2 for the 2 × 2 surface and 35.23
× 40.68 Å2 for the 4 × 4 surface. In dynamic simulations
of the oxidized surface and the TiO2 slab, the surface atoms
are allowed to move according to the force field described
in ref 16 (which is also reported in detail in the Supporting
Information, for completeness). In Sections 5.2 and 6, the
central plane of titanium atoms is fixed to provide a constant
reference coordinate frame. Before adding any adsorbate
molecules, the dry surface is relaxed classically. The surface
water interface is prepared by filling the vacuum gap with
pre-equilibrated water molecules. After relaxing and ther-
malizing the system in a 200 ps MD run, the height of the
simulation cell is initially adjusted in another 100 ps
simulation to obtain a 1 atm pressure along the surface
normal. Prior to each production run, further equilibration
simulations of at least 200 ps are carried out. Adsorbate
molecules are prepared by relaxing their structure in vacuum
and placing them in the dry simulation cell, which is then
filled with pre-equilibrated water molecules. Subsequently
the system is treated as described above.

3. FPMD Simulations of Water Adsorption

In order to obtain accurate model systems of the interfaces
between oxidized titanium and bulk water, we perform
extended FPMD simulations based on DFT, comparing the
water adsorption behavior on a rutile(110) surface with that
on an ultrathin oxide film grown on Ti (0001).16

3.1. Water Adsorption on Rutile TiO2 (110). The
dominant adsorption mode of water on the rutile TiO2 (110)
crystal surface has been the subject of controversial discus-
sions for decades. Theoretical studies have reported contra-
dicting energetic orders for either molecular, mixed, or
dissociative adsorption at low water coverage (e1 ML).18,31,32

Regarding experimental results, spontaneous dissociation of
water molecules on the perfect rutile(110) surface is generally
considered to be unlikely, whereas it is facilitated at surface
defect sites.33-35 Recently, the change of free energy, rather
than of potential energy, upon water adsorption was calcu-
lated in DFT MD simulations, yielding a positive value of
+0.6 eV for the dissociation of bulk water on the perfect
rutile(110) surface,36 which corroborates the experimental
finding. Here we consider a 4-layer slab of a 1 × 3 surface
unit cell including 24 titanium and 48 oxygen atoms in
contact with 21 water molecules. The dimensions of our
supercell are 6.56 × 8.95 × 40.0 Å3. By means of both
dynamical simulations and static total energy calculations,
we find that molecular adsorption at the five-fold-coordinated
titanium atoms (Ti5f) is the preferred way of interaction on
the perfect TiO2 rutile surface, in agreement with the
Car-Parrinello MD studies of ref 31. In particular, when

starting from an initially dissociated configuration with one
of the protons bound to the neighbor bridging oxygen atoms,
proton transfer and recombination of the water molecule
eventually occurs within a few hundred fs of dynamics.
Direct Ti-O bond formation between water and the surface
takes place exclusively at Ti5f atoms with a coverage close
to 100%. Namely, all three equivalent Ti5f sites of our surface
cell remain occupied by an adsorbed molecule for more than
90% of the time during the FPMD simulations at ∼350 K.

3.2. Water Adsorption on Oxidized Ti(0001). A repre-
sentative structural model for the oxidized Ti(0001) surface
was obtained in extensive Car-Parrinello MD simulations,
as described in ref 16 (Figure 1a). The model includes 60
titanium and 24 oxygen atoms corresponding to an O
coverage of 2 ML. The structure of the oxide network
exhibits a predominantly amorphous character, and its
stoichiometry corresponds roughly to TiO, although features
of different TiO2 and Ti2O3 crystal structures can be
identified.16 As a remarkable topological property, the surface
presents an exposed row of three two-fold-coordinated
bridging oxygen atoms (labeled A, B, and C in Figure 1a),
a typical feature observed on several TiO2 crystal facets and
on the oxidized TiN surface.37

Starting from this dry system we fill the vacuum gap with
28 pre-equilibrated water molecules and saturate the reactiv-
ity of the bottom surface of the slab with 12 hydrogen atoms
in hcp positions, thus preventing spurious reactions between
the water and the metallic slab. A FPMD simulation lasting
5 ps is carried out in the NVE ensemble, after initial
thermalization of the system by velocity rescaling to a
temperature of 350 K. During the dynamics, we observe
adsorption, but not dissociation, of water molecules at
exposed undercoordinated Ti atoms, similarly as on the rutile
TiO2(110) surface. In the case of the thin oxide film, the
preferred adsorption sites are the Ti atoms which are bound
to the two-fold-coordinated bridging oxygen atoms (which
we will from now on refer to as TiB and OB, respectively).
Once adsorbed, most of the molecules remain stably bound
throughout the simulation. Only one molecule temporarily
binds to a titanium atom located in the valley between the
rows of bridging oxygen and later desorbs leaving the site
free. In summary, a total of four water molecules stably
adsorb on the surface during our FPMD trajectory, occupying
three of the four TiB adsorption sites, one of which

Figure 1. DFT model for the dry oxidized titanium surface
(a) and snapshot of the interface between the surface and
water from FPMD simulations (b).
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accommodates two water molecules at the same time (Figure
1b). We calculate the desorption energies of these four water
molecules from the total energy differences between the fully
minimized water-decorated surface (in the absence of other
free water molecules) and the same system upon removal
of the adsorbed water molecules, one at a time, plus the total
energy of the removed isolated water molecules in the same
supercell. We obtain values of 0.53, 0.48, 0.91, and 0.44
eV. By comparison, for the desorption energy of a single
water molecule from the fully hydrated 3 × 1 TiO2(110)
surface we find 0.83 eV.

In a further simulation, in which we started from a
defective surface by removing one of the OB atoms, the
adsorption of a water molecules takes place in a dissociative
manner. One proton is transferred to a nearby bridging
oxygen atom leaving a hydroxyl group adsorbed at the
undercoordinated titanium atom. The corresponding calcu-
lated desorption energy value upon recombination of the
dissociated molecule in the gas phase is 1.9 eV. Our
computed values of desorption energy from the different sites
agree fairly well with the values measured experimentally
for the desorption of water from a ∼100 nm thick oxide layer
on Ti.38 Namely, two main desorption peaks at 0.53 and 0.75
eV were identified and assigned to desorption of molecularly
adsorbed water on different surface sites, while a third peak
at 1.2 eV was assigned to associative desorption from
previously dissociated water molecules.

These results suggest that our model, although based on a
system of very limited size, may indeed be representative
of realistic Ti/TiOx/water interfaces. We thus use it as a basis
for constructing a classical potential which would enable us
to simulate larger systems for longer time than achievable
with a full quantum mechanical formalism. In doing this,
we rely on the fact that our oxidized surface, in the absence
of obvious defects, such as the oxygen vacancy that we
arbitrarily created, showed little reactivity when exposed to
liquid water. Therefore, we can assume that the physical/
chemical behavior at the interface between oxidized Ti and
the outer environment may be well captured by a simple
potential based on nonbonded interactions, as described in
the next section.

4. A Classical Potential for Ti/TiOx/Water
Interfaces

The starting point of our work is the classical force field
potential which we have recently developed for the oxidized
titanium surface. The model consists of a Finnis-Sinclair-
type many-body potential for the metal region coupled to
electrostatic Coulomb interactions and a short-ranged repul-
sive potential for the oxide region, as reported in the
Supporting Information. In the next section, we focus on the
coupling of this potential with a water environment and
dissolved organic molecules, by combining it with standard
molecular force fields.

4.1. Rescaling of the Point Charges for Surface/
Adsorbate Interactions. In our potential, the point charges
qi employed in the electrostatic interactions within the oxide
are determined using the electronegativity equalization
method (EEM) of Mortier et al.39 Their values within the

thin oxide film (dashed line in Figure 2) are proportional to
atomic Bader charges40 computed at the DFT level and are
consistent with the parametrization of the short-ranged
interactions.16 However, these charges are not guaranteed
to reproduce well the electrostatic interactions between the
oxide layer and the molecular species above the surface.
Indeed, most common force fields for water or biomolecules,
including the widely used TIP3P water model41 or the
AMBER42 biomolecular force field, use point charges best
fit to reproduce the electrostatic potential outside the
molecule (ESP charges).43-46 We thus compute ESP charges
for the exposed OB and TiB atoms (for atoms buried in the
surface, the ESP charge value has little or no significance).
As shown in Figure 2, the obtained ESP charges are sightly
lower than the EEM charges. Therefore, to compute the
Coulomb electrostatic energy between molecular adsorbates
and the oxidized surface, we rescale all surface point charges
by a factor of 0.77, as determined ad hoc to match the EEM
and ESP charges on the exposed surface bridging oxygen
atoms (solid line in Figure 2). To calculate the interactions
between the Ti and O atoms within the surface, we retain
the original EEM charges in order to preserve the potential
parametrization of ref 16.

4.2. Interactions with Oxygen-Containing Molecules.
The findings of Section 3, that water adsorption on the defect-
free oxidized Ti surface takes place without dissociation,
allow us to model the water/surface interactions by employ-
ing only electrostatic and nonbonded short-ranged forces.
In this way, we can easily combine the potential described
in the previous section with established biomolecular force
fields in order to perform simulations of biomolecular
adsorption on oxidized Ti, which is the ultimate goal of our
work. We describe the interactions of the surface with
adsorbates, in particular with water molecules, by a LJ and
Coulomb nonbonded potential, as, e.g., in the AMBER force
field:

The parameters εIJ and σIJ for each pair IJ of interacting
species can be obtained using the combination rules εIJ )
(εIεJ)1/2 and σIJ ) (σI + σJ).42 The atomic parameters εI and

Figure 2. Charges of the dry oxidized titanium surface:
Original EEM charges (dashed line, ---), scaled EEM charges
(solid line, s), and the ESP charges of the exposed surface
atoms (diamonds, )).

VIJ(r) ) εIJ[(σIJ

r )12

- 2(σIJ

r )6] +
qIqJ

r
(1)
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σI for water and biological molecules can be taken from the
AMBER42 or the generalized AMBER force field (GAFF),47

which leaves only the four LJ parameters for the titanium
and oxygen atoms of the surface to be determined. Differ-
ently from previous approaches (e.g., refs 20 and 21), we
determine these parameters from a fit of the energy landscape
of water desorbing from a rutile TiO2(110) crystal surface,
rather than from optimization of the structural properties of
adsorbed water molecules.

As a reference, we compute with DFT the PES of one
water molecule placed at different heights above the fully
hydrated 3 × 1 rutile(110) surface cell, as displayed in the
inset of Figure 3. Starting from a fully minimized configu-
ration, one of the water molecules is displaced vertically
along the surface normal, and total energy calculations are
performed at each separation, keeping all atomic positions
fixed. The resulting PES is shown in Figure 3 (black solid
line), yielding a potential minimum of -1.1 eV. This is
deeper than the desorption energy computed in Section 3
(0.83 eV) because of the lack of atomic relaxation.

For exactly the same atomic configurations, we now
compute total energies using our classical potential, optimiz-
ing the LJ parameters for the surface atoms by a least-squares
fit to the DFT PES using the GULP package.48 Both the
DFT and the classical energy values are rigidly shifted to
obtain a value of 0.0 eV for a water surface separation of 8
Å. In these calculations, the point charges on the rutile atoms
are computed from the EEM charges scaled by the same
factor of 0.77 determined for the oxidized Ti surface (see
previous section). Notably, the resulting charges are nearly
identical to the ESP charges computed for the crystal surface
(e.g., the average charge values of the bridging oxygen atoms
are 0.67 electrons in both cases).

As shown in Figure 3, the agreement between the DFT
and classical PES is excellent for the optimal LJ parameter
set listed in Table 1. We note that in our approach the used
LJ potential must not be seen as a physical representation
of dispersion interactions but only as an arbitrary way of
mapping the true surface water interactions by means of
Coulomb and short-range terms. In fact, weak dispersion
interactions are not properly accounted for, and generally
underestimated,49 in the DFT total energy calculations.

However, the deep minimum of the potential well on the
polar oxide surface suggests that electrostatic attraction by
far exceeds the dispersion forces, which can be thus safely
neglected.

Using these interaction parameters, the water molecules
are relaxed classically to compare the adsorbed geometry
on the crystal surface to the corresponding DFT structure.
Upon full atomic relaxation, at the classical level, the
calculated desorption energies of a single water molecule
from the hydrated surface is 0.81 eV, which is in very good
agreement with the DFT value of 0.83 eV. We will indeed
show later in the paper that these parameters lead to
computed values of the work of hydration of Ti oxide
surfaces in good agreement with experiments, thus justifying
the approximations taken in our approach. The distances
between five-fold titanium and water oxygen, between water
hydrogen and bridging oxygen, as well as between hydrogen
and oxygen of two neighbor water molecules are reported
in Table 2. We notice small differences between the DFT
and the classical structure, in particular the hydrogen bridges
are longer in the classical model. However, we consider these
differences as acceptable for our purposes, and we refrain
from correcting them ad hoc by introducing bending
potentials,20,21 as they would prevent the desorption of the
bound water molecules from the surface, or their replacement
by other water molecules. These are events that we often
observed in long FPMD simulations and that we would like
to reproduce also in classical simulations.

Another feature which should be captured by the potential
is the correct adsorption energy of a second water layer, as
discussed in ref 21. To check this issue, we place an
additional water molecule over the crystal surface terminated
by three adsorbed water molecules, with the H atoms pointing
toward the surface OB atoms. For this system we calculate
the DFT and the classical PES as described above, obtaining
adsorption energy minima of -0.14 and -0.12 eV for the
DFT and the classical potential, respectively.

4.3. Interactions with Nitrogen-Containing Molecules.
Obviously not all molecules of interest bind to the surface
via oxygen atoms, as in the case of water. It is thus necessary

Figure 3. PES of a water molecule at various separations
from the TiO2 rutile(110) surface: DFT (black diamonds, ))
and classical calculations (red circles, O). The structure is
displayed in the inset.

Table 1. LJ Parameters of the Surface Atoms

LJ parameters

εI [eV] σI [Å]

Ti 0.01455 0.7827
O 0.01983 1.6154

Ti-N 9-6 potential

εTi-N [eV] 0.140155
σTi-N [Å] 2.30769

Table 2. Interatomic Distances of the DFT and the
Classical Model after Relaxation of the Water Molecules on
the Rutile(110) Surface

DFT classical

Ti5-OW [Å] 2.34 2.24
HW-OB [Å] 1.81 2.09
HW-OW [Å] 2.14 2.17
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to check the transferability of the surface LJ parameters to
the case of molecules adsorbing via different atoms, in
particular nitrogen given its abundance in protein and other
biomolecules. For this purpose we compute the adsorption
of ammonia on the hydrated TiO2(110) surface, as the
simplest possible reference case. PES calculations are
performed in the same way as described above, replacing
only one of the water molecules by ammonia, while retaining
the other two water molecules adsorbed on the surface. For
the classical description of the NH3 molecule, we use the
LJ parameters taken from the GAFF. Since the AMBER
force field does not specify partial charges for ammonia, we
assign to the atoms ESP charges of -0.84 and +0.28,
obtained by the same method as described in Section 4.1.
Comparing the DFT and classical PES (Figure 4), it appears
that the position of the energy minimum determining the
equilibrium bond length is slightly shifted toward larger
distances, and especially the depth of the potential minimum
is too shallow in the classical case. Notably, even trying a
further optimization of the LJ parameter of the surface Ti
and O atom did not lead to satisfactory results. Depending
on the particular circumstances, this deviation from the
quantum mechanical behavior can be accepted either as a
limit of the parameter transferability or a modification of
the potential form must be introduced. In order to ensure a

tight consistency with the DFT results, we chose to introduce
an ad hoc 9-6 potential to model the interactions between N
and Ti atoms:

The parameters εTi-N and σTi-N are determined by fitting to
the DFT PES, the resulting values given in Table 1. With
this potential form, the DFT adsorption energy profile can
be now very well reproduced (Figure 4).

4.4. Adsorption of Organic Molecules on the Dry
Oxidized Ti Surface. In this section, we check whether the
force field parameters determined in the previous section
taking the TiO2(110) surface as a reference are transferable
to the case of adsorption of small organic molecules on the
oxidized Ti surface. To this aim, the PES of methanol
(CH3OH), formic acid (HCOOH), and methylamine
(CH3NH2) above the dry oxidized titanium surface are
calculated both by means of full-level DFT and of our newly
developed classical potential. For the reasons mentioned in
Section 4.3 and for the sake of consistency, for all molecules
we computed ESP charges with our DFT code. These are
found to differ by less than 0.05 e from the corresponding
point charges of the AMBER force field, when available.
The LJ parameters of all atomic pairs are obtained by the
standard combination rules, as described above. For each of
the molecules, the minimum-energy adsorption geometry is
obtained by FPMD simulations followed by careful relax-
ation. Taking the resulting structures as the input models,
the molecules are displaced along the directions of the bond
connecting them to the surface, and total energy calculations
are performed without atomic relaxation. The relaxed ad-
sorbed configurations are shown in Figure 5.

In the case of formic acid, we found that the molecule
could adsorb in either a molecular or a dissociated form,
depending on the initial orientation of the carboxyl hydrogen.
Since the dissociation reactions cannot be taken into account
using our simple force field, we focus here on the molecularly
adsorbed configuration. The OH group of methanol was
found to bind to two titanium atoms, therefore the molecule
was displaced vertically above the surface. Methylamine

Figure 5. PES of methanol (CH3OH), methylamine (CH3NH2) and formic acid (HCOOH) on the dry oxidized titanium surface:
DFT (black diamonds, )) vs classical energies (red circles, O). For CH3NH2 the results for unchanged (blue triangles, 4) and
modified (red circles) Ti-N interactions are displayed. For clarity the PES for CH3NH2 and CH3OH are shifted vertically by 1.0,
respectively, 2.0 eV.

Figure 4. PES of an ammonia molecule at various separa-
tions from the TiO2 rutile 110 surface: DFT (black diamonds,
)) compared to classical calculations with original (blue
triangles, 4) and modified parameters (red circles, O). The
structure is displayed in the inset.

VTi-N(r) )
εTi-N

3 [6(σTi-N

r )9

- 9(σTi-N

r )6] (2)
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adsorbs with the N atom of the amine group bound to a TiB
atom of the surface.

For methanol, the PES obtained with our classical potential
agrees very well with the energies calculated with DFT
(Figure 5), in the case of formic acid the classical energies
slightly overestimate the DFT values by about 0.1 eV. For
methylamine, we find excellent agreement between the two
PES when including the modified 9-6 Ti-N interaction
potential, whereas using the standard 12-6 LJ potential for
Ti-N results in considerably lower adsorption energy,
although the equilibrium bond length is correctly reproduced.

5. Adsorption Behavior of Wet Systems

In the previous section, we have constructed a classical force
field potential which is able to reproduce the adsorption
energy of small molecules on both crystalline TiO2 surfaces
and thin oxide films grown on Ti(0001). Here, we apply our
potential to investigate the behavior of interfaces between
oxidized Ti and liquid water or fully solvated organic
molecules. In particular, we take into account two represen-
tative cases for which quantitative experimental results are
available, namely the heat of immersion of titanium oxide
and the adsorption of single tyrosine molecules on oxidized
Ti.

5.1. Heat of Immersion of TiOx Surfaces. The heat of
immersion of a surface, ∆Himm, is defined as the energy
gained upon placing the dry surface in contact with liquid
water. In contrast to the case of, e.g., the oxidized silicon
surface, where water molecules are stably chemisorbed in a
dissociative manner, mostly molecular adsorption and phy-
sisorption of water takes place on titanium oxide surfaces,
as already mentioned in Section 3. As found in TPD
experiments, the desorption temperature of these molecules
is around or even below room temperature.34,38,50 Therefore,
the amount of surface water molecules which remain bound
to the surface upon drying cannot be unambiguously identi-
fied, as this significantly depends on the conditions of
preparation, in particular on the drying temperature.50

Correspondingly, as ∆Himm depends on the number of
molecules already bound to the surface prior to immersion
in liquid water, scattered values between 0.2 and 0.6 J/m2

have been reported for TiO2 crystals.50-52 A linear decrease
of ∆Himm with an increasing amount on initially adsorbed
water on the TiO2 rutile and anatase surfaces has been
obtained in ref 50. Also in this study, however, the measured
values scatter by as much as 0.3 J/m2 for different investi-
gated samples at the same initial water coverage, which
makes possible only a rough comparison with theoretical
investigations.

Here we start our study considering the interface between
bulk water and a six-layer slab model of the rutile TiO2(110)
surface including a 6 × 12 surface unit cell comprising an
area of 35.23 × 40.68 Å2. Similar to what is observed in
FPMD simulations, in classical MD runs at 300 K we
observe water molecules binding preferentially to Ti5f atoms,
where they remained stably adsorbed for large part of the
simulations. The heat of immersion can be calculated by
subtracting from the average potential energy of the wet
surface EW the average potential energy of the corresponding

dry surface ED and the potential energy of bulk water
containing the remaining number of water molecules EB.53

Starting from a 200 ps trajectory of the whole system with
Ntot water molecules, these molecules are sorted with
decreasing probability of being bound to the surface. The
bulk water molecules are removed leaving only a certain
number Nads of molecules (according to their adsorption
probability) on the surface. For these dry surfaces, simulation
runs of 200 ps at a temperature of 300 K are performed to
obtain the corresponding ED average potential energies. From
these values and the corresponding potential energy of bulk
water containing Ntot - Nads water molecules, we calculate
the heat of immersion as

where ASurf is the surface area of only one side of the slab.
The potential energies of the bulk water systems are
calculated by first adjusting the height of each water cell in
a 200 ps NPT run to obtain a pressure of 1 atm, followed by
another 200 ps NVT simulation, in which the average
energies were computed. A total number of 1188 water
molecules is included as the liquid phase, and ‘dry’ surface
systems with 24, 36, 64, 88, 120, and 144 preadsorbed water
molecules are investigated. For Nads ) 144, all five-fold
coordinated Ti atoms of the rutile 110 surface are occupied
by water molecules.

The resulting dependence of ∆Himm on the number of
preadsorbed water molecules is shown in Figure 6. In
agreement with the findings of ref 50, a perfectly linear
decrease is obtained, and also the absolute values compare
well with those available in the literature (between 200 and
600 mJ/m2, see above). The slope of the linear regression is
0.25 eV/H2O, which represents the desorption energy per
molecule from the surface into bulk water. If we neglect the
hydration of adsorbed molecules, then the same quantity can
be calculated by adding the heat of vaporization of water
(-0.45 eV for TIP3P water)41 to the desorption energy into
the gas phase (∼0.8 eV, see above), obtaining 0.35 eV. A

Figure 6. Heat of immersion for the TiO2 rutile 110 surface
(black diamonds, )) and the oxidized Ti surface (red circles,
O) as a function of the water content. The straight lines are
linear fits to the data.

∆Himm(Nads) ) [ED(Nads) + EB(Ntot - Nads) -
EW(Ntot)]/(2 / ASurf) (3)
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comparison of these two numbers gives an estimate of about
-0.1 eV for the hydration energy of adsorbed molecules on
the surface.

We note that our value of 0.25 eV only takes into account
molecular adsorption, while dissociative adsorption events
on defective crystal sites, such as steps or edges, are expected
to be associated with larger energy values (of the order of
1.2 to 1.9 eV, see Section 3). This may explain the
significantly larger value of 0.82 eV/H2O reported in ref 50
for the case of rutile powder samples.

The heat of immersion calculated for the oxidized surface
displays a slightly different behavior. In this case, we include
1520 water molecules in the liquid phase in contact with
the 4 × 4 repetition of the DFT surface model and performed
‘dry’ simulations for Nads ) 32, 48, 56, 64, 72, and 88.
First of all, the obtained values are considerably lower than
those for the crystal surface, as they range from about 260
to 380 mJ/m2. They are closer to the value of 260 mJ/m2

which has been reported for small TiO2 nanoparticles.51

Moreover, although a tendency of the heat of immersion to
decrease upon increasing the preadsorbed water content can
be identified, the values are scattered, and no clearly linear
dependence is observed. This must be attributed to the fact
that, in contrast to the perfect rutile surface, not all adsorption
sites are equivalent on the oxidized surface, as indicated also
by the scattered values of the static DFT adsorption energies
on this surface (cf., Section 3). The scattering could possibly
be reduced by changing the order of removing the water
molecules and thus averaging over the different adsorption
sites. However, sampling of a large number of permutations
would increase the computer time exceedingly and lies
beyond the scope of this work. Interestingly, fitting a linear
function to the obtained values yields to a very similar slope
compared to the crystal surface.

5.2. Desorption Force of Tyrosine. As a further valida-
tion of the force field, we calculate the maximum detachment
force of single tyrosine residues from the oxidized titanium
surface. This has been measured by AFM force spectroscopy
experiments leading to a value of 97 ( 28 pN.54 In our
simulations, to exclude contributions from the backbone
adsorbing to the surface, we consider a reduced molecule
consisting of a phenol ring bound to a methyl group. The
intramolecular interactions as well as the LJ parameters and
the partial charges of the molecule are taken from the

AMBER force field, and the charge value of the methyl
carbon was adjusted to obtain a neutral molecule. After
equilibration we then carry out a 39 ns classical MD run of
the molecule on the oxidized surface at 300K, recording one
snapshot every 500 ps. Seventy-eight of these snapshots were
taken as independent starting configurations in subsequent
umbrella-sampling runs. Such a large number of simulations
yields reliable statistics for the force distribution, however,
as a drawback, only the small 2 × 2 repetition of the DFT
surface model could be used, to keep the computational cost
reasonable. Due to the smaller cell size the cutoff radius for
nonbonded interactions and for the real-space contribution
of the electrostatic interactions had to be reduced to 8.0 Å.

Using a harmonic umbrella potential in the z direction
normal to the surface applied to the carbon atom of the
methyl group:

with kumbr ) 0.2 eV/Å2 and zumbr ) 16.0 Å (compared to
z = 12 Å for the exposed bridging oxygen atoms of the
surface), the molecule was initially constrained to be close
to the surface in a 300.0 ps simulation. In this representation,
the z ) 0.0 value refers to the central plane of titanium atoms,
which are kept fixed. A steered molecular dynamics simula-
tion (SMD) was then performed to mimic the experimental
AFM setup, applying a time-dependent umbrella potential:

By choosing z0(t) ) zc(t ) 0) + Vsmd · t, the molecule is pulled
off the surface at constant velocity. We set Vsmd ) 0.5 m/s
and ksmd ) 0.1 eV/Å2. The instant pulling force F(z0) )
ksmd(zc - z0) is recorded as a function of the pulling height
z0 every 5 fs. In order to eliminate large fluctuations, running
averages of the force values over blocks comprising z0 ranges
of 0.025 Å are taken into account. In this way the short-
time fluctuations are found to decrease considerably, whereas
the actual force-displacement curve, which varies on a larger
time scale, is not affected significantly.

A representative example of a force-displacement curve
is shown in Figure 7. Initially the adhesion force increases
roughly linearly until eventually a sudden decrease is visible,

Figure 7. SMD simulations of tyrosine on the oxidized surface. Left: Example for a force-displacement curve F(z0). Right:
Histogram of the maximum desorption forces and Gaussian fit to the distribution (red line).

Vumbr(zc) )
1
2

kumbr(zc - zumbr)
2 (4)

Vsmd(zc, t) ) 1
2

ksmd(zc - z0(t))
2 (5)

480 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Schneider and Ciacchi



which reflects the detachment of the molecule from the
surface. We calculate the peak forces for a total number of
73 simulations, their distribution is displayed in a histogram
in Figure 7. In five cases no clear force peak could be
identified, indicating that the molecule was not adsorbed at
the beginning of the simulations (more precisely, we did not
consider peaks smaller than 60 pN, which corresponds to
the fluctuations of the pulling force acting on a free, solvated
molecule dragged through bulk water). These simulations
were discarded and not considered in the histogram. Con-
sidering the trajectories of the individual simulations, we note
that the adhesion to the surface is in general mediated by
hydrogen bonds between the hydroxyl group of the phenol
ring and the surface oxygen atoms, as assumed in ref 54.
Moreover, in some cases the hydroxyl oxygen is observed
to bind temporarily to one TiB atom after displacement of
an adsorbed water molecule, leading to the values on the
shoulder toward larger forces in the distribution. In summary,
our computed forces range from 70 to 200 pN. A Gaussian
distribution fit to the values yields an average force of 108
pN and a width of 31 pN. Within this variance the average
force value agrees well with the experimental results of ref
54 (97 ( 28 pN). Therefore, we feel that our interaction
potential can be reliably applied to investigate new systems,
for which the experimental understanding is still incomplete,
as performed in a representative case in the next section.

6. Adsorption of RGD Peptides on the
Oxidized Ti Surface

Finally, as a first application of the developed force field,
we present simulations of the RGD peptide sequence
adsorbing on Ti. This sequence is present in proteins building
the extracellular matrix, such as fibronectin and collagen,
where it acts as an integrin binding site and plays an
important role in the process of cell adhesion.55 Since such
peptides are used to functionalize the surfaces of metal
implants to enhance bone cell adhesion,56,57 an interesting
aspect is their direct adsorption behavior, as this competes
to binding to integrins. Despite its importance, only a few
simulation studies are devoted to the investigation of the
adsorption of RGD sequences on solid-state surfaces, par-
ticularly on crystalline titanium oxide.14,15,58

Here we perform umbrella sampling simulations to obtain
force-displacement profiles from which the potential of
mean force (PMF) and the free energy of adsorption can be
calculated. In order to avoid charged end groups, the
molecule is terminated with NME (CH3NH-) and ACE
(-COCH3) sequences, yielding a NME-Asp-Gly-Arg-ACE
peptide. The peptide is completely modeled using the
AMBER force field, including its partial charges. For similar
reasons as stated in Section 5.2, we consider a 2 × 2 surface
area and use a cutoff radius of 8.0 Å. After pre-equilibrating
and adjusting the cell height, the system is annealed at 450
K for 200 ps (keeping the surface atoms fixed) to overcome
possible adsorption barriers to the surface, followed by
another annealing at 300 K for 300 ps. The resulting
configuration, which is shown in Figure 8c, is used as initial
model for our free energy calculations.

The RGD molecule binds to the surface via the Arg side
chain, which is able to penetrate the first layer of water
molecules in the valley between two rows of bridging oxygen
atoms. The interaction with the surface is mediated both via
hydrogen bonds between the guanidine group and surface
oxygen atoms and via electrostatic interactions between
nitrogen and titanium atoms. The ASP side chain is also
oriented toward the surface, with the carboxyl oxygen atoms
forming hydrogen bonds with the Arg side chain and with
surface water molecules.

In the umbrella sampling simulations, as the reaction
coordinate we chose the z-position zcR of the R carbon of
the central Gly residue, with a zero offset corresponding to
the position of the central plane of the surface slab (as
described in Section 5.2). The reaction coordinate is then
increased stepwise from 16.0 to 29.0 Å and restrained to a
total of 14 windows with 1.0 Å width by a harmonic potential
(see Section 4) with a force constant kumbr ) 0.2 eV/Å2. For
each window a simulation run of 1.2 ns is performed, where
the first 200 ps are discarded from the force analysis. The
reaction coordinate and the z-component of the force acting
on it are recorded every 5 fs.

To calculate the free energy profile A(z), we employ two
conceptually different methods, namely: (i) the weighted
histogram analysis method (WHAM),59 evaluating the prob-
ability using the code of Grossfield,60 and (ii) the PMF as
obtained by thermodynamic integration (TI) of the average
force:61,62

The unbiased force is obtained by performing the average
over all umbrella windows and correcting the value by the
respective umbrella force:

where the i indicates the respective umbrella window, ni(z)
gives the number of appearances of a reaction coordinate
value of z from umbrella window i, and ntot(z) ) ∑ini(z)

Figure 8. Desorption of the RGD-containing peptide from the
oxidized Ti surface: Force profile (a), free energy profile
obtained by WHAM (solid line) and TI (dashed line), and
snapshot of the initial adsorbed configuration (c). For clarity,
only the first layer of water molecules is displayed. The arrow
marks the Gly R-carbon atom.

A(z) ) -∫zmax

z
〈F(z′)〉dz′ (6)

〈F(z)〉 ) ∑
i)1

Numbr ni(z)[〈Fbiased
i (z)〉 + (dVumbr

i (z)/dz)]

ntot(z)
(7)
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yields the total number of counts for the value z. The forces,
probability, and corresponding free energy profile are col-
lected in bins of 0.1 Å width.

The unbiased force profile F(z) is displayed in Figure 8a.
When increasing the z0 value of the umbrella center, first
the side chain of the Asp residue is detached from the surface
due to its shorter length compared to Arg. Finally the
guanidine group of the Arg residue desorbs producing a force
peak of about -215 pN at a z-value of 24.5 Å in the force
profile. The free energy profiles calculated with the two
methods are shown in Figure 8b. Importantly, we note that
the two curves agree almost perfectly with each other, giving
a strong hint that the force calculations and the reaction
coordinate sampling have reached convergence. In the free
energy profile we observe a minimum depth of 0.32 eV,
which can be interpreted as the free energy of desorption.
Experimental values for the binding free energy between
RGD-containing peptides and integrin proteins in the absence
of a surface are found to be in the range of 0.16 eV,63

whereas simulations of such a situation yield a binding free
energy of 0.13 eV.64 Hence, when a titanium surface is
functionalized using RGD-containing peptides, a situation
might arise where adsorption on the surface is in competition
with the desired process of binding to integrin molecules.
From a comparison of the respective free energy values we
can conclude that the adsorption of RGD on the oxidized
titanium surface is considerably stronger and might thus limit
the functionality of the sequence. Therefore, covalent biding
via appropriate spacers, where direct adsorption of RGD at
the titanium surface is avoided, should be preferred over
nonspecific surface adsorption to enhance cell adhesion via
binding to integrin.

7. Conclusions

In summary, we have presented an extension of the classical
force field developed in ref 16 to model the interactions
between natively oxidized titanium surfaces and liquid water
as well as solvated biomolecules. The interactions across the
solid/liquid interfaces comprise Coulomb forces between ESP
point charges and a L J potential, whose coefficients for the
surface atoms have been determined by fitting the classical
PES of a water molecule at various separations from the TiO2

rutile 110 surface to the corresponding DFT energies. In this
way, the potential is fully consistent with commonly used
biomolecular force fields. We have demonstrated that the
interactions with generic organic molecules can be reliably
obtained by applying standard combination rules to the
GAFF. In particular, the obtained potential is fully transfer-
able to the case of molecules containing O, C, and H atoms
adsorbed on thin oxide layers grown on metallic Ti, for which
the adsorption PES calculated with full DFT and with our
classical potential is excellent. However, if the direct surface-
molecule interactions involve nitrogen atoms, quantitative
agreement between the DFT and classical PES could be
obtained only after introducing an additional 9-6 potential
to model the Ti-N interactions. After adjusting the respective
potential parameters, using an NH3 molecule adsorbed on
the partially wet rutile surface as a reference, excellent

transferability to the case of the natively oxidized surface
has been found.

As mentioned before, the major approximation intrinsic
in our potential parametrization is the use of standard DFT
calculations to determine the reference surface/molecule
interactions, which do not properly take into account
dispersion forces. If necessary, more sophisticated methods
to compute the reference PES should be employed, and the
LJ parameters of the interaction potentials correspondingly
adjusted, while the chosen analytic form of the potential
certainly allows for dispersion forces to be described
correctly. However, in our specific case where highly polar
surfaces are considered, the electrostatic contributions far
exceed weak forces of the van der Waals type, resulting in
adsorption energies of the order of 0.8 eV per water
molecule. Indeed, with our potential parametrization we
obtain a fairly good agreement between the absolute values
of the computed and the measured heat of immersion of TiO2

crystals as well as of the maximum adhesion force of single
Tyr molecules to Ti surfaces. The latter has been obtained
by means of steered MD simulations, using a time-dependent
harmonic spring potential to pull the Tyr side chain off the
surface. The average of the force peaks, 108 ( 31 pN, is in
good agreement with the only available measured value of
97 ( 28 pN, and the computed and measured distributions
present a similar standard deviation.

As far as the heat of immersion of TiO2 is concerned, we
have found a linear decrease with increasing water content
chemisorbed on the surface prior to immersion in liquid
water. This is consistent with the experimental study of ref
50, in which the reported range of energy values agrees very
well with the simulation results. However, as already
mentioned, the slope of ∆Himm(Nads) is significantly smaller
than the correspondent experimental value, probably because
of dissociative adsorption events which may take place over
the surface of powder crystals samples but cannot be
explicitly taken into account in our classical model.

In fact, a potential as simple as the one presented here
(based on purely electrostatic and LJ interactions) is expected
to be accurate only under the assumption that no bond
breaking or forming events take place, except the direct
binding of O or N atoms of organic molecules to Ti atoms
of the surface, for which the potential has been parametrized
ad hoc. Under this assumption, the transferability of our
potential to the case of generic organic molecules on the
oxidized titanium surface is surprisingly good and allows
us for the first time to investigate the atomistic mechanisms
of biomolecular adsorption at titanium/water interfaces.

As a preliminary example, we have studied the adsorption
of solvated RGD tripeptides on the oxidized Ti(0001) surface.
Considering one possible adsorption mode, where the Arg
side chain adsorbs at the surface via hydrogen bonds, we
have found a free energy of desorption of 0.32 eV. The
corresponding maximum detachment force reaches a value
of 215 pN. As mentioned in previous publications,14,15,58

several adsorption modes involving different side chains are
possible on titanium oxide surfaces. In the context of this
investigation we have restricted ourselves to just one initial
configuration, in order to demonstrate the applicability of
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the force field. A thorough investigation of the adsorption
behavior and the corresponding free energies of RGD-
containing peptides will be the subject of future work.

Future work will also be concerned with the application
of the potential to larger biomolecules, which are relevant
in cell adhesion processes. As already pointed out in this
work, one of the main challenges in this kind of simulation
will be the calculation of adsorption free energies, which
becomes increasingly difficult for more complex systems.
Furthermore, a possible extension of the model would be to
take into account surface defects and dissociative water
adsorption. However, we feel that the best way to proceed
further in this direction is to implement our simple force
field in hybrid QM/MM simulation schemes, such as, e.g.,
the Learn on the fly (LOTF) method.65 This would enable a
quantum mechanical treatment of the chemically active
system regions, e.g., at the solid/liquid interface, while
allowing at the same time the inclusion of a realistically large
model of the physiological environment.
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Abstract: The redox potentials and dimerization free energies of transient transition metal cations
in water shed light on the reactivity of species with unusual charge states and are particularly
pertinent to understanding the mechanism and feasibility of radiolysis-assisted metal nanoparticle
growth from salt solutions. A combination of quasi-chemical theory and ab initio molecular
dynamics thermodynamic integration methods are applied to calculate these properties for nickel.
The reduction potential for Ni2+ (aq) is predicted to be between -1.05 to -1.28 V, which is
substantially lower than previous estimates. This suggests that Ni2+ reduction may possibly
occur in the presence of organic radical anion electron scavengers and hydrogen atoms, not
just hydrated electrons. In contrast, Ni+ is found to be stable against disproportionation. The
formation of dimers Ni2 and Ni2+ from Ni and Ni+ are predicted to be favorable in water.

I. Introduction

Accurate modeling of reduction-oxidation (redox) reac-
tions are pertinent to a wide range of electrochemical
applications including batteries,1 metal extraction,2 ca-
talysis,3 and biology.4,5 In particular, short-lived transition
ionic metal species with unusual charge states are
important intermediates in many multistep, multielectron
processes. An intriguing application is the radiolysis-
assisted synthesis of metal nanoparticles and alloys in
aqueous solutions.6-11 Secondary electrons from γ radia-
tion or other sources can directly or indirectly (through
electron-scavenging organic radical anions) reduce metal
ions in salt solutions to their low oxidation states. Metal
clusters are then formed via a series of reduction,
clustering, and disproportionation reactions:12-15

The choice of the Ni example allows us to support recent
γ-irradiation experiments.7,8 Not indicated in eqs 1-3 is
the possibility of mixed alloy formation involving more
than one metal element. In fact, the synthesis of unique
alloys that are not thermodynamically stable can be
accomplished via this route.7,8

The properties of transient metal species in water are
difficult to measure. In this work, we use modeling tech-
niques to investigate the initial stages of radiolysis-assisted
Ni cluster formation demonstrated in experiments. The free
energy change of clustering (eq 2) governs nanoparticle
growth. The clustering of transition metal atoms is important
to catalysis and has been extensively studied,16-19 but the
nucleation process has seldom been modeled in aqueous
media. As a first step, we compute the dimerization free
energies of Ni in water:

* Corresponding author e-mails: slrempe@sandia.gov (S.B.R.),
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† Nanobiology Department.
‡ Surface and Interface Sciences Department.

Nin
q+ + e- h Nin

(q-1)+ (1)

Nin
q+ + Niq'+ h Nin+1

(q+q')+ (2)

Niq+ + Niq'+ h Niq''+ + Ni(q''-q-q')+ (3)

Ni(0) + Ni(0) h Ni2
(0)

Ni(0) + Ni+ h Ni2
+ (4)
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Such clustering reactions have been measured for Ag,20,21

but to our knowledge not the transition metal element Ni.
Detailed studies of gas-phase, unhydrated Ni dimers have
revealed much complexity.22-29 Our work builds on these
past studies but focuses on the interaction between the neutral
and cationic monomers and dimers with liquid water. As
will be shown, the formation of Ni2

(0) and Ni2
+ dimers are

found to be favorable, and they represent the first steps of
the complex mechanism in the formation of Ni nanoclusters
from aqueous salt solutions.

We also consider another significant property that can
benefit from theoretical input, namely, the redox potentials
(Φredox) associated with transient Niq+ and Ni2

q+ species.
Φredox plays a crucial role in determining what cluster size,
stoichiometry, and net charge can exist under experimental
conditions. As discussed in pioneering work on the radiolysis
synthesis of Au, Ag, and bimetallic Au/Ag nanoclusters,30,31

the detailed mechanism of cluster formation depends on the
redox potentials of the metal salts in solution, in our case
Nin

q+ (eq 1) and analogous bimetallic species relative to the
reducing species (excess electrons and organic radical anions)
that exist in the γ-irradiated solution. The excess electron
chemical potential in liquid water is generally listed at -2.7
to -2.9 V relative to the standard hydrogen electrode
(SHE),32,33 while electron-scavenging hydroxymethyl radical
anions present in radiolysis experiments are at a more modest
-1.18 V.7 For Nin

q+ to be reduced in solution, it must exhibit
a more positive Φredox than the relevant redox potential of
the electron-donating species.

Φredox can be rigorously separated into two contributions:
the change in standard state ion hydration free energy (∆Ghyd)
and the ionization potential (IP). Φredox is referenced to the
SHE by subtracting 4.44 V. In the literature, the reported
Φredox of transient first row transition metal ions in water
often contain theoretical components. Thus, using experi-
mental IP and Ni+ and Ni2+ ∆Ghyd values estimated via
Pauling radius interpolation and the Born hydration free
energy formula,34 respectively, Baxendale and co-workers13,14

have reported a -2.7 V Φredox for Ni2+ + e-hNi+. This
Φredox is very close to that of the electron injected into
water,32,33 suggesting that hydrated electrons are marginally
sufficient to reduce Ni2+. At the -1.18 V associated with
organic radical anions found under radiolysis conditions,7

Ni2+ should be inert. Baxendale et al. have, however, ignored
the ligand-field splitting induced energetic stabilization
arising from the first hydration shell water molecules, which
can amount to a significant fraction of an electronvolt for
first row transition metal ions.35 As will be shown, our
predictions lead to a substantial revision of this earlier
estimate.13

Two modern computational strategies have been applied
to calculate ∆Ghyd. In the more widely used approach, the
Density Functional Theory (DFT) electronic structure method
is used to optimize the geometry of gas-phase clusters of
transition metal ions containing first hydration shell water
molecules.36-42 DFT explicitly takes into account ligand field
splittings. The outer shell water molecules can be represented
explicitly or by an implicit solvent model via a dielectric
continuum approximation.40,42 A successful implementation

of this solvation method35 is the “quasi-chemical theory”
(QCT).43-46 This method makes use of the most probable
distribution of hydration numbers (i.e., the number of water
molecules, Nw, residing in the ionic hydration shell). The
predicted equilibrium hydration number can be compared
with X-ray and neutron scattering data and is complementary
to nuclear magnetic resonance relaxation time information.47

A second approach applies ab initio molecular dynamics
(AIMD) simulations, where metal ions and all water mol-
ecules, including outer-shell ones, are treated explicitly using
DFT at each finite temperature molecular dynamics time
step.48-51 Thermodynamic integration52 (TI) using AIMD
simulations have yielded hydration free energies for simple
ions in good agreement with experiments,53,54 suggesting that
reliable Φredox can also be predicted with the AIMD method
provided an accurate IP can be obtained theoretically or
experimentally.

The two theoretical methods complement each other. The
QCT approach directly computes the hydration free energy
of any species, divided into contributions that provide insights
into the effects from local and distant solvent. Past work
attests to the success of this approach in calculating hydration
free energies of small molecules.35,43,44,55 The approach has
also been used to investigate mechanisms of selectivity in
biological ion binding sites.56,57 The more costly AIMD method
can generate new insights into the bulk solvation structures of
low-valence transition metals, which are of basic scientific
interest due to their unusual electronic properties.50,58-61 For
transition metal elements, AIMD readily yields differences
in ∆Ghyd between different ionic charge states, but not
the ∆Ghyd themselves. A comparison between AIMD and
QCT ∆Ghyd changes as reduction reactions occur allows
critical examination of the different approximations used
in both approaches and helps elucidate the discrepancies
between theoretical and experimental Φredox reported in
the literature.37-39,41

Treatment of the transition metal ion d electrons is
efficiently improved using DFT+U (Hubbard-like) augmenta-
tions62,63 within AIMD simulations, which has been applied
to molecular systems.64 QCT has the advantage of being
much more computationally efficient and permits the use of
hybrid DFT functionals, which are generally more accurate
than non-Hubbard augmented, nonhybrid DFT functionals
for the properties of main group elements and many transition
metal complexes. The coupled-cluster (CCSD(T)) level of
theory, more reliable than hybrid functionals, can also be
applied to calculate gas-phase binding energies and calibrate
DFT results.

Here, we have applied first principles methods and the
theoretical frameworks described above to calculate the redox
potentials and dimerization free energies of monomeric and
dimeric nickel species in liquid water. In the following parts
of this paper, section II details the AIMD and QCT methods
used. Section III describes the computational results, and
section IV concludes the paper with brief discussions.
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II. Method

II.A. Hydration Calculation by QCT. The quasi-chemi-
cal theory enables calculation of the hydration free energy
in terms of individual contributions from inner-shell and
outer-shell solvent domains. The inner-shell domain typically
consists of the ion and water molecules that form the first
hydration shell. The binding free energy for the formation
of inner-shell complexes can be computed in the absence of
outer-shell solvent as

The equilibrated structures of nickel-water clusters, which
represent the inner hydration shell regions, are optimized
using DFT methods starting from AIMD simulation con-
figurations. QCT DFT calculations are performed using the
Gaussian suite of programs.65 Frequencies and zero-point
energies are determined using CCSD(T)66 and the Becke-
3-parameter-Lee-Yang-Parr (B3LYP) functional.67 Some
results for the Perdew-Burke-Ernzerhof (PBE) functional68

are also found in the Supporting Information document (SI).
The 6-311+G(d,p) basis set is applied throughout. Standard,
finite temperature and zero point energy contributions are
added to ∆G0. The optimal spin state is chosen as the most
stable state.

Free energy contributions from the outer region consist
of the molecular packing contribution (cavity) and the
interactions between the inner-shell cluster and outer-shell
solvent molecules. Since AIMD calculations do not take into
account the small cavity contribution, this term is left out
from the QCT calculation for the sake of better comparison
with AIMD. The solvation effects from the outer region are
obtained by treating the external solvent as a dielectric
continuum. The electrostatic potential is evaluated by solving
the Poisson-Boltzmann equation with the APBS package.72

The numerical technique used to solve the equation is a
combination of the standard finite difference focusing method
and the parallel adaptive finite element algorithm.73 For the
APBS calculation, partial charges on an inner-shell complex
are acquired from the ChelpG method with the 6-311+G(d,p)
basis set, while the radii for oxygen and hydrogen atoms
are taken from the literature.69 Radii of nickel ions used to
define the division between inner and outer solvent domains
are determined by the first minima in ion-oxygen pairwise
correlation functions, g(r), from AIMD simulations. Where
experimental data is available (e.g., Ni2+), the simulated
minima match results from X-ray experiments.70,71 The fine
mesh domain length is set to 10 Å and the coarse mesh
domain length, 30 Å. The dielectric constants for the inner
and outer shells are set to 1.0 and 78.5, respectively.

II.B. AIMD Simulations. Spin-polarized AIMD simula-
tions apply the Vienna ab initio simulation program
(VASP),74projected-augmentedwave(PAW)pseudopotentials75,76

(PP) with only valence electrons for H and O atoms, and
a Ni PP that includes pseudovalent 3p electrons, the PBE
functional,68 Γ-point Brillouin zone sampling, and a 400
eV plane-wave energy cutoff.

Semilocal functionals such as PBE are generally inad-
equate for treating first row transition metal complexes,77

even while they can be successful with dimers in the gas
phase.78 As will be shown, the B3LYP functional is more
accurate for depicting interactions of Ni species with water.
Since the hybrid functional B3LYP is too costly to use in
AIMD settings, we apply the DFT+U approach62 to Ni 3d
orbitals only. The U value is fitted to reflect the zero
temperature B3LYP binding energy in the Ni2+(H2O)6

cluster. AIMD trajectories for q e 1 are generated using the
PBE functional, whereas Niq+ (aq) trajectories for q g 1,
taken from ref 53, are generated using the DFT+U functional
with U ) 4 eV. Fitting VASP to Gaussian results is possible
because, at T ) 0 K, PBE geometry optimization calculations
that apply VASP PAW pseudopotentials and the plane-wave
basis and those that apply the Gaussian suite of codes and
the 6-311+G(d,p) basis65 yield Ni2+(H2O)6 binding energies
that agree to within a few tenths of an electronvolt. While
using two types of functionals to generate AIMD trajectories
is admittedly awkward, the hydration free energies should
not be strongly affected. As discussed in ref 53, the hydration
structures of most Ni species are sufficiently similar for the
PBE and DFT+U methods, so that using either to generate
trajectories should yield very similar ∆Ghyd values. An
estimate of the small error introduced in using AIMD/PBE
trajectories will be discussed in the Results section and in
the SI. (In contrast, DFT+U and PBE predict ligand field
splittings and reaction energies that differ by fractions of an
electronvolt.) PBE is selected to generate trajectories in this
work because, for the Ni2

2+ (aq) species only, it gives stable
structures, while B3LYP does not (see below).

A Nose thermostat fixes the temperature at T ) 400 K,
which is needed for the PBE functional to describe the room
temperature experimental liquid water structure.79 The
deuterium mass is adopted for all protons to allow a larger
time step while the H mass is assumed whenever water
density is reported. Along with Born-Oppenheimer dynam-
ics time steps of 0.25 fs and a 10-6 eV energy convergence
criterion, these settings limit the temperature drifts to 1 K/ps.
The trajectory length is 30 ps for each of the TI windows.
Initial configurations are pre-equilibrated using the extended
simple point charge (SPC/E) water model80 and a Niq+ force
field consisting of a +q point-charge scaled to the net charge
of the corresponding AIMD simulation cell plus a Lennard-
Jones functional form. Such crude force fields do not yield
the well-structured first hydration shells of transition metal
ions but are useful for dielectric relaxation of outer-shell
water molecules that accompany changes in ionic charges.
After switching from force fields to AIMD simulations, we
find that the distinctive Niq+ first hydration shell generally
becomes equilibrated and yields the expected structures
within 2 ps, except for Ni2

(0), which takes 7 ps to reach the
equilibrium hydration number (Nw). The short equilibration
time suggests that AIMD predicted free energy changes
should not depend on initial conditions.

AIMD simulations for a single Niq+ ion, 0 e q e 2, are
performed using 9.885 × 9.885 × 9.885 Å3 simulation cells
that contain a Ni atom/ion and 32 H2O molecules. In the
case of the dimer, the 12.885 × 9.885 × 9.885 Å3 cells
contain a Ni dimer and 40 water molecules, with the x and

∆G(0) ) GNiq+(H2O)n

(0) - GNiq+
(0) - nGH2O

(0) (5)
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y coordinates of both Ni atoms held fixed and identical along
the long axis of the simulation cell.

II.C. Hydration Free Energy Changes via Thermody-
namic Integration. To calculate differences in hydration free
energy, ∆∆Ghyd, between species in different charge states
(qi and qf) using AIMD simulations, thermodynamic integra-
tion (TI)52,81 was performed via

Here, H(q) is the total potential energy of the simulation cell
at a net charge λ ) q in the simulation cell computed using
a modified version of VASP,82 minus the energy of the
isolated Niq+ with the same spin state. In VASP simulations,
q is set by imposing a fixed number of electrons (which can
be a noninteger) in the simulation cell. This is appropriate
for modeling hydrated Ni(0), Ni+, Ni2+, and the intermediate
charges bracketed by these species because the fractional
electron is found to reside on the Ni 3d orbitals via maximally
localized Wannier functional analysis.85 The one exception
to this rule will be discussed in section III.D. The net spin
is tuned to a value linearly interpolated between the stable
spin state of the end points of the TI simulation in the
aqueous phase, not necessarily those of the stable spin states
of the gas-phase Ni species. This procedure captures the net
hydration free energy, including the ligand field splitting, to
be discussed in more detail in section III.C. It excludes the
gas-phase ionization potential contribution, which tends not
to be predicted accurately from widely used DFT functionals.
The IP value is taken from experiments whenever possible.
If the stable spin states of the bare and hydrated Ni species
differ, as is the case with Ni(0), a spin-flip energy is added
post processing to the change in hydration free energy.

Also included in H(q) are monopole- and image charge-
induced electrostatic corrections due to the periodic boundary
conditions,83 ∆EEwald ) q2/(2RεoL), where R is the Madelung
constant, L is the cubic cell size dimension, and εo is the
pertinent dielectric constant. εo is set to unity for isolated
ions and to infinity for water. Another, much smaller finite
size correction, the change in ∆Equad ) 2πq2R2/3L3, where
R is the ion radius, is added to ∆∆Ghyd post processing.84

With our simulation cell size and an estimated R ) 2 Å for
Niq+, which reflects the approximate position of the peaks
in g(r) (Figures 1 and 2), ∆Equad amounts to 0.125 and 0.500
eV for q ) 1 and 2, respectively.

Operationally, at every 0.1 ps interval, we use finite
difference to sample dH(q)/dq ≈ [H(q+) - H(q-)]/(|e|/20),
q( ) q ( |e|/40, at the fixed atomic configurations in the
snapshot. When q is an integer, q( values are shifted so that
they do not exceed the boundary values of the electron
addition half-cell reaction. A six-point trapezoidal rule
integrates over the resulting 〈dH(q)/dq〉q. Equation 6 is
rigorous even for models with electronic polarizability.

Surface potentials (∆φ) at fluid-fluid and fluid-solid
interfaces contribute to solvation free energies. In particular,
the air-water surface potential is an integral part of the ion
hydration free energy ∆Ghyd via the second term, (qf - qi)∆φ,
in eq 6.86 ∆φ can be decomposed into dipolar (∆φd) and
quadrupolar (∆φq) contributions.86 ∆φq is a bulk liquid water

quantity independent of the nature of interfaces, and the
theoretical ∆φq value has been estimated using the PBE
quadrupole component at 1.0 g/cm3 water density.53,87 For
∆φd, we note that this work seeks to mimic electrochemical
measurements of electron transfer between a metal electrode
and Niq+ species in water. To our knowledge, the pertinent
water-electrode ∆φd has not been computed using atomic
simulations. The infinite dielectric constant of metal, which
leads to “image charges” inside the metal,88 should partly
compensate for the potential drop due to water surface
dipoles. It should be a reasonable assumption that the
water-metal electrode φd is smaller in magnitude than the
air-water φd. Thus, we have omitted ∆φd in our ∆∆Ghyd

calculation. This argument is not completely rigorous because
both ∆φd and ∆φq depend on the choice of molecular center;
only ∆φ is independent of such choices. Nevertheless, from

∆∆GHyd ) ∫qi

qf 〈dH(λ)/dλ〉λ dλ + (qf - qi)∆φ (6)

Figure 1. AIMD pair correlation function g(r) between Ow and
Niq+ as q varies. Black, red, green, blue, violet, and orange
lines denote q ) 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0, respectively,
offset by one density unit along the y axis. Nw ) 2.00, 2.00,
2.03, 2.06, 2.86, and 3.93 for these Niq+ species, respectively.
The inset depicts instantaneous Nw for q ) 1.0.

Figure 2. AIMD pair correlation function g(r) between Ow and
Niq+ as q varies. Black, red, green, blue, violet, and orange
lines denote q ) 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0, respectively.
Nw ) 3.81, 4.34, 4.80, 5.17, 5.48, and 6.00 for these q values,
respectively. The inset depicts the instantaneous Nw for q )
1.8 (black).
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the image-charge argument, the ambiguity in redox potential
introduced from omitting φd should be less than the 0.21 V
associated with vapor-water ∆φd for the SPC/E water model.
Both Baxendale et al.’s estimates13,14 and the QCT approach
(see below) exclude the surface potential.

III. Results

III.A. Choice of DFT Functional and Method. First, we
describe the benchmarking procedure that informs our choice
of DFT functional. The gas-phase Ni(0)(H2O)2 cluster is
sufficiently small so that the more reliable quantum chemistry
CCSD(T) method can be used to perform single point binding
energy calculations to calibrate DFT results. PBE, B3LYP,
and CCSD(T) predict an ∆Ebind of 1.88, 1.06, and 1.28 eV,
respectively, for this complex. This test suggests that B3LYP
is more reliable than PBE for Ni(0) hydration.

PBE and B3LYP predict 16.31 and 15.71 eV binding
energies for the gas-phase Ni2+(H2O)6 cluster. The 0.60 eV
discrepancy is mostly due to differences in energies from
ligand field splitting, which was estimated in ref 35 as
follows. The QCT/B3LYP ∆Ghyd values are computed for
Ca2+ and Zn2+, which contain either an empty or a full 3d
shell and therefore do not exhibit ligand field splitting.
Interpolating between these extremes and examining the
deviation of individual transition metal ions as a function of
3d orbital occupation leads to a 1.3 eV ligand-field stabiliza-
tion for Ni2+ in water. We have reproduced a similar result
by considering only the B3LYP gas-phase M2+(H2O)6 energy
at T ) 0 K, excluding zero-point corrections, outer-shell
water contributions, and thermal effects. We conclude that
gas-phase Ni2+(H2O)6 is stabilized by 1.40 eV relative to
the value interpolated between Ca2+ and Zn2+. Using this
gas-phase route, the PBE functional yields a 1.80 eV ligand-
field stabilization energy for Ni2+. The B3LYP ligand-field
splitting is in better agreement with the 1.26 eV spectroscopic
data35,89 than the PBE one. Thus, B3LYP should be
considered more accurate for Ni2+ hydration.

PBE and B3LYP binding energies for gas-phase
Ni+(H2O)4 also differ by 0.48 eV. An effort to interpolate
ligand-field stabilization for the Ni+(H2O)4 complex fails.
While K+(H2O)4, devoid of 3d electrons, is stable in the gas
phase, Cu+(H2O)4, the hydrated species, which could have
fully occupied 3d orbitals and no 4s electrons, collapses. This
complex turns into a linear, two-coordinated Cu with the
two other water molecules relegated to the outer shell and
linked to the two inner shell H2O’s through hydrogen bonds.
The linear structure is consistent with previous AIMD
simulations of hydrated Cu+.59

Despite lacking an estimate of ligand-field stabilization
energy for Ni+(H2O)4 to validate PBE and B3LYP binding
energies, we can test binding between water and neutral and
divalent nickel atoms. PBE is shown to substantially
overestimate the binding between water and both Ni(0) and
Ni2+. Thus, in the remainder of this manuscript, we focus
on two complementary methods, QCT/B3LYP and AIMD/
DFT+U with the Hubbard U value fitted to the B3LYP
Ni2+(H2O)6 binding energy.

III.B. Hydration Structures. Figures 1 and 2 depict the
pair correlation functions, g(r), between Niq+ and the water
oxygen (Ow) site. Only integral values of q are physical, but
the fractional q results, needed for TI calculations, reveal
interesting trends in the hydration structure. Also listed in
the figure captions are the hydration numbers, Nw, defined
as the spatial integral up to the first minimum (r ) 2.6 Å) in
g(r).

While the bare Ni atom is a spin triplet (s ) 1), both
B3LYP and DFT+U predict that Ni(0)(H2O)2 is most stable
in the singlet state (s ) 0) in the gas phase. (See the SI for
more spin state information.) The g(r) between singlet Ni(0)

and the oxygen site of water molecules obtained in AIMD
simulations exhibits a sharp first peak at RNi-O ) 1.8 Å that
integrates to two H2O molecules. The instantaneous hydration
configuration in liquid water is linear, similar to the gas-
phase optimized structure shown in Figure 3a, which in turn
resembles that of Cu+(H2O)2.59 The sharp first peak reflects
strong covalent bonds between water and Ni(0). As q
increases from 0.0 to 1.0, the first peak in g(r) broadens and
shifts to a larger distance of r ) 2.0 Å. This is presumably
because more water molecules enter the hydration shell at
larger q. The increased repulsion between the oxygen sites
of the first shell hydration H2O molecules should weaken
the interaction between each individual H2O and the Niq+.
At q ) 1.0, the number of H2O molecules in the first
hydration shell increases to 3.8 and a stable square planar
hydration shell is formed, just like the gas-phase Ni+(H2O)4

Figure 3. Optimized gas-phase clusters using the Gaussian
code and B3LYP/6-311+G(d,p) level of theory. (a) Ni(0)(H2O)2

(s ) 0); (b) Ni+(H2O)4 (s ) 1/2); (c) Ni2+(H2O)6 (s ) 1); (d)
Ni2(0)(H2O)2 (s ) 1); (e) Ni2+(H2O)4 (s ) 3/2); (f) Ni2+(H2O)4

(s ) 1/2). Blue, red, and white spheres represent Ni, O, and
H atoms, respectively.
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complex (Figure 3b). The secondary structure in g(r) at r )
3.1 Å, clearly discernible at q ) 0, also becomes smeared
out at larger q and disappears beyond q ) 0.4.

Ni+ is in the doublet (s ) 1/2) spin state with this ligand
field. The inset to Figure 1 depicts the temporal fluctuations
in Nw at q ) 1.0, showing that the water molecules enter
and leave the first hydration shell on a sub-picosecond time
scale despite the stable hydration structure. Two of the H2O
molecules initially residing in the hydration shell have been
replaced by H2O molecules from the outlying regions by the
end of this 30 ps trajectory.

As q further increases from 1 to 2 (see Figure 2), Nw

smoothly rises from 4 to 6. The first peak position in g(r)
remains at r ≈ 2.1 Å but sharpens as q approaches 2, at
which point the well-known Ni2+ octahedral first hydration
shell35 (Figure 3c) is observed in AIMD simulations.
Fluctuations of instantaneous Nw also occur on sub-
picosecond time scales for q < 2 except at q ) 1.8, where
transition between 5- and 6-fold coordination occurs more
slowly (inset to Figure 2).

Turning our attention to the dimers, Ni2
(0) is predicted to

be a spin triplet with all DFT methods we have considered.
In AIMD simulations of this species in water, the Ni atoms
collectively exhibit Nw ) 3; one Ni is typically instanta-
neously coordinated to two H2O molecules and the other to
one H2O. In the gas phase, two-coordinated Ni2

(0)(H2O)2

forms a stable linear cluster (Figure 3d). However, three-
coordinated Ni2

(0)(H2O)3 is not stable; one of the H2O
molecules migrates to the outer shell, forming a hydrogen
bond with one of the two remaining H2O’s directly coordi-
nated to Ni. Thus, for QCT/B3LYP calculations, we focus
on the two-coordinated Ni2

(0).
For the Ni2

+ cation dimer, the B3LYP functional predicts
that the quartet (s ) 3/2) state is more stable than the doublet
(s ) 1/2) with and without dielectric continuum treatment
of outer-shell water. Two H2O molecules are coordinated to
each Ni of the Ni2

+(H2O)4 complex. The two Ni atoms
exhibit similar Ow-Ni-Ow angles (Figure 3e) and equal net
integrated charge and spin densities according to Mulliken
analysis.90 Figure 4 depicts the g(r) between Ni and Ow for
quartet Ni2

+.
For completeness, we also briefly discuss the doublet

Ni2
+(H2O)4 cluster, which is metastable in the gas phase.

The two Ni atoms are in manifestly different chemical
bonding environments (Figure 3f). Mulliken analysis reveals
that one Ni has a large net charge and spin density, and
appropriately the two coordinating water molecules are at
90° to each other as in a square-planar Ni+(H2O)4 complex.
The other Ni is charge neutral, has little or no spin density,
and the two H2O’s are indeed at 180° from each other as in
the linear Ni(0)(H2O)2 complex. Such solvent-induced asym-
metry in charge distribution has been examined in I3

- and
other systems.91 This low-spin cluster will not be the subject
of AIMD free energy calculations.

Ni2
2+(H2O)n gas-phase complexes are unstable within the

B3LYP treatment; the two Ni+’s become separated by a
water molecule during geometry optimization. In contrast,
in PBE calculations, the Ni-Ni bond does not spontaneously
break in Ni2

2+(H2O)5. Consistent with this gas-phase predic-

tion, the Ni2
2+ complex is stable in AIMD/PBE simulations.

Recall this is the reason we choose to run AIMD simulations
with the PBE functional and then perform DFT+U calcula-
tions for the hydration free energy calculations based on PBE
configurations. The two Ni’s in Ni2

2+ yield a combined Nw

) 5.22. Individually, each Ni is found to exhibit Nw ≈ 3;
thus on average, one H2O is shared between the two Ni,
simultaneously within the hydration shell of both. This
sharing does not occur for Ni2

(0) and Ni2
+ but is indeed

observed in the gas-phase Ni2
2+(H2O)5 optimized geometry

(not shown). Mulliken analysis shows that both Ni ions in
this cluster have equal integrated charge and spin densities.
Since the covalently bonded Ni2

2+ dimer is only stable in
water when using the PBE functional, it is likely only
marginally stable, and its redox properties will not be the
subject of this work.

The hydration number predictions from AIMD simulations
for Niq+ and Ni2

q+ species are used to determine the number
of water molecules used in gas-phase cluster calculations
on which the QCT method is based.

III.C. QCT Hydration Free Energies. The components
of the QCT absolute hydration free energies for Ni(0), Ni+,
and Ni2+ are listed in Table 1. It is worth noting that the
cavitation energy is not included. However, we estimate the
packing contribution to the solvation based on the volume
of the cavity. The work that is done to create a cavity by
solvating the ion is 0.06, 0.15, and 0.13 eV for Ni(0), Ni+,
and Ni2+, respectively, which is insignificant in comparison
to the total hydration free energy. The absolute ∆Ghyd )
-20.59 eV calculated using the B3LYP functional for Ni2+

hydration is in reasonable agreement with experiments
(-20.79 eV)92 and the prediction in ref 35 using similar
methods (-20.49 eV). QCT/B3LYP predicts ∆Ghyd )-5.81
for Ni+. Obviously, with the increment of the net charge to
higher values, the hydration free energy increases to more
negative values. By comparison, Dixon and Baxendale13

adopted ∆Ghyd values of -4.90 and -21.39 eV for Ni+ and
Ni2+, which are significantly different from the QCT/B3LYP
results.

Figure 4. g(r) between Ow and the Ni sites for Ni2q+ as q
varies. Black, orange, and cyan lines denote q ) 0.0, 1.0,
and 2.0, respectively. Nw ) 3.00, 4.01, and 5.22 for the two
Ni atoms combined. The inset depicts instantaneous Nw for
q ) 1.0.
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The QCT/B3LYP method predicts ∆Ghyd ) -0.43 eV for
Ni(0). The QCT/CCSD(T) method gives a similar result for
Ni(0), ∆Ghyd ) -0.56 eV. Of all of the charge states, only
the solvation of Ni2+ has been experimentally documented;
other species have only a transient existence. Although
carrying zero charge, the neutral Ni monomer and dimer both
have significantly favorable solvation in water. Thus, unlike
the noble Ag atom dispersed in water,53 reactive transition
metal atoms like Ni cannot be described as inert Lennard-
Jones spheres.

III.D. Hydration Free Fnergy Changes upon Reduc-
tion. Table 2 depicts the difference in hydration free energies
(∆∆Ghyd) between species differing by one electron. Note
that Dixon and Baxendale’s ∆∆Ghyd estimate for Ni+ f Ni
2+ is 16.5 eV, which is at least 1.5 eV (∼34 kcal/mol) higher
than our DFT-based estimates. The standard deviations
estimated for these AIMD ∆∆Ghyd are 0.02 (0.5 kcal/mol) and
0.04 eV (1.0 kcal/mol), respectively. They are calculated by
splitting the trajectory in each window into four equal parts,
computing the ∆∆Ghyd of each of the four segments, calculating
the standard deviation of each, and dividing by �4.

Unlike the Li+ ion, which can be scaled to zero in its
entirety,53 transition metal ions carry a substantial amount
of d-shell electrons, and AIMD cannot readily be used to
yield ∆Ghyd.53 The ∆∆Ghyd’s are, however, obtained in a

straightforward manner. AIMD/DFT+U can be compared
to QCT/B3LYP results because the U parameter is fitted to
the B3LYP Ni2+(H2O)6 binding energy.

Reasonable agreement is obtained between QCT and
AIMD ∆∆Ghyd’s, although different approximations are
applied. AIMD conducts molecular dynamics sampling of
nuclear motion using Newtonian dynamics and does not
contain zero-point energies (ZPEs). The QCT approach
approximates thermal effects with the harmonic approxima-
tion but includes quantum nuclear motion. We have,
however, shown that ZPEs contribute minimally, on the order
of 0.04 eV (1 kcal/mol), to ∆∆Ghyd (SI). The harmonic
approximation is expected to be excellent for rigid hydration
structures as in the case with the highly charged, octahedral
Ni2+(H2O)6. QCT treats the outer shell water molecules as
a dielectric continuum. This does not appear to introduce
significant discrepancy.

The AIMD TI calculations are worth examining in more
detail. Figure 5 depicts 〈dH(q)/dq〉q, which are the integrands
in TI for AIMD ∆Ghyd as q varies. Despite the large ligand-
field splitting and the jumps between the well-defined linear,
square-planar, and octahedral hydation structures with the
Ni coordinated to two, four, and six H2O molecules, 〈dH(q)/
dq〉q remains reasonably linear, especially for 0.2 e q e 0.8
and 1 e q e 2. This implies that the six-point trapezoidal
discretization is adequate. In fact, a two-point integration
scheme already yields a ∆Ghyd to within 1 kcal/mol. This
behavior seems to be in contrast to an AIMD simulation of
the energy gap for Cu+ f Cu 2+, which has been shown to
be nonlinear.50 The relative lack of curvature in Figure 5
may arise from the exclusion of the bare Niq+ energy.
Consequently, 〈dH(q)/dq〉q only reflects hydration effects. The
bare Niq+ energy may be the main cause of nonlinearity in
ref 50 as q varies because of self-interaction errors in
approximate DFT functionals.93 We also stress that 〈dH(q)/

Table 1. Hydration Free Energies of Nickel Species
Calculated Using QCT/B3LYP at T ) 300 K, except That
the Asterisk Indicates a CCSD(T) Calculationa

reactions ∆G(0) ∆G ∆µ ∆Ghyd

Ni(0) + 2H2O h Ni(0)(H2O)2 -0.217 -0.588 0.163 -0.425
*Ni(0) + 2H2O h Ni(0)(H2O)2 -0.403 -0.774 0.210 -0.564
Ni+ + 4H2O h Ni+(H2O)4 -3.757 -4.497 -1.310 -5.807
Ni2+ + 6H2O h Ni2+(H2O)6 -12.819 -13.930 -6.658 -20.588
Ni2(0) + 2H2O h Ni2(0)(H2O)2 -0.677 -1.047 0.129 -0.919
Ni2+ + 4H2O h Ni2+(H2O)4

(s ) 3/2)
-3.463 -4.203 -1.139 -5.342

Ni2+ + 4H2O h Ni2+(H2O)4
(s ) 1/2)

-3.006 -3.746 -1.132 -4.878

H2O -0.361

a ∆G(0) is the free energy change for formation of inner-shell
clusters in the absence of the surrounding medium. ∆G ) ∆G(0) -
nRT ln(1354) is the free energy change accounting for the actual
density of water. ∆µ is the electrostatic interaction between
clusters in the inner shell and the implicit solvent in the outer shell.
Combining these contributions yields ∆Ghyd, the standard state
hydration free energy of the Ninq+ species. Hydration free energy
of the water molecule estimated using partial charges from
CCSD(T) is -0.390 eV. All values are given in electronvolts.

Table 2. Hydration Free Energy Differences between
Nickel Species in Different Charge States (∆∆Ghyd, in eV)
and Redox Potentials (Φredox, volt) Estimated by QCT and
AIMDa

method functional ∆∆Ghyd Φredox

Ni+ h Ni(0) QCT B3LYP 5.38 -2.18
Ni+ h Ni(0) AIMD DFT+U 5.37 -2.17
Ni2+ h Ni+ QCT B3LYP 14.78 -1.05
Ni2+ h Ni+ AIMD DFT+U 15.01 -1.28
Ni2+ h Ni2(0) QCT B3LYP 4.42 -1.44

a Φredox ) (-∆∆Ghyd/|e| + IP - 4.44) volt. The IP for Ni, Ni+,
and Ni2 is 7.640, 18.170, and 7.420 eV, respectively. The AIMD
∆∆Ghyd’s for Ni+ and Ni2+ exhibit standard deviations of 0.02 and
0.04 eV (0.5 and 1.0 kcal/mol), respectively.

Figure 5. 〈dH(q)/dq〉q as a function of q in Niq+ computed
using the DFT+U method. Crosses are for q e 1, based on
configurations generated using AIMD/PBE trajectories, while
circles for q g 1 use snapshots taken from AIMD/DFT+U
trajectories of ref 53. The triangles are test cases that also
apply AIMD/DFT+U to generate trajectories in addition to
evaluating 〈dH(q)/dq〉q. The results are similar where AIMD/
PBE trajectories (crosses) are applied. See text for further
discussions.
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dq〉, the rigorous integrand in TI used here, cannot be treated
as vertical reorganization energy. The largest numerical
uncertainties occur at the crossover regions where the
hydration number changes significantly. For example, the
slow fluctuations in Nw for Ni1.8+ (inset to Figure 2) yield
the most significant numerical noise in the ∆Ghyd integration.

The integrands 〈dH(q)/dq〉q for q < 1 and q > 1 do not
necessarily match at q ) 1. Their slopes with respect to q
also differ. Even in the gas phase, adding or removing a small
fractional electron to Ni+ should yield different results
because the electron affinity and ionization potential of Ni+

differ. As alluded to in section II.C, Wannier function
analyses of AIMD snapshots show that all but one value of
q used to calculate 〈dH(q)/dq〉q yield a fractional electron
localized on Ni. The exception is q ) 0.95. Recall that
〈dH(q)/dq〉q for this value of q is generated using q ) 1,
which reflects the Ni+ ion in water. This ion is stable, and
no electron delocalization occurs. However, when snaphots
along this q ) 1 AIMD trajectory are taken and q is changed
to 0.95 to perform finite difference calculations of 〈dH(q)/
dq〉q, maximally, Wannier function analysis reveals that the
highest occupied molecular orbital containing the fractional
(0.05) electron is now centered several Ångstroms away from
the Ni nucleus. In other words, the Ni+0.95/32 H2O simulation
actually represents a Ni+ and an e0.05- delocalized away from
the Ni. Therefore, 〈dH(q)/dq〉q for (q ) 1 - δq) should not
be calculated directly, and instead might be extrapolated from
smaller q values. Since 〈dH(q)/dq〉q already lies on a straight
line with this end point q value, however, performing the
extrapolation would not change ∆∆Ghyd significantly, and
we have not pursued this avenue.

As discussed above, Ni(0) is strongly bonded to two H2O
molecules. This makes calculating the singlet Ni(0) ∆Ghyd

using the AIMD method difficult because the reference
system is the unsolvated triplet Ni(0). An integration path
from that species to Ni(0)(H2O)2 is not readily available. An
attempt to use a coordination constraint reaction coordinate94

to break Ni-H2O bonds fails to achieve a sufficient Ni-Ow

separation such that the subsequent spin-flip energy can be
matched to the gas-phase value. As a result, we have relied
on QCT to calculate the ∆Ghyd of Ni(0).

Recall that AIMD/PBE and AIMD/DFT+U trajectories
are used to generate the snapshots where 〈dH(q)/dq〉q is
computed for q e 1 and q g 1, respectively, using the
DFT+U method. In Figure 5, the effect of using AIMD/
DFT+U trajectories (instead of AIMD/PBE ones) is depicted
for q ) 0 and q ) 1. Using configurations from the former
functional yields average 〈dH(q)/dq〉q values that differ by
-0.16 and +0.04 eV compared to AIMD/PBE configurations
for these two q values. (On the scale of the graph, these
small differences are almost indistinguishable.) q ) 0 is
expected to give the largest discrepancy because the DFT+U
and PBE methods predict Ni(0)(H2O)2 binding energies that
differ the most (by 80%, section III.A). Nevertheless, the
hydration structures obtained are sufficiently similar in that
snapshots from either type of trajectory can be used to
compute 〈dH(q)/dq〉q. In the SI, we further show that the
g(r) values obtained in AIMD/DFT+U and AIMD/PBE
trajectories are very similar. Since ∆∆Ghyd is obtained by

integrating over the entire range of q, the average of these
two values, -0.06 eV or -1.4 kcal/mol, can be taken as an
estimate of the small discrepancy in ∆∆Ghyd one can expect
if AIMD/DFT+U were used to generate trajectories
throughout.

Finally, we consider the differential hydration free energy
between Ni2 and Ni2

+ using the QCT method. Table 2 shows
that the spin quartet yields ∆∆Ghyd ) -4.42 eV using the
B3LYP functional. These changes in hydration free energies
are critical for calculating redox potentials, described in the
next subsection.

III.E. Redox Potentials. Estimating the Φredox of Ni and
Ni2 species requires ionization potentials in addition to
∆∆Ghyd. As discussed in our previous work,53,54 the first and
second IP of Ni are not accurately calculated by either the
PBE or B3LYP functional (see the SI). Instead, we adopt
the widely accepted experimental values of 7.640 and 18.170
eV for the IPs.95,96 Combining the IP and ∆∆Ghyd, and
subtracting the -4.44 V associated with SHE, the QCT/
B3LYP Φredox for Ni(0) f Ni+ becomes -2.18 V. The
AIMD/DFT+U Φredox is a similar value, -2.17 V. These
results are consistent with the view that excess electrons
(-2.8 V), but not electron-scavenging organic radical anions
(-1.2 V), can reduce Ni+ to a neutral Ni atom dispersed in
water.

In contrast, QCT/B3LYP yields Φredox ) -1.05 V for Ni+

f Ni2+. This value is within the theoretical uncertainty of
the hydroxymethyl radical anion Φredox ) -1.18 V. (Here,
the uncertainty in the predicted value is estimated at ∼0.2
V, arising from the use of the B3LYP functional for
hydration energy compared to CCSD(T).) This suggests that
organic radical anions may already be able to reduce Ni2+

to Ni+ in aqueous solutions. AIMD/DFT+U simulations
yield a slightly more negative Φredox of -1.28 V, which is
still reasonably close to the hydroxymethyl radical anion
Φredox.

Our estimate of the Ni2+ reduction potential is consistent
with the observation that Ni+ does not appear to reduce Ag+

to a Ag atom in water.9 This suggests that the Ni2+ (aq)
one-electron reduction reaction exhibits a Φredox less negative
than the Ag+ redox reaction reported at -1.75 V versus
SHE.9 Indeed, the QCT and AIMD estimates of Ni2+ Φredox

significantly exceed -1.75 V. Furthermore, in the radiolysis-
assisted synthesis of Ni/Pd nanocluster alloys,8 the Pd2+ f
Pd+ Φredox is known to exceed -1.18 V, meaning that Pd2+

is readily reduced to Pd+ by organic electron scavengers. If
Ni2+ f Ni+ indeed had a Φredox of -2.7 V,14 much more
negative than -1.18 V, nanoparticle alloy synthesis may
seem more difficult to initiate because Pd might have been
preferentially nucleated first. But NiPd alloys are indeed
observed in experiments.8 This observation is arguably more
consistent with our revised estimate of Ni2+ Φredox. As
discussed in section III.C, in arriving at their -2.7 V estimate
for this reduction reaction,13 Dixon and Baxendale adopted
very different ∆Ghyd theoretical estimates. Our modern
electronic structure calculations thus yield qualitatively
different conclusions compared to earlier calculations re-
ported in the radiolysis literature.
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The experimental IP for Ni2 exhibits extremely large
uncertainties.23 Fortunately, unlike the case of the Ni atom,
we find that B3LYP and CCSD(T) yield IP values that are
in reasonable agreement with each other (7.73 and 7.42 eV,
respectively) when using the 6-311+G(d,p) basis set. This
gives us the confidence to adopt the zero temperature
CCSD(T) value of 7.42 eV as the N2 IP. Combined with the
∆∆Ghyd, the B3LYP quasi-chemical Φredox for reduction of
the monovalent nickel dimer, Ni2

+ becomes -1.44 V. This
is lower than the monomeric Ni+ reduction potential.

III.F. Dimerization and Disproportionation Reactions.
Finally, we consider reactions that involve two Ni but no
excess electrons (Table 3). Dimerization to form Ni2

(0) and
Ni2

+ from Ni(0) and Ni+ are predicted to be favorable in
liquid water. The Ni+ disproportionation reaction into Ni(0)

and Ni2+ is, however, unfavorable. The latter prediction
conforms to at least one published experimental result in the
literature where Ni atoms are not detected in the presence
of Ni+ (aq).97 Ni2

+ disproportionation into Ni+ and Ni(0),
the inverse of the second reaction in Table 3, is also
unfavorable.

The AIMD results in Table 3 apply the hydration free
energies listed in Table 2 and experimental ionization
potentials, while the QCT approach implicitly uses B3LYP
IP. If experimental IPs are adopted in QCT as well, better
quantitative agreement between the AIMD and QCT values
is obtained. The qualitative conclusion, however, remains
the same: Ni+ disproportionation remains strongly unfavorable.

Our results in sections III.E and III.F are consistent with
the following overall picture. Ni2+ is reduced to Ni+ by
solvated electrons and possibly organic radical anions. Ni+

does not disporportionate into Ni(0) and Ni2+; it can,
however, be reduced by hydrated excess electrons to Ni(0).
The Ni(0)’s are then immediately consumed to produce larger
clusters. These seed clusters become the nuclei of Ni metal
nanoparticles.

IV. Conclusions

We have applied first principles methods to calculate the
redox potentials (Φredox) and dimerization free energies of
monomeric and dimeric Niq+ species in liquid water. AIMD/
DFT and QCT/B3LYP yield Ni2+ (aq) one-electron reduction
potentials of -1.05 and -1.28 V. These are at least 1.4 V
less negative than previous estimates in the radiolysis
literature.13,14 Φredox’s predicted from our state-of-the-art
electronic structure calculations are within the combined
experimental and theoretical uncertainties of the redox
potential associated with hydroxymethyl radical anions
(Φredox ) -1.18 V). Our findings suggest that these electron-

scavenging organic species, in addition to hydrated electrons
(-2.7 to -2.9 V), may be able to reduce Ni2+ to Ni+ in
water. Ni+ does not readily disproportionate into Ni(0) and
Ni2+ .

Even though our calculations are limited to dimers, we
can make the following mechanistic prediction. In the
beginning, Ni+ + e-f Ni(0) and Ni2+ + e-f Ni+ readily
occurs in γ-irradiated solutions. From the calculated redox
potentials (Table 2), the reducing agent is the solvated excess
electron in the former case, but the reduction of Ni2+ can
be accomplished via organic radical anions. In the next step,
the reactions 2Ni(0) f Ni2

(0) and Ni+ + Ni(0) f Ni2
+ take

place (Table 3, reactions 1 and 2). Even though Ni(0) can
spontaneously undergo a disproportionation reaction with
Ni2+ to form Ni+ (Table 3, third reaction), some dimer
formation should occur at a sufficient Ni(0) concentration (i.e.,
at high radiation dosage). We stress that we have elucidated
the thermodynamic feasibility of the reactions but not their
relative rates. In γ-radiolysis, the driving force is significant,
and the overall reaction may be kinetically limited. These
monomers and dimers serve as nuclei for metal nanoparticle
growth, yielding larger clusters that coalesce from them.
Theoretical studies on these larger clusters will be performed
in the future.

Good agreement exists between the quasi-chemical (QCT)
method using dielectric continuum approximation for outer-
shell hydration contributions and ab initio molecular dynam-
ics (AIMD) simulations where outer-shell H2O molecules
are explicitly present. Thus, this study confirms the advantage
of using the QCT approach when dealing with transition
metal ions with rigid hydration shells.
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Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.
Gaussian; Gaussian, Inc.: Wallingford, CT, 2009.

(66) Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem.
Phys. 1987, 87, 5968. Purvis, G. D.; Bartlett, R. J. J. Chem.
Phys. 1993, 76, 1910.

(67) Becke, A. D. J. Chem. Phys. 1993, 98, 1372. Becke, A. D.
J. Chem. Phys. 1993, 98, 5648. Lee, C. T.; Yang, W. T.;
Parr, R. G. Phys. ReV. B 1988, 37, 785.

(68) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. ReV. Lett. 1996,
77, 3865.

(69) Stefanovich, E. V.; Truong, T. N. Chem. Phys. Lett. 1995,
244, 65.

(70) Ohtaki, H.; Radnai, T. Chem. ReV. 1993, 93, 1157.

(71) Bol, W.; Gerrits, G. J.; Panthale, C. L. J. Appl. Crystallogr.
1970, 3, 486.

(72) Baker, N. A.; Sept, D.; Joseph, S.; Holst, M. J.; McCammon,
J. A. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 10037.

(73) Bank, R.; Holst, M. Soc. Ind. Appl. Math J. Sci. Comput.
2000, 22, 1411.

(74) Kresse, G.; Furthmüller, J. Phys. ReV. B. 1996, 54, 11169.
Ibid. Comput. Mater. Sci. 1996, 6, 15.
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Abstract: The calculation of the analytical second derivative matrix (Hessian) is the bottleneck
for vibrational analysis in QM/MM systems when an electrostatic embedding scheme is employed.
Even with a small number of QM atoms in the system, the presence of MM atoms increases
the computational cost dramatically: the long-range Coulomb interactions require that additional
coupled perturbed self-consistent field (CPSCF) equations need to be solved for each MM atom
displacement. This paper presents an extension to the Mobile Block Hessian (MBH) formalism
for QM/MM calculations with blocks in the MM region and its implementation in a parallel version
of the Q-Chem/CHARMM interface. MBH reduces both the CPU time and the memory
requirements compared to the standard full Hessian QM/MM analysis, without the need to use
a cutoff distance for the electrostatic interactions. Special attention is given to the treatment of
link atoms which are usually present when the QM/MM border cuts through a covalent bond.
Computational efficiency improvements are highlighted using a reduced chorismate mutase
enzyme system, consisting of 24 QM atoms and 306 MM atoms, as a test example. In addition,
the drug bortezomib, used for cancer treatment of myeloma, has been studied as a test case
with multiple MBH block choices and both a QM and QM/MM description. The accuracy of the
calculated Hessians is quantified by imposing Eckart constraints, which allows for the as-
sessment of numerical errors in second derivative procedures. The results show that MBH within
the QM/MM description not only is a computationally attractive method but also produces accu-
rate results.

I. Introduction

Normal mode analysis (NMA) is a well-known technique
which estimates the intrinsic vibrational frequencies of

chemical systems by assuming a harmonic shape for the
potential energy surface. Despite its simplicity, it is still a
popular and effective approach for predicting vibrational IR
and Raman spectra,1 for identifying chemical groups,2 or for
studying the large-amplitude collective motions involved in
conformational changes of biomolecules.3 This method is
based on the diagonalization of the Hessian matrix, which
contains the second derivatives of the potential energy with
respect to the nuclear coordinates. The calculation of this
3NAT × 3NAT Hessian, where NAT is the number of atoms,
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is computationally expensive when a quantum mechanical
(QM) description is used, because a set of 3NAT coupled
perturbed self-consistent field (CPSCF) equations needs to
be solved.4-11 In contrast, the computational load of the
second derivative calculation is in comparison extremely
cheap in the molecular mechanics (MM) description, but
force fields cannot, in general, be used to investigate chemical
reactions where the change in electron density (i.e., bond
making/breaking, radical processes, etc.) is a purely quantum
mechanical phenomenon.

Hybrid QM/MM models aim at combining the best
features of the QM and MM models: the quantum descrip-
tions necessary for chemistry and the computational advan-
tages of force fields. The QM/MM approach partitions the
system into a QM region for the chemically interesting site
and an MM region for the surrounding chemical environ-
ment.12-15 The effective cost of a QM/MM Hessian calcula-
tion depends heavily on the treatment of the electrostatics
between the QM and MM region, for which two schemes
have been developed.

In a subtractive scheme like the original version of
ONIOM, the potential energy is the sum of the MM energy
of the whole system, plus the QM energy of the QM region,
minus the MM energy of the QM region as a correction for
double counting.16,17 During the QM part of the calculation,
the QM atoms are unaware of the existence of the MM
atoms, and thus the electron cloud in the QM region is not
influenced by the MM partial charges, i.e., mechanical
embedding. As a consequence, the displacement of an MM
atom does not cause a change in the QM wave function,
such that the corresponding derivatives are simply equal to
zero, and there is no need to solve CPSCF equations for
MM atom displacements.

In an additive scheme, however, as implemented in the
Q-Chem/CHARMM interface18-20 and in many other in-
terfaces, the potential energy consists of the QM energy of
the QM atoms, the MM energy of the MM atoms, and the
Coulomb and van der Waals interaction energy between QM
and MM atoms.12,21,22 Such a description provides a more
accurate treatment of the long-range electrostatics, which is
invaluable when studying, for example, reactions and mo-
lecular configurations. This idea has also been applied to
the original ONIOM scheme to account for the polarization
effects from the MM region.23 In the additive scheme, every
displacement of an MM atom leads to an additional CPSCF
equation.24 Even when the number of QM atoms is low, the
QM/MM interaction term in the Hamiltonian makes the
Hessian determination too costly for systems with a large
number of MM atoms.

Recently, the mobile block Hessian approach was
developed25-27 to calculate frequencies in a partially opti-
mized structure. The method groups atoms into blocks which
are restricted to rigid motions during the vibrational analysis.
The internal geometry is fixed, but each block is still allowed
to translate or rotate as a whole. Consequently, block motions
replace the individual atom motions in the CPSCF equations,
thus reducing the number of CPSCF equations. Until now,
no implementation was available that exploits the compu-
tational advantage offered by solving CPSCF equations of

reduced dimension. In this paper, we present such an
implementation for the specific case of blocks chosen in the
MM region.

An alternative approach to economize on the number of
CPSCF equations is the use of a cutoff distance rc beyond
which electrostatics between QM and MM atoms are
neglected. Figure 1 illustrates the influence of a cutoff: the
electrons in the QM region do not interact (Coulomb) with
MM partial charges outside the gray cutoff zone. The MBH
has the advantage that it does not neglect electrostatic
interactions but rather restricts motions: the gray zone for
MBH encompasses the whole MM region in Figure 1.
Restricting the motion of distant blocks may change the
overall vibrational free energy, but such effects are expected
to largely cancel out when treated consistently in a thermo-
dynamic cycle. It is the aim of this paper to show that the
combination of MBH with the QM/MM description is a
highly accurate and efficient approach. It therefore becomes
the ideal alternative to the standard full Hessian calculation
when the latter is no longer feasible. The Q-Chem/
CHARMM interface now has a working parallel version for
both the full QM/MM Hessian and mobile block QM/MM
Hessian calculation.28

The following section presents the theoretical background
on which the idea of MBH in a QM/MM description is based.
First, the NMA equations, the frequency calculation in
QM/MM, and the MBH equations are reviewed. Second, the
adaptation needed for an efficient mobile block Hessian
computation is outlined. Moreover, the treatment of multiple
link atoms is clarified when the QM/MM border cuts through
covalent bonds. It is also pointed out that MBH preserves
the long-range electrostatic interactions, in contrast to the
alternative approach with a cutoff distance rc which induces
an error decaying as slowly as 1/rc

3. The third section
presents computational results of the chorismate mutase
enzyme. This test case illustrates how MBH and parallelli-
zation reduce the memory requirements and CPU timings.
In the fourth section, the oxidation of the bortezomib
molecule is treated as a test case for the newly implemented
method. This drug is used in cancer treatment since it inhibits
the function of proteasomes upon binding, ultimately leading
to cell death.29,30 By imposing the Eckart constraints, the
accuracy of the calculated Hessians is estimated. This

Figure 1. Cut-off technique versus mobile block Hessian
approach. (a) When using a cutoff rc to decrease the
computational cost of the CPSCF, the electrostatic interaction
between QM and MM atoms is neglected beyond the distance
rc. MM atoms outside the gray region do not interact with the
QM atoms. (b) In the mobile block Hessian approach, all
electrostatic interaction is still present. Blocks in the MM region
are restricted to rigid body motions, i.e. translations and
rotations of each block.
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accuracy is then compared with the influence of various
frequency treatments on the vibrational free energy differ-
ences: QM versus QM/MM and full Hessian versus MBH.

II. Theory and Implementation

II.A. Normal Mode Analysis. Assume that the positions
of the NAT atoms are described by Cartesian displacement
coordinates, labeled x ) 1, ..., 3NAT, all with respect to a
reference structure. A second order approximation of the
potential energy surface around the reference structure is then
equal to

where the reference energy V(0) can be set to be zero. The
3NAT dimensional gradient vector G contains the first
derivatives, and the Hessian H is the 3NAT × 3NAT matrix
containing the second derivatives evaluated at the reference
point. When calculating normal modes, the reference struc-
ture should be a stationary point on the potential energy
surface, i.e. G ) 0. Introducing the diagonal mass matrix M
with the atomic masses on the diagonal, the normal-mode
analysis (NMA) equations read

Solving the NMA equations yields the eigenvalues ω2

(frequency is ν ) ω/2π) corresponding to the eigenvectors
V.

Six frequencies should be zero because of the translational
and rotational invariance of an isolated gas molecule (five
for linear molecules). The corresponding normal modes
represent global translations and rotations of the complete
molecular system. It is possible to project out those zero
frequency vectors before diagonalization, since their exact
format is known. This projection amounts to imposing the
Eckart constraints26,31 and guarantees the presence of six
frequencies that are identically zero even when the system
is not perfectly at the stationary point on the energy surface
or when the Hessian elements are inaccurate. The effect of
the Eckart constraints on the frequencies is studied for the
bortezomib example in section IV.

II.B. The QM/MM Full Hessian. In the additive scheme
with electrostatic embedding, the system is separated into a
QM and an MM region.15 The QM region consists of NQM

nuclei and Ne electrons, described quantum mechanically in
the Born-Oppenheimer approximation. The MM region
contains NMM partial charges, described classically, with NQM

+ NMM ) NAT. The Hamiltonian of the system of interacting
QM and MM particles is written as

where Ĥ QM represents the Hamiltonian describing the QM
region, i.e., the electronic kinetic energy and all electrostatic
potentials generated by the electrons and QM nuclei. The
QM/MM interaction Hamiltonian is

with qk being the partial charge of the MM atom at position
Rk, Zn the nuclear charge of the QM atom at position Rn, ri

the electron positions, and An,k and Bn,k the van der Waals
parameters. The QM/MM interaction Hamiltonian consists
of the Coulomb interaction between MM charges and QM
electrons, the Coulomb interaction between MM charges and
QM nuclei, and the van der Waals interaction between MM
atoms and QM atoms. The total energy of the system is thus
given by

where |Φ〉 is the electronic wave function for the QM atoms.
The two electronic terms are calculated quantum mechani-
cally and are referred to as the quantum part (denoted
“quant”). The remaining three terms in this expression are
classical (denoted “class”). This defines our decomposition
of the total energy in a quantum and classical part:

The Cartesian Hessian H expresses the response of the
total energy to 3NAT Cartesian displacements. A general
Hessian element is denoted as Hxy ) Etot

xy ) ∂2Etot/∂x∂y (x, y
) 1, ..., 3NAT), with the superscripts referring to derivatives.
The Hessian can be divided into submatrices as shown in
Figure 2, depending on whether the x, y indices correspond
to the QM-QM, MM-MM, or mixed QM-MM displace-
ments. Not all terms in eq 5 contribute to each subblock of
the Hessian: the derivatives of Eel, QM and EMM only contribute
to the QM or MM subblock, respectively. However, the QM/
MM interaction terms contribute to all subblocks of
the Hessian. While the derivatives of the classical terms
Enuc, QM/MM and EvdW, QM/MM are relatively easy to evaluate,
the Eel, QM/MM derivatives dominate the cost of the Hessian
evaluation. Even if the number of QM atoms is low, the cost
of the calculation still scales with NAT. The main reason is
that each MM atom adds three perturbations to the CPSCF
equations, because the displacement of an external charge
(an MM atom) leads to a change in the electronic wave
function and the charge distribution. Section II.F shows how
the number of perturbations can be reduced by the introduc-
tion of mobile blocks.

Methods based on the variational principle, such as
Hartree-Fock or Kohn-Sham DFT, have the advantage
that the (2n + 1)th derivative of the energy can be
constructed from the nth derivative of the variational
parameters (Wigner’s 2n + 1 theorem32). The variational

V(x) ≈ V(0) + GTx + 1
2

xTHx (1)

HV ) ω2MV (2)

Ĥ ) Ĥ QM + Ĥ QM/MM + H MM (3)

Ĥ QM/MM ) -∑
i)1

Ne

∑
k)1

NMM qk

|ri - Rk|
+ ∑

n)1

NQM

∑
k)1

NMM qkZn

|Rn - Rk|

+ ∑
n)1

NQM

∑
k)1

NMM ( An,k

|Rn - Rk|
6
-

Bn,k

|Rn - Rk|
12)

(4)

Etot )
〈Φ|Ĥ QM - ∑

i)1

Ne

∑
k)1

NMM qk

|ri - Rk|
|Φ〉

+ Enuc
QM/MM + EvdW

QM/MM + EMM

) Eel
QM + Eel

QM/MM + Enuc
QM/MM + EvdW

QM/MM + EMM

(5)

Etot ) Equant + Eclass (6)
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parameters are the elements of Θ that describe a unitary
rotation among the molecular orbitals.33 The parameters
Θ are updated iteratively until the corresponding molecular
orbitals are eigenfunctions of, e.g., the Fock operator in
the case of Hartree-Fock-based methods. In accordance
with Wigner’s 2n + 1 theorem, only the first derivatives
of the Θ are needed for the construction of the second
derivatives of the energy.

The specific discussion below applies to the Q-Chem/
CHARMM interface, but in principle each QM and MM
package with a suitable interface can be used for the
construction of the full QM/MM Hessian. One should be
aware that the implementation details may differ slightly
depending on the choice of the QM and MM code. The
implementation of the full QM/MM Hessian starts with the
construction of the quantum contribution by the QM code.
Using a compact notation,34,35 where 〈...〉 denotes the trace
of a matrix, the Hartree-Fock energy E (corresponding to
the first two terms in eq 5) calculated by the QM code reads

where P () P(Θ, S)) is the density matrix, Hcore is the core
Hamiltonian matrix (including the Coulomb potential due
to the MM partial charges, which corresponds to the first
term in eq 4), Π represents the antisymmetrized two-electron
integrals over spin orbitals, S is the overlap matrix, and γ is
the nuclear repulsion energy of the QM atoms. The Fock
operator is then defined as

and the standard self-consistent field (SCF) convergence
criterion EΘ ) 0 reads

The second derivatives with respect to atomic displacements
are given by11,33,34,36

and require the density matrix response Px, which is obtained
by solving the coupled perturbated self-consistent field
(CPSCF) equations for Θx. Since the energy is obtained by
a variational method, the CPSCF equations can be derived
from the identity EΘ ≡ 0:

The calculation of the derivatives takes five steps:
(1) Construct EΘHHcore

x + EΘΠΠx + EΘSSx.
(2) Solve CPSCF eq 11 for Θx.
(3) From Θx, construct Px.
(4) From Px, construct Fx ) Hcore

x + ΠxP + ΠPx.
(5) Construct Exy according to eq 10.

As a result of the explicit QM/MM polarization effects, the
CPSCF equations include perturbations for each MM atom,
which makes step 2 and step 4 the most demanding. One
should also pay attention to the memory requirements, which
peak in step 2 and 4 because they scale as 6NMMnb

2, where
nb is the number of basis functions in the basis set. To make
the calculation more efficient, we have parallellized the
quantum mechanical part (contribution from Eel

QM and
Eel

QM/MM) of the full Hessian calculation. Section III discusses
the timings and memory estimates in more detail using the
chorismate mutase enzyme as a test system.

In the practical implementation, the next step involves
passing the quantum mechanical information from Q-
Chem back to CHARMM where the remaining classical
terms are constructed and added to the Hessian at a
relatively insignificant cost. The full QM/MM Hessian is
then mass-weighted and diagonalized to obtain the fre-
quencies and modes. The above discussion holds for
Hartree-Fock calculations. The implementation for DFT
is similar. The main difference is that for DFT one more
term should be added to steps 1, 4, and 5 to account for
the derivatives involving the exchange-correlation func-
tional.

II.C. MBH Theory. The MBH method partitions the
system into blocks of atoms.25,26 During the geometry
optimization, the position and orientation of each block are
optimized, while the internal geometry of the blocks is not
necessarily optimized. As a result of this partial optimization,
there might be residual forces between the atoms within a
block. Whereas in the subsequent vibrational analysis spuri-
ous imaginary frequencies might appear when applying the
standard full Hessian NMA, the MBH is capable of
reproducing physical frequencies.25,26 The internal coordi-
nates within multi-atom blocks are kept fixed, such that the

Figure 2. ĤQM and ĤMM contribute to the derivatives with
respect to NQM QM and NMM MM atoms, respectively, whereas
ĤQM/MM contributes to all Hessian elements. The mobile
block Hessian Hmb, with blocks chosen in the MM region, is
smaller in size (d × d, d ) 3NQM + dMM, bottom three panels)
than the full Hessian H (3NAT × 3NAT, upper three panels).

E ) 〈PHcore〉 +
1
2

〈PΠP〉 + γ ) E(Hcore, Π, S, Θ) (7)

F ) Hcore + PΠ (8)

FPS ) SPF (9)

∂
2E

∂x∂y
) Exy ) 〈PHcore

xy 〉 + 1
2

〈PΠxyP〉 + 〈PxHcore
y 〉 + 〈PxΠyP〉

- 〈(PFP)Sxy〉 - 〈(PFP)xSy〉 + γxy

(10)

(EΘ)x ) EΘΘΘx + EΘHHcore
x + EΘΠΠx + EΘSSx ≡ 0

(11)
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MBH model considers only a subset of the degrees of
freedom (d). A single-atom block (free atom) is still described
by its three Cartesian displacements, while a multi-atom
block needs six parameters to describe the position and
orientation (linear blocks are not considered here). Within
our current implementation, all QM atoms are free, while
MM atoms can either be free or become part of a multi-
atom block. If db denotes the number of parameters of block
b and NBL is the number of blocks, the total number of
parameters is given by

with db ) 3 for a single-atom block or db ) 6 for a nonlinear
block. A suitable choice of the block parameters is the
convention introduced in ref 26. The parameters pR, R )
1, ..., 6, of a particular block give the position r′ of each atom
of the block with respect to the reference geometry r by
successive rotations around the fixed z, y, and x axes of a
space-fixed frame (p6, p5, p4), followed by a translation
(p1, p2, p3):

The position of a single-atom block only needs the param-
eters that describe translation. In the following, we refer to
the new set of dynamical variables with indices p ) 1, ..., d.
Useful quantities are the first (Jacobian) and second deriva-
tives of the transformation between the Cartesian displace-
ment coordinates and the block parameters, evaluated at the
reference geometry:

The explicit expressions for the transformation matrices T
(dimension 3NAT × d) and C(x), x ) 1, ..., 3NAT (each of
dimension d × d) have been derived in refs 26 and 37.

The second derivatives evaluated at the reference point
with respect to the set of d parameters yield the mobile block
Hessian Hmb, whose elements are defined as

The MBH elements are now related to the full Cartesian
Hessian by the following transform

and similarly for the gradient

Note that, in the case of a partially optimized structure, the
Cartesian gradient G might differ from zero, but the MB
gradient Gmb should be zero because all block parameters
are supposed to be optimized.

II.D. The QM/MM Mobile Block Hessian. By combin-
ing the QM/MM description with the mobile block concept,
a considerable reduction in memory and CPU time becomes
possible. This section explains the modifications of the
CPSCF and the changes to the QM/MM interface that are
required to realize the computational profit.

The decomposition in the classical and quantum terms of
the total energy (see eq 6) leads to a similar decomposition
of the gradient and the Hessian:

where, for instance, Gclass, x ) ∂Eclass/∂x and similar expres-
sions hold for Gquant, Hclass, and Hquant. To obtain the mobile
block Hessian from the standard Cartesian Hessian calcula-
tion, the same decomposition is applied to eq 16:

As already mentioned, the classical part of the Hessian is
computationally less demanding, but the quantum part of the
Hessian is expensive. Instead of constructing the full quantum
Hessian Hquant and then projecting it to the smaller mobile
block Hessian dimension (eq 16), a substantial reduction in
CPU time is obtained by directly constructing the mobile
block Hessian for the quantum part, Hquant

mb . The elements are
similar to those in eq 10, with block displacements p as
perturbations instead of Cartesian displacements x. The
density matrix response Pp is obtained by solving adapted
CPSCF equations, (EΘ)p ) Σx(EΘ)xTxp ≡ 0. Similar to the
full Hessian calculation, the construction of the derivatives
occurs in five steps. However, at the end of step 1, the terms
are projected with the T transform of eq 14, such that Θp

can be solved from the adapted CPSCF:

When the p index denotes a parameter of a block in the MM
region, the summation over x is reduced to the Cartesian
displacements of the MM atoms within the block only, such
that the right-hand side of the transform greatly simplifies
to

After the transform to p variables, the rest of the steps are
all very similar with x replaced by p.

In the remainder of this section, it is discussed how the
QM code interacts with the MM code; it is, for instance,
essential to add and project the matrices in the correct order.

d ) ∑
b)1

NBL

db (12)

(x'
y'
z'

) ) (p1

p2

p3
) + (1 0 0

0 cos p4 -sin p4

0 sin p4 cos p4
)( cos p5 0 sin p5

0 1 0
-sin p5 0 cos p5

) ×

(cos p6 -sin p6 0
sin p6 cos p6 0

0 0 1
)(x

y
z
) (13)

Txp ) ∂x
∂p

; Cpp'
(x) ) ∂

2x
∂p∂p'

(14)

Hpp′
mb )

∂
2Etot

∂p∂p′ ) Etot
pp′ (15)

Hmb ) TTHT + ∑
x)1

3NAT

GxC
(x) (16)

Gmb ) TTG ) 0 (17)

G ) Gclass + Gquant (18)

H ) Hclass + Hquant (19)

Hmb ) Hclass
mb + Hquant

mb

) TT(Hclass + Hquant)T + ∑
x)1

3NAT

(Gclass,x + Gquant,x)C
(x)

(20)

EΘΘΘp ) -∑
x

(EΘHHcore
x + EΘΠΠx + EΘSSx)Txp (21)

EΘΘΘp ) -∑
x

EΘHHcore
x Txp (22)
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The QM code returns a matrix of dimension d × d, with d
the total number of perturbations. When assembling the
Hessian in step 5, the outcome is not the MB Hessian Hquant

mb

as in eq 20, but only the bilinear part

is obtained by construction. The gradient correction is still
lacking but will be added at the end (see further, eq 26). To
add the QM code contribution correctly to the MM code
contribution, the Q-Chem Hessian Hquant

mb, bil is first transformed
to a matrix of the standard size 3NAT × 3NAT by a linear
transform Q of dimension d × 3NAT:

Here, Q is the pseudoinverse of the rectangular transform
matrix T, such that QT ) 1 and

The final expression for the mobile block Hessian reads

where the QM code (Q-Chem) calculates Hquant
mb, bil and Gquant

and performs the Q transform, while the MM code
(CHARMM) calculates Hclass and Gclass, assembles classical
and quantum parts, and performs the T transform and the
gradient correction. In practice, the Enuc

QM/MM of eq 5 is
calculated by Q-Chem, but in general, this is a purely
classical term which could be calculated by either the MM
or QM code.

The set of linear equations to be solved in step 2 (see eq
21) now counts d equations instead of 3NAT, leading to a
computational profit especially on the level of memory
requirements. Moreover, the code implemented in Q-Chem
also works in parallel. Using NP processors, the peak memory
for MBH is equal to 2dMMnb

2/NP, where dMM ) 6NBL +
3NMM, free is the number of MM perturbations, compared to
the peak memory 6NMMnb

2/NP for a full QM/MM Hessian
calculation. The main difference with respect to the full
Hessian calculation is that the factor 3NMM is reduced to dMM,
which will generally be significantly smaller. The MBH also
reduces the CPU time since fewer CPSCF equations need
to be constructed and solved. This means that MBH allows
vibrational analysis to be performed on larger systems than
is feasible with the full Hessian. In section III, concrete
timings and memory estimates are discussed for the choris-
mate mutase test system.

II.E. Treatment of Link Atoms. It is a common practice
to introduce at least one link atom when cutting a bond across
the QM/MM boundaries in the electrostatical embedding
scheme.15,38 To make the MBH available for a broader range
of applications, our implementation has been extended to
be able to treat link atoms correctly. The introduction of a
link atom generates three additional degrees of freedom,
leading to an extended potential energy surface Ṽ(R, RLK).
Therefore, the full Hessian H̃ of a system with NLK link atoms

has 3NLK extra rows/columns. Diagonalization of this
extended Hessian yields 3NLK extra frequencies, which are
in essence an artifact of the QM/MM border description and
are not inherent to the real physical system. Moreover, the
link atoms are usually not completely optimized during the
energy minimization process, and unphysical imaginary
frequencies might appear as a system with constrained link
atoms in a nonequilibrium state.

Hence, one has to project out the 3NLK link atom degrees
of freedom to construct a Hessian H of the dimension 3NAT.
A straightforward and simple solution is to omit the rows/
columns in the Hessian that correspond to the link atoms.39

This approach coincides with the Partial Hessian Vibrational
Analysis (PHVA), which can be interpreted as associating
an infinite mass to the link atoms.39-45 This procedure not
only disturbs the global translational and rotational symmetry
of the system, reflected by the destruction of the six zero
eigenvalues of the Hessian, but also the lower frequency
spectrum is affected in an unpredictable manner. Cui and
Karplus propose to project out the link atom motions after
making them orthogonal to the global translation/rotation
vectors.24 This method could only be applied to a system
containing a single link atom which is left unconstrained
during the geometry optimization. This is often not the case,
because preferably constraints on the link atom’s position
are used to locate it between the QM host and MM host.
Such constraints ensure that one of the orbitals of the QM
host is effectively pointed toward the MM host, thus
providing a better description of the covalent bond.

Here, we focus on a different optimization procedure,
which has also been investigated in the framework of
ONIOM by Dapprich et al.17,46 A similar methodology is
now extended to the framework of QM/MM where explicit
QM/MM polarization effects are included. Instead of a full
geometry optimization, the position of the link atom is
constrained and can be written as a function of the other
QM and MM atom positions: RLK ) RLK(R). Respecting the
following notation, where x stands for the 3NAT displace-
ments of the QM and MM atoms and x′′ for the 3NLK link
atom displacements, we can express the constraints as x′′ )
x′′(x). They reduce the dimensionality of the potential energy
surface Ṽ to a new potential energy function in 3NAT space

Using the chain rule, the 3NAT-dimensional gradient G and
3NAT × 3NAT Hessian H of the new function V(x) can be
written as

with G̃ being the original (3NAT + 3NLK)-dimensional
gradient vector of Ṽ(x, x′′) and H̃ the (3NAT + 3NLK) × (3NAT

+ 3NLK) matrix containing the second derivatives of Ṽ(x, x′′),

TTHquantT ) Hquant
mb,bil (23)

H'quant
bil ) QTHquant

mb,bilQ (24)

TTH'quant
bil T ) TTQTHquant

mb,bilQT ) Hquant
mb,bil ≡ TTHquantT (25)

Hmb ) TTHclassT + TTQTHquant
mb,bilQT + ∑

x)1

3NAT

(Gclass,x + Gquant,x)C
(x)

(26)

V(x) ) Ṽ(x, x'')|x'')x''(x) (27)

Gx ) G̃x + ∑
x''

G̃x''∂x''
∂x

(28)

Hxy ) H̃xy + ∑
x″

H̃x″y∂x″
∂x

+ ∑
y″

H̃xy″∂y″
∂y

+ ∑
x″y″

H̃x″y″∂x″
∂x

∂y″
∂y

+ ∑
x″

G̃x″ ∂
2x″

∂x∂y

(29)
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all evaluated at the reference point. The equations for the
Hessian elements (eq 29) indicate that the elimination of the
link atom involves both projections of the original Hessian
H̃ (first four terms on the right-hand side) as well as a term
depending on the original forces G̃ on the link atom (last
term on the right-hand side). The main point is that the
constraints imposed during the geometry optimization are
also imposed during the vibrational analysis, which is the
key condition for consistent and meaningful frequencies.26

Typically, the constraints x′′(x) only depend on the position
of the neighboring QM host (xQMH) and MM host (xMMH).
The constraint derivatives of type ∂x′′/∂x or ∂2x′′/∂x∂y
evaluated at the reference geometry are then only nonzero
if x, y corresponds to host atom displacements. Consequently,
only the rows/columns in the Hessian that involve host atoms
are affected by the projection, while other gradient and
Hessian elements remain unchanged, i.e., G̃x ) Gx and H̃xy

) Hxy if x, y do not involve host atom displacements.
In our QM/MM procedure, the link atom is forced to stay

colinear with the QM and MM hosts during the energy
minimization, and at a fixed, scaled distance. This completely
determines the positions of the link atoms. In the subsequent
vibrational analysis, one can either perform a numerical or
an analytical second derivative calculation. For second
derivatives obtained with numerical differentiation of slightly
displaced geometries, the displaced geometries are such that
they respect the constraints. Since the link atom degrees of
freedom are thus never sampled, the numerical Hessian yields
3NLK zero eigenvalues. For analytical second derivatives, the
Hessian H̃ must be reduced in size with the above projection.
Specifically, the functional form of the constraints is

from which one can readily derive the relevant quantities
for the projection in eqs 28-29. For instance, the scaling
factor R is chosen to be 0.7261 for a link atom replacing a
covalent single C(sp3)-C(sp3) bond, it being the ratio of the
equilibrium C-H and C-C distances in the CHARMM force
field.47 Note that the gradient correction in the last term of
eq 29 drops out because of the linear relationship between
x′′ and x, i.e., ∂2x′′/∂x∂y ) 0 for x, y in {xQMH, xMMH}. It is
clear that this projection affects only the Hessian elements
of the host atoms and the link atom itself but no other Hessian
elements. The projection can be performed within the QM
code, since the derivatives of the classical parts vanish for
these specific Hessian elements (e.g., H̃class

x′′y ) 0).
As a last point, we mention a potential pitfall concerning

the definition of the total energy of the QM/MM system with
link atoms. The degree to which a link atom contributes to
the total energy of the system is reason for discussion (see,
e.g., refs 17, 48, and 49). As for normal-mode analysis, it is
essential that both gradients and second derivatives conform
to the chosen definition of the potential energy surface, that
is, with the same constraints as in the energy minimization.
This is readily satisfied in the Q-Chem/CHARMM interface.
The user can specify the degree to which the link atom
contributes to the total energy, and all derivatives are
calculated accordingly. The subsequent elimination of the

link atom coordinates, as in eqs 28-29, does not depend on
the specific definition of the total energy of the system.

II.F. Long-Range Electrostatics. A common strategy,
implemented in e.g. CP2K,50 to reduce the computational
cost of QM/MM electrostatic calculations is the introduction
of a cutoff distance rc. The Coulomb interaction between
MM atoms and the QM region is neglected if the distance
in between exceeds rc. As a consequence, the number of
perturbations decreases in the CPSCF equations of a
QM/MM calculation, because a displacement of an MM atom
which is too far away from the QM region will not affect
the electronic cloud of the QM region. The full QM/MM
Hessian still has its full 3NAT × 3NAT dimension, but the
reduced number of CPSCF equations facilitates its computa-
tion. In addition, the Hessian becomes more sparse, since
Hessian elements HA, B between an MM atom A and a QM
atom B are zero if they are beyond the cutoff.

Regardless of the tempting computational advantages, a
cutoff strategy potentially introduces serious errors in the
description of the molecular system. Electrostatics are long-
range interactions with a 1/rAB decay, leading to a 1/rAB

3

decay of the Hessian elements. A cutoff for the electrostatics
leads to a shift of the potential energy and to modified
vibrational frequencies with respect to the fully interacting
system. It is to be anticipated that a cutoff distance rc

introduces errors on the order of 1/rc
3 in the Hessian

elements.
The introduction of mobile blocks into the vibrational

analysis has the advantage that the long-range electrostatics
are not influenced. While the motion within a block is
constrained, the description of the interatomic interactions
is in se not altered. This is a major strength of the MBH
approach with respect to coarse-graining methods: the MBH
approach entails a correct description of long-range electro-
statics and makes frequency calculations of large QM/MM
systems feasible without invoking a cutoff technique.

III. Illustration of Computational Efficiency

The parallel implementation of MBH provides an efficient
way to calculate vibrational frequencies of QM/MM systems.
The reduced number of CPSCF equations results in com-
putational profit on the level of both memory requirements
and CPU time.

Formulas for the memory estimates of each step of sections
II.B and II.D are included in Table 1 for a restricted closed-
shell calculation, where no (nv) denotes the number of
occupied (virtual) orbitals and nb denotes the number of basis
functions. For open-shell calculations, the memory require-
ments double. In order to avoid load balance problems, the
current implementation first solves the CPSCF equations for
the QM atomic displacements followed by the MM atomic
displacements.51 Therefore, the peak memory requirement
is 6NMMnb

2 (reasonably assuming a larger number of MM
atoms than QM atoms), whereas the needed disk storage still
scales with 6NATnb

2. Parallellization over NP processors
reduces the memory by roughly a factor of NP. The right
column of Table 1 estimates the required memory per
processor (besides the static work memory) for the calcula-
tion of the mobile block derivatives with NP processors. The

x″ ) x″(xQMH, xMMH) ) xQMH + R(xQMH - xMMH)
(30)
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peak memory is now equal to 2dMMnb
2/NP, where dMM )

6NBL + 3NMM, free is the number of MM perturbations.
To illustrate the efficiency, a small part (330 atoms) of

the chorismate mutase enzyme (1COM in the Protein Data
Bank) is taken as a test example.52 At the B3LYP/6-31+G*
level of theory, the number of occupied orbitals is no ) 59,
and the number of virtual orbitals is nv ) 261, totalling nb

) 320 basis functions. The full QM calculation would need
roughly 1.5 TB of memory, which is not feasible at present.
Now consider a QM/MM calculation where the system is
divided into a 24 QM atoms and 306 MM atoms. The same
level of theory, B3LYP/6-31+G*, is used for QM atoms
while the MM atoms are described by the PARAM27 force
field of CHARMM.53,54 This QM/MM Hessian calculation
only requires about 2.5 GB, a drastic reduction with respect
to the full QM calculation.

In the next step, the system is divided into mobile blocks.
By dividing the 306 MM atoms into 20 blocks, with one
residue per block, a mere 0.5 GB is sufficient for the MBH
calculation on one processor. This illustrates that MBH
allows for vibrational analysis on larger systems than is
feasible with the full Hessian. For example, the largest system
in which the full Hessian calculation fits on a single processor
with a typical 8 GB of memory consists of roughly 24 QM
atoms and 600 MM partial charges. The largest system for
the approximate MBH calculation has 24 QM atoms and
4500 MM atoms, assuming an average of 15 atoms per block.

Thus, MBH increases the size of the QM/MM systems that
can be addressed by 7.5 times. Even larger system sizes are
feasible when grouping multiple residues per block. In
addition, parallellization of the code further reduces the
required memory per processor.

Figure 3 shows the CPU times of the frequency calculation
for the chorismate mutase test system, described with the
same QM/MM description of 24 QM atoms and 306 MM
atoms. The timings of the full Hessian calculation are compared
to those of the MBH, where again the 306 MM atoms are
divided into 20 blocks. The MBH CPU time on one processor
(20 220 s) reduces to 54% of the full Hessian CPU time on
one processor (37 230 s). The CPU times of steps 3 and 4 are
affected the most, while the CPU time of step 2 remains
unaltered or might even increase. The latter is due to the use of
an iterative subspace algorithm for solving the CPSCF equa-
tions. The number of trial vectors in the CPSCF solution
subspace is largely unaffected by blocking the MM atoms. In
our particular example, the number of basis vectors is actually
slightly increased because of the mixing of different atomic
displacements in the blocks. This leads to a subsequent small
increase in the execution time for the CPSCF step, which is
almost strictly proportional to the number of basis vectors. For
the full Hessian calculation, a speedup of a factor of 5.5 is
realized when using eight processors instead of one processor.
For the MBH calculation, the speedup is 2.6 when using four
processors instead of one processor. This shows that MBH
indeed reduces the computational efficiency, and the parallel
implementation even more. Of course, the effective speedup
depends on the block choice, where larger blocks lead to more
impressive speedups.

IV. Application: The Bortezomib Drug

IV.A. Oxidative Deboronation of Bortezomib. Boronic
acids (R-B(OH)2) play an important role in a variety of
medical applications due to the ability of boron to mimic the
tetrahedral transition state of an sp3 hybridized carbon. A
particularly interesting example is the drug bortezomib (orig-
inally codenamed PS-341, marketed as Velcade),29,30 which is

Table 1. Memory Requirements Per Processor Expressed
As the Number of Double Precision Floating-Point
Numbers (1 number ) 8 bytes) That Needs to Be Stored
for Restricted Closed-Shell Hessian Calculationsa

full QM/MM Hessian MB QM/MM Hessian

step 1 3NMM × nonv/NP dMM × nonv/NP

step 2 ,2 × 3NMM × nb
2/NP ,2 × dMM × nb

2/NP

step 3 ∝nb
2 ∝nb

2

step 4 >2 × 3NMM × nb
2/NP >2 × dMM × nb

2/NP

step 5 ∝nb
2 ∝nb

2

peak 2 × 3NMM × nb
2/NP 2 × dMM × nb

2/NP

a NP is the number of processors, nb the number of basis
functions, and no (nv) the number of occupied (virtual) orbitals. The
symbol , means that the actual number is, in practice, much
lower than the theoretical estimate. ∝ indicates the scaling, where
the prefactor is independent of the system size. > means that the
actual number is higher than the theoretical estimate due to
overhead such as the book keeping of variables. In the case of MBH,
dMM is the number of MM perturbations: dMM ) 6NBL + 3NMM, free,
while the total number of perturbations is d ) dMM + 3NAT.

Figure 3. Chorismate mutase test system: CPU times for a
QM/MM system with 24 QM atoms and 306 MM atoms.
Parallellization speeds up the QM/MM calculatation: the full
Hessian is calculated on 1, 2, 4, and 8 processors (left); the
mobile block Hessian on 1, 2, and 4 processors (right).
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used to treat multiple myeloma and mantle cell lymphoma, two
types of hematologic cancer. Bortezomib is a boronic acid
analog of a Phe-Leu dipeptide coupled to a 2-carboxyl-pyrazine
group (Figure 4) that binds to the catalytic site of the 26S
proteasome with high specificity.55,56 The proteasome, a large
multicatalyic protease complex, regulates protein expression and
degradation of ubiquitinylated proteins, cleaning abnormal or
misfolded proteins from the cell. Inhibition of this cellular
pathway by bortezomib ultimately results in apoptosis due to
an accumulation of damaged or misfolded proteins in the cell
through a number of possible mechanisms.57

The chemical activity of bortezomib is largely due to the
boronic acid moiety, which appears to bind with the active
site N-terminal threonine residue of the proteasome.58-60 In
a recent article, Larkin et al. reported the results of a
computational study of the model system boroglycine
(H2N-CH2-B(OH)2), using H2O2 and H2O as reactive
oxygen species.61 The oxidative deboronation, which is
suggested as the principal pathway for the metabolism of
bortezomib, is found to be exothermic and endothermic for
the reactions with H2O2 and H2O, respectively. With the
computational improvements in Q-Chem/CHARMM, we can
now systematically study the full bortezomib molecule (53
atoms) instead of the smaller model system (11 atoms).

Figure 5 illustrates the oxidative deboronation reaction,
where an oxygen cleaves the boron acid and takes the
position of the boron. The vibrational free energy difference
∆Gvib of the reaction is studied since this quantity is
calculated with the vibrational frequencies. Two reactive
oxygen reagents are considered: H2O2 and H3C-OH. Metha-
nol is chosen as the second reagent because it better
describesscompared to water in ref 61s the alcohol group
of the threonine residue of the 26S proteasome on which
the bortezomib molecule is believed to bind. The respective
products are an alcohol and an ether:

where R designates the Phe-Leu moieties coupled to the
pyrazine. The bortezomib reactant will be referred to as REA
and the alcohol and ether product as PROD1 and PROD2,
respectively.

With this application, we aim at presenting a workable
model for the computation of vibrational frequencies in a
QM/MM approach with the inclusion of mobile blocks in
the MM region. We restrict ourselves to the thermochemistry
of the reactants versus the products, as the reaction path leads
along several intermediate transition states.61 A profound
assessment can only be done if we dispose of a high-level
benchmark study involving accurate optimized geometries
for the bortezomib structure. Therefore, section IV.B is
devoted to the creation of the QM and QM/MM geometries.

Figure 4. The drug bortezomib: 3D model of the reactant
(REA).

R-B-(OH)2 + H2O2 f R-OH + B-(OH)3

Figure 5. BortezomibsStructure of the drug bortezomib with
indication of the QM and MM regions. QM atoms are colored
red. Link atoms are placed at the QM/MM border. Oxidative
deboronation of bortezomib (REA) with the oxygen reagens
H2O2 or CH3-OH results in an alcohol (PROD1) or ether
(PROD2) product, respectively. The mobile blocks Ph, py, and
iP are indicated with a dashed line.

R-B-(OH)2 + H3C-OH f R-O-CH3 + H-B-(OH)2
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Section IV.C focuses on the calculation of the QM and
QM/MM frequencies, either derived from full Hessians or
from MBH. Section IV.D compares the QM/MM difference
in the vibrational Gibbs free energy with the benchmark full
QM value. Moreover, we discuss the influence of the
introduction of mobile blocks in the MM region.

IV.B. Creating QM and QM/MM Geometries. The
benchmark geometries are generated by performing a full
QM calculation with Q-Chem. The input geometry is taken
from the Protein Data Bank (2F16 in the Protein Data Bank)
where the proteasome 26S and water are removed to select
the relevant conformation. The geometry of each structure
is first optimized in order to calculate frequencies subse-
quently using analytical second derivatives. Since it is not
required that the gradient within a given block be zero in
order to apply MBH, the geometry optimization could also
be done with rigid blocks, where the rigidity is imposed via
the SHAPES facility in CHARMM. To increase the accuracy,
the convergence criteria and numerical accuracy options are
set slightly tighter than is typical for a plain geometry
optimization: the tolerance for the gradient is reduced to
0.00015 hartree/Bohr, and the tighter (75 302) atomic
integration grid is chosen with 75 radial points and 302
Lebedev angular points for each atom. The B3LYP62,63 and
PBE ()PBE1PBE)64-66 levels of theory are used for this
example with the 6-311++G(d,p) basis set, as well as the
B3LYP-D and PBE-D functionals where an empirical
correction term is added to account for dispersion effects.67

In addition, the structure is optimized at the more expensive
RI-MP2/cc-pVTZ68,69 level to validate the accuracy of the
B3LYP(-D) and PBE(-D) geometries. A frequency calcula-
tion is however currently not practical at the RI-MP2 level
of theory because its second derivatives implementation is
based on the numerical differentiation of the analytical
gradient. Table 2 lists the mass-weighted root-mean-square
distances (RMSD) between the QM geometries optimized
at different levels of theory, which are calculated on the basis

of the non-hydrogen atoms after aligning the structures.
Structures with an RMSD below 0.25 Å are considered to
have close-lying geometries; when the RMSD is higher, the
structures are considered less similar. The RMSD between
B3LYP and PBE structures is low, except in the isolated
case of the PROD1 product. Similarly, the B3LYP-D and
PBE-D geometries lie close to each other, but they differ
from the geometries without dispersion. In all cases, the
B3LYP-D and PBE-D geometries lie closer to the RI-MP2
geometries than B3LYP and PBE, and preference should be
given to DFT methods including dispersion. Visualization
of the structures shows that the distance between the Leu
and Phe moieties decreases under the influence of the
dispersion forces. Apparently, the dispersion in this rather
large molecular system plays a more important role on the
geometry than the level of theory.

For the QM/MM calculation, the REA, PROD1, and
PROD2 molecules are divided into a QM and MM region,
whereas the small H2O2 and CH3-OH reactants and the
B-(OH)3 and H-B-(OH)2 products are still described
completely on the QM level. The MM region consists of 42
atoms: the phenyl group (Phe), the iso-butyl group (Leu),
the pyrazine (ring with nitrogens), and some neighboring
atoms, as shown in Figure 5. The reactive site is made part
of the QM region, colored red in Figure 5. In addition, the
amide bond is chosen to belong entirely to the QM region,
since preliminary tests in which the QM/MM border crosses
the amide bond turned out to break the partially delocalized
nature of the amide bond with even a nonplanar geometry
in some cases. This brings the number of QM atoms to 11,
8, and 11 for the REA, PROD1, and PROD2 molecules,
respectively. Each structure has two link atoms where the
QM/MM border cuts through covalent C-C bonds, as
indicated in Figure 5. The combination of the LONEPAIR
and SHAKE commands70 of CHARMM keeps each link
atom colinear with its MM and QM host at a relative distance
of 0.7261 (see eq 30) during the geometry optimization.

In this QM/MM calculation, the same QM functionals are
used as in the full QM case (the B3LYP, PBE, B3LYP-D,
or PBE-D level with the 6-311++G(d,p) basis set), while
the MM force field is based on the PARAM27 parameter
set53,54 of CHARMM. The root-mean-square distances
(RMSD) between the QM/MM geometries optimized at these
four levels of theory are summarized in Table 3. As in the
QM calculations, the B3LYP and PBE structures are similar,
and the B3LYP-D and PBE-D structures also lie close to
each other. Contrary to the full QM calculations, the
comparison of B3LYP and PBE with B3LYP-D and PBE-D
shows that the inclusion of dispersion interactions only has
a minor influence on the geometry. The reason is that the
dispersion contribution is limited to the small subset of QM
atoms; hence it barely affects the relative orientation between
the Leu and Phe moieties. This behavior is confirmed by
comparing the QM/MM structure with its respective QM
structure, of which the RMSD is also included in Table 3.
Indeed, QM/MM structures calculated in the absence of
dispersion lie closer to their QM counterpart than structures
including dispersion. For instance, the RMSD between the

Table 2. Bortezomib-RMSD in Å between QM
Geometries Optimized at Different Levels of Theorya

QM geometries B3LYP PBE B3LYP-D PBE-D

REA B3LYP -
PBE 0.10 -
B3LYP-D 0.57 0.50 -
PBE-D 0.68 0.60 0.12 -
RI-MP2/cc-pvtz 0.58 0.51 0.09 0.12

PROD1 B3LYP -
PBE 0.64 -
B3LYP-D 0.75 0.34 -
PBE-D 0.82 0.42 0.11 -
RI-MP2/cc-pvtz 0.78 0.45 0.14 0.09

PROD2 B3LYP -
PBE 0.07 -
B3LYP-D 0.91 0.86 -
PBE-D 0.97 0.93 0.09 -
RI-MP2/cc-pvtz 0.94 0.89 0.16 0.14

a The basis set is 6-311++G(d,p) except for RI-MP2. REA
refers to the reactant bortezomib, while PROD1 and PROD2 refer
to the alcohol and ether products formed after oxidative
deboronation, as indicated in Figure 5.
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QM/MM and QM structure is 0.18 Å with the B3LYP
functional, while it is 0.43 Å with the B3LYP-D functional.

IV.C. Frequency Calculations. Hessians and gradients
are calculated analytically at the same level of theory as the
geometry optimization. The Hessian is diagonalized after
mass-weighting to obtain the frequencies and vibrational
modes. In this paper, we used simultaneously the program
TAMkin71 to derive frequencies, modes, and thermodynamic
properties. With its batch processing features, it provides a
handy interface to extract the relevant molecular information
from the large number of Q-Chem/CHARMM output files,
to compute the frequencies, to write mode trajectory files
for visualization of the vibrational eigenmodes, and to derive
the Gibbs free energy differences.

Frequencies are derived from three different types of
Hessians:

A. QM Full Hessian. The frequency run (and geometry
optimization) is performed with a QM description. The full
3NAT × 3NAT Hessian is calculated with Q-Chem.

B. QM/MM Full Hessian. The frequency run (and geom-
etry optimization) is performed with a QM/MM description.
The full 3NAT × 3NAT Hessian is calculated with Q-Chem/
CHARMM. CHARMM can derive MBH frequencies from
this full Hessian.

C. QM/MM Mobile Block Hessian, Reduced CPSCF. The
frequency run (and geometry optimization) is performed with
a QM/MM description. The mobile block Hessian of reduced
dimension d × d is calculated by Q-Chem/CHARMM with
the reduced number of CPSCF equations and diagonalized
in CHARMM, directly leading to the MBH frequencies.

In cases A and B, a Hessian of full size 3NAT × 3NAT is
constructed. Its diagonalization is performed by Q-Chem
(case A), by CHARMM (case B), or by TAMkin (case A or
B) and will be referred to as the full Hessian vibrational
analysis (FHVA) in the remainder of the discussion. From
these full Hessians, one can also derive MBH frequencies
through projection and a gradient correction, as explained

in ref 26 (cases A and B) and implemented in CHARMM19

and in TAMkin.71 But the direct method to attain MBH
frequencies is case C, where frequencies evolve directly from
the diagonalization of the mobile block Hessian itself,
without prior construction of the full Hessian. This is the
new implementation which is the subject of this paper and
which is now available via Q-Chem/CHARMM.

The calculations are performed on four processors with
the parallel version of Q-Chem and Q-Chem/CHARMM. The
QM Hessian computation in case A is the most time-
consuming one (∼3 days). The QM/MM Hessian calculations
in cases B and C are considerably faster, taking ap-
proximately 0.5% of the time for a full QM calculation (∼30
min). The speedup realized by the reduced CPSCF imple-
mentation versus a full CPSCF QM/MM implementation is
moderate since the number of MM atoms and blocks is rather
small in the system under study compared to the chorismate
mutase test system of section III.

In the current implementation, the mobile blocks should
be part of the MM region and should not contain any MM
host atom of the link atoms. Figure 5 proposes three plausible
blocks, of which the internal motions are suspected not to
matter when estimating the vibrational free energy difference:
the phenyl group (Ph), the iso-propyl group (iP), and the
pyrazine (py). Frequencies are calculated with one block or
with multiple blocks simultaneously. For instance, the
method MBHPh indicates that the vibrational analysis is
performed assuming that the atoms of block Ph vibrate
coherently as a whole. In the method labeled MBHPh, iP, py,
the system contains three blocks (Ph, iP, py), while the
remaining atoms can vibrate individually. The introduction
of blocks reduces the number of frequencies; for instance,
87 frequencies remain for the bortezomib reactant with three
blocks, which is 55% of the original 159 frequencies.

The accuracy of the vibrational frequencies is largely
influenced by the geometry convergence criteria and the
quality of the Hessian elements, which mainly depends on
the numerical integration grid for calculating the electron
integrals in the CPSCF equations. A good assessment of the
accuracy is the value of the lowest six eigenvalues of the
Cartesian Hessian. In principle, those should be zero at a
minimum or maximum energy point because of the invari-
ance of the potential energy surface of a gas phase molecule
under global translations and rotations.26,72,73 Global rotations
with a nonzero frequency are caused by a poor geometry
convergence, such that the Eckart conditions are not fulfilled
at the reference point and the global rotations may mix up
with the internal vibrations. Global translations with a
nonzero frequency signal inaccurate Hessian elements. The
influence of the inaccuracies is validated by first projecting
out the global translations/rotations from the full Hessian
before diagonalization, thus creating six “hard” zero eigen-
frequencies and removing any translational/rotational con-
tribution in the low lying eigenmodes. This approach is
equivalent to imposing Eckart constraints on the vibrational
motions1 and will therefore be denoted with the superscript
“Eck”. The Eckart projection is performed by TAMkin or
by the RAISE option in CHARMM. Each standard method,
FHVA or MBH, thus has a corresponding method FHVAEck

Table 3. Bortezomib-RMSD in Å between QM/MM
Geometries Optimized at Different Levels of Theorya

QM/MM geometries B3LYP PBE B3LYP-D PBE-D

REA B3LYP -
PBE 0.05 -
B3LYP-D 0.11 0.07 -
PBE-D 0.15 0.11 0.05 -
correspondingQM 0.18 0.20 0.43 0.50

PROD1 B3LYP -
PBE 0.14 -
B3LYP-D 0.16 0.03 -
PBE-D 0.23 0.09 0.07 -
correspondingQM 0.18 0.60 0.63 0.62

PROD2 B3LYP -
PBE 0.16 -
B3LYP-D 0.18 0.04 -
PBE-D 0.12 0.05 0.07 -
correspondingQM 0.24 0.16 0.87 0.88

a In addition, each QM/MM geometry is compared with its
respective QM geometry calculated at the same level of theory.
REA refers to the reactant bortezomib, while PROD1 and PROD2
refer to the alcohol and ether products formed after oxidative
deboronation, as indicated in Figure 5.
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or MBHEck where the six lowest frequencies are hard zeros.
The Eckart projection mainly affects the low frequency
spectrum. The difference between the standard method and
these Eckart methods is a measure of the Hessian’s accuracy.

IV.D. Discussion. A first point of interest is the influence
of MBH on the individual frequencies and modes. Such
detailed studies have been performed recently in, e.g., refs
25, 27, 37, 74, and 75. It was found that the block choice
determines which local modes and/or global modes are well
described by MBH. For the bortezomib system under study,
all atoms of the reactive site are considered completely
mobile free atoms. The spectator groups are fairly rigid
during the reaction, and their internal geometry can be kept
fixed. With this plausible block choice, a reasonable similar-
ity is to be expected between MBH modes and frequencies
and the benchmark full Hessian results. This can be verified
by calculating the overlap between the modes, a number lying
between 0 and 100%, defined as

where |νi
MBH〉 is the ith mass-weighted MBH mode with

frequency νi
MBH and |νj〉 is the jth mass-weighted FHVA

mode with frequency νj. The overlap data of REA are plotted
in Figure 6, where the QM/MM MBH is derived from the
full QM/MM Hessian by projection (case B of ssection
IV.C). A dark dot indicates a high overlap between the
modes, and a dot located close to the diagonal of the plot
indicates that the corresponding frequencies are almost equal.
The plot shows good agreement between the FHVA modes
of REA with the MBHPh and MBHPh, iP, py modes, and an
excellent agreement between FHVA and MBH for frequen-
cies below 250 cm-1.

A second point of interest is the thermodynamic quantities
derived from the frequencies. The frequencies serve directly
as input quantities for the vibrational free energy Gvib, which
makes it an interesting parameter for studying the influence
of the MBH model. The MBH however reduces the number
of frequencies; hence a better quantity is the difference in
vibrational free energy ∆Gvib between the products and the
reactants, calculated as

In the harmonic oscillator approximation, the vibrational free
energy Gvib is derived from the vibrational partition function
Qvib by the well-known relation Gvib ) -kBT ln Qvib, where
kB is the Boltzmann constant and T the temperature. The
vibrational partition function is built from the individual
contributions of the harmonic frequencies.76-79 The entropic
part of the vibrational free energy, -T∆Svib, is also reported,
which is derived from the relation Svib ) kB(∂ln Qvib)/(∂T).
When the harmonic oscillators are treated classically (high
temperature limit) instead of quantum mechanically, the free
energy difference is purely entropic.

The alternative would be to derive the free energy
differences from a molecular dynamics (MD) simulation,
which performs a more realistic sampling of the reaction
coordinate. In this paper, only the harmonic limit is
considered, which amounts to sampling a local harmonic
approximation of the potential energy surface. Even in cases
where the harmonic limit is insufficient to accurately describe
the reaction process, one can still learn from the harmonic
limit result by comparing it to explicit MD sampling. Since
MD basically solves Newton’s classical equations of motion
and not the time-dependent Schrodinger equation, MD results
should be compared with the results derived from the
classical oscillators instead of the quantum oscillators parti-
tion function. For completeness, we have therefore calculated
some classical oscillator results besides the quantum oscil-
lator results.

Tables 4-7 list the vibrational free energies and the
vibrational entropic contributions, calculated with quantum/
classical oscillators, and without/with Eckart projection. The

Oij ) |〈νi
MBH|νj〉|

2 (31)

∆Gvib ) Gvib(PROD1) + Gvib(B(OH)3)

- Gvib(REA) - Gvib(H2O2) (32)

∆Gvib ) Gvib(PROD2) + Gvib(HB(OH)2)

- Gvib(REA) - Gvib(H3COH) (33)

Figure 6. BortezomibsEvaluation of the MBH frequencies/
modes of REA on the basis of the QM/MM Hessian (case B).
The overlap Oij ) |〈νi

MBH|νj〉|2 between the mass-weighted
MBH modes |νi

MBH〉 and FHVA modes |νj〉 is plotted as a
function of the respective frequencies. A dark colored dot
indicates a high overlap between the modes; overlap values
below 20% are not shown.
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three parts in each table correspond to the three different
cases of Hessians as explained above. Variations δ∆Gvib in
a particular column in the table are due to the description
level (QM versus QM/MM) and the NMA models (FHVA
versus MBH). Table 8 summarizes these variations δ∆G as

well as deviations caused by the functional and the applica-
tion of the Eckart conditions. The deviations will now be
discussed in detail on the basis of the results obtained from
quantum oscillators. Classical oscillator results, indicated
with a superscript “cl” in Tables 4-7, lead to conclusions

Table 4. Deboronation of Bortezomib with the Oxygen Reagents H2O2
a

B3LYP PBE

Hessian NMA method ∆Gvib ∆Gvib
Eck -T∆Svib

Eck ∆Gvib
Eck, cl ∆Gvib ∆Gvib

Eck -T∆Svib
Eck ∆Gvib

Eck, cl

case A FHVA 2.40 2.47 1.65 1.88 2.50 2.24 1.57 1.77
QM MBHPh 2.40 2.47 1.65 1.88 2.48 2.23 1.57 1.77
full MBHiP 2.33 2.40 1.68 1.88 2.30 2.01 1.41 1.59

MBHpy 2.40 2.47 1.66 1.88 2.50 2.23 1.56 1.77
MBHPh, iP 2.33 2.40 1.68 1.88 2.28 2.00 1.41 1.58
MBHPh, py 2.40 2.47 1.65 1.88 2.48 2.22 1.56 1.76
MBHiP, py 2.33 2.40 1.68 1.89 2.29 2.00 1.40 1.58
MBHPh, iP, py 2.33 2.40 1.68 1.88 2.27 1.99 1.40 1.57

case B FHVA 2.77 2.81 2.16 2.33 2.93 2.96 2.28 2.47
QM/MM MBHPh 2.77 2.81 2.16 2.33 2.94 2.97 2.28 2.47
full MBHiP 2.76 2.80 2.16 2.33 2.95 2.98 2.32 2.50

MBHpy 2.78 2.82 2.16 2.34 2.92 2.95 2.27 2.46
MBHPh, iP 2.76 2.80 2.16 2.33 2.96 2.99 2.32 2.51
MBHPh, py 2.78 2.82 2.16 2.34 2.93 2.96 2.28 2.47
MBHiP, py 2.76 2.81 2.17 2.34 2.94 2.97 2.31 2.49
MBHPh, iP, py 2.76 2.81 2.17 2.34 2.95 2.98 2.32 2.50

case C MBHPh 2.81 2.87 2.21 2.38 2.97 3.03 2.34 2.53
QM/MM MBHiP 2.82 2.87 2.23 2.40 2.99 3.03 2.36 2.55
mobile block MBHpy 2.79 2.84 2.18 2.35 2.93 2.97 2.28 2.47
(several) MBHPh, iP 2.79 2.83 2.19 2.36 2.97 3.00 2.34 2.52

MBHPh, py 2.81 2.84 2.18 2.36 2.94 2.97 2.29 2.48
MBHiP, py 2.80 2.84 2.20 2.37 2.98 3.01 2.34 2.53
MBHPh, iP, py 2.80 2.83 2.19 2.36 2.99 3.02 2.35 2.54

a The vibrational free energy difference of eq 32 and its entropic part are calculated (in kcal/mol) with several NMA models. The
superscript “cl” indicates the use of classical instead of quantum oscillators. The superscript “Eck” indicates that Eckart conditions are
applied. MBH and MBHEck frequencies are derived from the QM full Hessian (case A) and the QM/MM full Hessian (full CPSCF, case B)
with CHARMM or TAMkin or are obtained from the direct QM/MM mobile block Hessian (reduced CPSCF, a different Hessian for each
block choice, case C). The basis set is 6-311++G(d,p).

Table 5. Deboronation of Bortezomib with the Oxygen Reagens H2O2 Continueda

B3LYP-D PBE-D

Hessian NMA method ∆Gvib ∆Gvib
Eck -T∆Svib

Eck ∆Gvib
Eck, cl ∆Gvib ∆Gvib

Eck -T∆Svib
Eck ∆Gvib

Eck, cl

case A FHVA 1.78 1.87 1.12 1.33 2.67 2.36 1.50 1.74
QM MBHPh 1.86 1.94 1.13 1.36 2.69 2.39 1.52 1.76
full MBHiP 1.99 2.08 1.24 1.46 2.77 2.73 1.85 2.08

MBHpy 1.80 1.89 1.13 1.34 2.62 2.31 1.49 1.72
MBHPh, iP 2.07 2.15 1.25 1.49 2.80 2.75 1.87 2.10
MBHPh, py 1.88 1.96 1.13 1.37 2.64 2.33 1.51 1.74
MBHiP, py 2.01 2.10 1.25 1.48 2.72 2.67 1.84 2.06
MBHPh, iP, py 2.09 2.17 1.26 1.50 2.75 2.70 1.86 2.08

case B FHVA 2.75 2.76 1.99 2.20 2.28 2.26 1.49 1.71
QM/MM MBHPh 2.69 2.70 1.93 2.14 2.28 2.26 1.50 1.71
full MBHiP 2.68 2.69 1.94 2.15 2.35 2.36 1.61 1.82

MBHpy 2.74 2.75 1.98 2.19 2.28 2.26 1.49 1.71
MBHPh, iP 2.62 2.63 1.88 2.08 2.35 2.37 1.62 1.83
MBHPh, py 2.69 2.69 1.92 2.13 2.29 2.26 1.50 1.71
MBHiP, py 2.67 2.68 1.93 2.14 2.35 2.36 1.61 1.82
MBHPh, iP, py 2.61 2.62 1.87 2.07 2.35 2.36 1.61 1.82

case C MBHPh 2.73 2.75 1.97 2.18 2.29 2.28 1.51 1.72
QM/MM MBHiP 2.71 2.72 1.96 2.17 2.41 2.41 1.65 1.86
mobile block MBHpy 2.76 2.77 1.99 2.21 2.32 2.28 1.52 1.73
(several) MBHPh, iP 2.65 2.65 1.90 2.11 2.38 2.39 1.64 1.85

MBHPh, py 2.70 2.71 1.94 2.15 2.30 2.25 1.49 1.70
MBHiP, py 2.69 2.70 1.95 2.16 2.36 2.36 1.61 1.81
MBHPh, iP, py 2.65 2.66 1.90 2.11 2.38 2.39 1.64 1.85

a See caption of Table 4.
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similar to those of the quantum oscillator results and are not
discussed separatedly.

First, consider the FHVA results of the reaction of
bortezomib with H2O2 to form the alcohol product PROD1
(Tables 4 and 5). The vibrational contribution to the reaction
free energy is unfavorable, since the ∆Gvib values are
positive. The QM ∆Gvib [FHVA] results range from 1.78 to
2.40 kcal/mol, and the QM/MM ∆Gvib [FHVA] results range

from 2.28 to 2.93 kcal/mol. Both the internal energy and
the entropic part are positive for all four functionals. The
results of the reaction with methanol to form the ether
product PROD2 are more complex (Tables 6 and 7). The
QM ∆Gvib [FHVA] results range from -1.11 to 0.63 kcal/
mol, where only the B3LYP-D functional has a positive
value, whereas the QM/MM ∆Gvib [FHVA] results range
from 0.16 to 0.59 kcal/mol, all being positive. The vibrational

Table 6. Deboronation of Bortezomib with the Oxygen Reagens CH3OHa

B3LYP PBE

Hessian NMA method ∆Gvib ∆Gvib
Eck -T∆Svib

Eck ∆Gvib
Eck, cl ∆Gvib ∆Gvib

Eck -T∆Svib
Eck ∆Gvib

Eck, cl

case A FHVA -0.13 -0.03 0.62 0.83 -1.11 -1.15 -0.41 -0.20
QM MBHPh -0.12 -0.03 0.62 0.83 -1.14 -1.19 -0.43 -0.23
full MBHiP -0.23 -0.13 0.63 0.81 -1.33 -1.34 -0.44 -0.28

MBHpy -0.14 -0.04 0.62 0.83 -1.12 -1.16 -0.41 -0.20
MBHPh, iP -0.22 -0.12 0.63 0.81 -1.36 -1.37 -0.46 -0.31
MBHPh, py -0.13 -0.04 0.62 0.84 -1.15 -1.19 -0.44 -0.23
MBHiP, py -0.23 -0.14 0.63 0.81 -1.33 -1.35 -0.44 -0.28
MBHPh, iP, py -0.23 -0.13 0.63 0.82 -1.36 -1.38 -0.47 -0.31

case B FHVA 0.38 0.43 1.26 1.42 0.16 0.20 1.12 1.26
QM/MM MBHPh 0.33 0.38 1.21 1.36 0.16 0.19 1.11 1.25
full MBHiP 0.43 0.47 1.33 1.47 0.18 0.21 1.14 1.28

MBHpy 0.39 0.43 1.27 1.42 0.17 0.21 1.13 1.26
MBHPh, iP 0.38 0.43 1.28 1.42 0.17 0.20 1.14 1.27
MBHPh, py 0.34 0.38 1.21 1.37 0.17 0.20 1.12 1.26
MBHiP, py 0.43 0.47 1.33 1.47 0.18 0.22 1.15 1.29
MBHPh, iP, py 0.38 0.43 1.28 1.43 0.18 0.21 1.14 1.28

case C MBHPh 0.37 0.44 1.27 1.42 0.20 0.27 1.18 1.32
QM/MM MBHiP 0.48 0.53 1.37 1.52 0.21 0.25 1.18 1.32
mobile block MBHpy 0.40 0.44 1.27 1.42 0.18 0.21 1.13 1.27
(several) MBHPh, iP 0.41 0.45 1.29 1.44 0.18 0.21 1.14 1.28

MBHPh, py 0.35 0.39 1.23 1.38 0.18 0.22 1.14 1.28
MBHiP, py 0.46 0.50 1.35 1.50 0.22 0.26 1.19 1.32
MBHPh, iP, py 0.43 0.47 1.32 1.47 0.22 0.25 1.18 1.32

a See caption of Table 4.

Table 7. Deboronation of Bortezomib with the Oxygen Reagens CH3OH Continueda

B3LYP-D PBE-D

Hessian NMA method ∆Gvib ∆Gvib
Eck -T∆Svib

Eck ∆Gvib
Eck, cl ∆Gvib ∆Gvib

Eck -T∆Svib
Eck ∆Gvib

Eck, cl

case A FHVA 0.63 0.65 1.30 1.51 -0.59 -0.56 0.36 0.50
QM MBHPh 0.58 0.59 1.29 1.48 -0.59 -0.56 0.36 0.50
full MBHiP 0.75 0.77 1.42 1.64 -0.60 -0.57 0.36 0.50

MBHpy 0.61 0.63 1.30 1.51 -0.62 -0.59 0.35 0.49
MBHPh, iP 0.69 0.71 1.40 1.61 -0.61 -0.58 0.36 0.50
MBHPh, py 0.55 0.57 1.29 1.47 -0.62 -0.59 0.36 0.49
MBHiP, py 0.72 0.74 1.42 1.63 -0.63 -0.60 0.35 0.49
MBHPh, iP, py 0.66 0.68 1.40 1.60 -0.63 -0.60 0.35 0.48

case B FHVA 0.59 0.59 1.27 1.47 0.37 0.38 1.17 1.35
QM/MM MBHPh 0.65 0.66 1.33 1.53 0.37 0.38 1.17 1.35
full MBHiP 0.64 0.65 1.34 1.53 0.37 0.38 1.19 1.36

MBHpy 0.59 0.60 1.29 1.48 0.37 0.38 1.18 1.35
MBHPh, iP 0.70 0.71 1.40 1.59 0.37 0.38 1.18 1.36
MBHPh, py 0.66 0.67 1.34 1.54 0.37 0.38 1.17 1.35
MBHiP, py 0.65 0.66 1.35 1.54 0.37 0.39 1.19 1.36
MBHPh, iP, py 0.71 0.72 1.41 1.60 0.37 0.39 1.19 1.36

case C MBHPh 0.68 0.70 1.37 1.57 0.42 0.44 1.22 1.41
QM/MM MBHiP 0.68 0.68 1.37 1.56 0.43 0.44 1.23 1.41
mobile block MBHpy 0.61 0.62 1.30 1.49 0.39 0.40 1.18 1.36
(several) MBHPh, iP 0.73 0.74 1.42 1.61 0.39 0.40 1.20 1.37

MBHPh, py 0.67 0.68 1.36 1.55 0.39 0.41 1.20 1.38
MBHiP, py 0.67 0.68 1.37 1.56 0.40 0.42 1.22 1.39
MBHPh, iP, py 0.75 0.76 1.45 1.64 0.41 0.42 1.22 1.39

a See caption of Table 4.
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effect on the reaction kinetics in the QM description is
therefore unclear for this reaction when comparing the four
QM functionals. The internal energy difference of the
quantum oscillators is always negative, but the entropic part
depends heavily on the choice of the potential. The QM/
MM description is more consistent: the vibrational free
energy contribution is systematically unfavorable for the
reaction (∆Gvib > 0), with the internal energy difference being
negative and the entropic part positive.

As mentioned in the previous subsection, the effect of
imposing the Eckart constraints on the absolute free energy
values is a good measure for the accuracy of the Hessian.
The differences between the values Gvib and Gvib

Eck are taken
up in Table S1 of the Supporting Information and the average
deviations in Table 8. It is found that QM Hessians are very
sensitive to the Eckart constraints with an average shift in
Gvib of 0.18 kcal/mol, while the sensitivity of QM/MM
Hessians is noticeably better with an average shift of 0.02
kcal/mol. Note that these average deviations are based on
the rather large REA, PROD1, and PROD2 molecules, since
those have floppy modes with low-lying frequencies, which
are absent in the smaller species. The different effect on QM
and QM/MM Hessians can be explained, on one hand, by
thegeometryconvergenceofaQMsystembeingdelicatessince
it depends on QM gradients which are sensitive to numerical
integration errors themselves as well. On the other hand, the
analytical QM second derivatives are particularly sensitive
to the numerical integration accuracy of two electron integrals
and convergence criteria of iterative loops (e.g., SCF loop,
CPSCF loop). With 50 or more QM atoms in the QM
description and only 11 or less atoms in the QM region of
the QM/MM description, the QM/MM calculations are thus
more accurate. These average deviations should be consid-
ered as errors inherent to the calculated data, originating from
the present computational settings, just like experimental data
having a limited accuracy imposed by the experimental setup.

The effect of the Eckart conditions on the reaction free
energy can be seen in Tables 4-7 by comparing ∆Gvib with
∆Gvib

Eck. For QM Hessians, the deviation between FHVA and
FHVAEck is on average about 0.11 kcal/mol and, for QM/
MM Hessians, 0.02 kcal/mol. Not surprisingly, a deviation

between FHVA and FHVAEck brings along a comparable
deviation between MBH and MBHEck. The rather small
deviations illustrate that the errors on the absolute vibrational
free energies occasianally cancel out when taking the
difference, but this behavior is not guaranteed. The expected
accuracy of the free energy difference therefore must be on
the same order as the accuracy of the absolute free energy
values themselves, which is indeed the case.

Next, the influence of the use of MBH frequencies on the
free energy difference is discussed, by comparing ∆Gvib

[FHVA] with ∆Gvib [MBH]. The MBH approximation
produces an average error of 0.09 and 0.04 kcal/mol when
derived from QM and QM/MM Hessians, respectively, where
the average is taken over all levels of theory and all block
choices. The absolute free energies are drastically reduced
by the MBH approach by over 145 kcal/mol when three
blocks are used (data not shown); however, this significant
shift is consistent between reactants and products such that
it mostly cancels out when considering the free energy
differences in eqs 32 and 33. This means that MBH alters
the FHVA results relatively little. A comparison of ∆Gvib

Eck

[FHVA] and ∆Gvib
Eck [MBH] shows similar errors of MBHEck

with respect to FHVAEck. This significant cancellation of
errors is in agreement with an earlier study on the reproduc-
tion of reaction rate constants with MBH by Ghysels et al.,74

where errors canceled out in the difference G(ts) - G(rea)
between the transition state and the reactants. In the present
study, the cancellation implies that the internal motions of
the proposed blocks Ph, iP, and py are not crucial for the
reactive behavior of the chemically active boron center, as
expected. Indeed, the use of MBH has as much effect as
have the Eckart constraints, which is a measure of the best
accuracy that can be obtained with the given data (i.e., the
Hessians).

When applied to transition state geometries, our approach
can be used to estimate tunneling corrections, kinetic isotope
effects, and local free energy estimates in the harmonic limit,
without the cost of explicit conformational sampling. Indeed,
for the estimates to be meaningful, only the frequency and
the character of the lowest modes need be accurate. For
instance, the kinetic isotope effect is closely related to the
ratio of partition functions, which are governed by the low
frequency modes. The studies in refs 25, 27, 37, 71, 74, and
75 have shown that MBH errors in partition functions, in
free energy differences, and in reaction rates indeed cancel
out when comparing two conformations if the same block
choice is applied. Also, the application in the present paper
supports the idea of the cancellation of errors. This makes
MBH a promising method when it is applied on transition
states, in particular for examining enzymatic reactions
employing the QM/MM description.

The direct calculation of the QM/MM mobile block
Hessian (case C, bottom part of tables) should yield the exact
same frequencies as those based on the projection of the
QM/MM full Hessian (case B, middle part of tables). The
difference of 0.03 kcal/mol on average is indeed minimal
and should be explained by numerical inaccuracies such as
the finite convergence criteria in the CPSCF routine in
Q-Chem and the numerical integration. In conclusion, the

Table 8. Bortezomib-Average Deviations of the Absolute
Value of the Vibrational Free Energy (δGvib) and Average
Deviations of the Vibrational Free Energy Difference
(δ∆Gvib) Caused by Several Calculation Parameters: The
QM versus QM/MM Description, The Choice of Functional
(B3LYP, PBE, B3LYP-D, PBE-D), The NMA Model (FHVA,
FHVAEck, MBH, MBHEck) and the Mobile Block Hessian
Implementation (case B versus case C)

source of deviation δGvib [kcal/mol]

FHVA vs FHVAEck 0.18 (QM) 0.02 (QM/MM)

source of deviation δ∆Gvib [kcal/mol]

QM vs QM/MM (FHVA) 0.62
functional (FHVA) 0.53 (QM) 0.20 (QM/MM)
FHVA vs FHVAEck 0.11 (QM) 0.02 (QM/MM)
MBH vs MBHEck 0.10 (QM) 0.03 (QM/MM)
MBH vs FHVA 0.09 (QM) 0.04 (QM/MM)
MBHEck vs FHVAEck 0.11 (QM) 0.04 (QM/MM)
case B vs case C (MBH) - 0.03 (QM/MM)
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new MBH implementation in the parallel Q-Chem/CHARMM
interface is capable of reproducing the reference (FHVA)
∆G with satisfying accuracy.

Moreover, close inspection of the MBH values corre-
sponding to one, two, or three blocks confirms the product
rule as established in ref 74. In this paper, the correction in
reaction rate due to the introduction of multiple blocks was
found to be the product of the corrections due to the presence
of each block individually. Similarly, the small deviations
in free energy ∆∆G due to the introduction of single blocks
approximately add up to the deviation in free energy due to
multiple blocks, e.g., ∆∆G(MBHPh) + ∆∆G(MBHpy) +
∆∆G(MBHiP) ≈ ∆∆G(MBHPh, py, iP).

The variations in ∆Gvib induced by the choice of NMA
model, more specifically the MBH, are negated by different
errors. Indeed, the choice of a QM versus a QM/MM
treatment shifts the FHVA values by 0.62 kcal/mol on
average. The choice of the functional, on the other hand, is
responsible for an average shift of 0.53 and 0.20 kcal/mol
in the QM and QM/MM cases, respectively. These values
lie higher than the typical errors encountered by MBH (0.10
for QM, 0.04 for QM/MM) such that MBH can be considered
a minor source of deviations of the vibrational free energy
difference, on the same order as the inherent accuracy of
the data (0.10 for QM, 0.03 for QM/MM). Table 8 displays
the hierarchy of the errors. The introduction of mobile blocks
in the vibrational analysis has a significantly lower effect
on ∆G compared to other computation parameters such as
the functional and the QM versus QM/MM treatment.
Therefore, the MBH approach not only is favorable because
of the reduction in computational cost and memory require-
ments but is also capable of reproducing the full Hessian
results with satisfactory to excellent accuracy.

V. Conclusion

The computation of vibrational frequencies from the analyti-
cal second derivatives matrix is a bottleneck in the hybrid
QM/MM description due to the long-range Coulomb interac-
tions when the electrostatic embedding scheme is employed.
This is even the case for a small number of QM atoms, since
additional CPSCF equations need to be solved for each MM
atom displacement. Instead of using a cutoff technique that
neglects interactions beyond a certain cutoff distance rc, we
introduce mobile blocks in the MM region. These blocks
can translate/rotate as a whole, but their internal degrees of
freedom are frozen in the vibrational analysis. Consequently,
fewer CPSCF equations need to be solved, leading to a
reduction in both computation time and memory require-
ments. In the chorismate mutase example, MBH decreases
the CPU time to 54% of the full Hessian calculation, and
the memory is reduced by a factor of roughly 5, when using
mobile blocks of 15 atoms each. The computational profit
further increases with increasing block size.

In this paper, the MBH formalism is established in view
of the QM/MM interface between Q-Chem and CHARMM.
A parallel version of MBH in the Q-Chem/CHARMM
interface is now implemented in the latest version. Moreover,
special attention is paid to the treatment of link atoms. The
presence of link atoms creates artificial degrees of freedom

which should be projected out of the Hessian in accordance
with the definition of the total energy and the constraints
imposed during the geometry optimization. Our suggestion
is to impose the link atom to be located at a fixed scaled
distance collinearly with the QM host atom and MM host
atom. Formulas for the corresponding projection have been
developed, and this projection is now available in the
Q-Chem/CHARMM interface.

As an illustrative example, the vibrational free energy of
bortezomib and the products after oxidative deboronation
with the reagents H2O2 and methanol have been studied
extensively, with four different levels of theory and a series
of MBH block choices. Our results for this particular test
system show an inherent error of 0.10 kcal/mol for the QM
and 0.03 kcal/mol for the QM/MM vibrational free energy
differences, which is quantified by imposing Eckart con-
straints. The introduction of mobile blocks introduces an error
at a similar order of magnitude: 0.10 kcal/mol for QM and
0.04 kcal/mol for QM/MM vibrational free energy differ-
ences. Therefore, the considered block choices are reasonable
approximations, especially given that much larger deviations
are caused by the choice of functional (0.53 to 0.20 kcal/
mol) or by the QM versus QM/MM description (0.62 kcal/
mol). MBH is thus not only a computationally attractive
method but also an adequate approximate approach for the
calculation of thermodynamic quantities such as vibrational
free energy differences.

Acknowledgment. This work is supported by the Fund
for Scientific ResearchsFlanders (FWO), the Research Board
of Ghent University (BOF), and BELSPO in the frame of
IAP 6/27. This work is also supported by the Intramural
Research Program of the National Heart, Lung and Blood
Institute, National Institutes of Health (NIH). Funding was
also received from the European Research Council under
FP7 with ERC grant agreement number 240483. H.L.W.
would like to acknowledge NIH (1K22HL088341-01A1) and
the University of South Florida (start-up) for funding. Y.S.
and J.K. would like to thank NIH for a Small Business
Innovative Research grant (GM073408). Computational
resources and services used in this work were provided by
the Lobos cluster of the National Institutes of Health.

Supporting Information Available: The effect of
imposing the Eckart constraints is a good measure for the
accuracy of the Hessian; Table S1 contains the deviation of
the vibrational free energy δGvib ) Gvib - Gvib

Eck for the
molecules REA, PROD1, and PROD2 calculated with the
B3LYP, PBE, B3LYP-D, and PBE-D functionals and
6-311++G(d,p) basis set. It shows that QM Hessians are
very sensitive to the Eckart constraints, while the sensitivity
of the QM/MM Hessians is noticeably better.

This information is available free of charge via the Internet
at http://pubs.acs.org/.

References

(1) Wilson, E. B.; Cross, P. C.; Decius, J. C. Molecular
Vibrations; Dover Publications: New York, 1980.

Efficient Calculation of QM/MM Frequencies J. Chem. Theory Comput., Vol. 7, No. 2, 2011 511



(2) Fessenden, R. J.; Fessenden, J. S. Organic chemistry, 4th
ed.; Brooks/Cole Publishing Company: Belmont, CA, 1990;
pp 323-339.

(3) Cui, Q.; Bahar, I. Normal Mode Analysis: Theory and
applications to biological and chemical systems; Chapman
& Hall/CRC, Taylor & Francis Group: Boca Raton, FL, 2006;
Mathematical and Computational Biology Series.

(4) Pulay, P. Ab initio calculation of force constants and equi-
librium geometries in polyatomic molecules. I. Theory. Mol.
Phys. 1969, 17, 197.

(5) Pople, J. A.; Krisnhan, R.; Schlegel, H. B.; Binkley, J. S.
Derivative studies in Hartree-Fock and Moller-Plesset theories.
Int. J. Quant. Chem. 1979, Symp. 13, 225–41.

(6) Saxe, P.; Yamaguchi, Y.; Schaefer, H. G. Analytic 2nd
derivatives in restricted Hartree-fock theory - a method for
hig-spin open-shell molecular wave-functions. J. Chem. Phys.
1982, 77, 5647–5954.

(7) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Vincent, M. A.; Gaw,
J. F.; Schaefer, H. F. Unified theoretical treatment of analytic
first and second energy derivatives in open-shell Hartree-Fock
theory. J. Chem. Phys. 1982, 72, 131–139.

(8) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Fox, D. J.; Vincent,
M. A.; Schaefer, H. F. Analytic 2nd derivative techniques for
self-consistent-field wave-functions - a new approach to the
solution of the coupled perturbed Hartree-Fock equations. J.
Mol. Struct. 1983, 103, 183–196.

(9) Yamaguchi, Y.; Frisch, M. J.; Gaw, J.; Schaefer, H. F.;
Binkley, J. S. Analytic evaluation and basis set dependence
of intensities of infrared spectra. J. Chem. Phys. 1986, 84,
2262.

(10) Frisch, M. J.; Yamaguchi, Y.; Gaw, J.; Schaefer, H. F.;
Binkley, J. S. Analytic Raman intensities from molecular
electronic wave-functions. J. Chem. Phys. 1986, 84, 531.

(11) Frisch, M.; Head-Gordon, M.; Pople, J. Direct analytic SCF
2nd derivatives and electric-field properties. Chem. Phys.
1990, 141, 189–196.

(12) Warshel, A.; Levitt, M. Theoretical Studies of Enzymic
Reactions - Dielectric, Electrostatic and Steric Stabilization
of Carbonium-Ion in Reaction of Lysozyme. J. Mol. Biol.
1976, 103, 227–249.

(13) Singh, U. C.; Kollman, P. A. A Combined Abinitio Quantum-
Mechanical and Molecular Me-chanical Method for Carrying
out Simulations on Complex Molecular-Systems - Applica-
tions to the Ch3cl + Cl- Exchange-Reaction and Gas-Phase
Protonation of Polyethers. J. Comput. Chem. 1986, 7, 718–
730.

(14) Field, M. J.; Bash, P. A.; Karplus, M. A Combined Quantum-
Mechanical and Molecular Mechanical Potential for Molec-
ular-Dynamics Simulations. J. Comput. Chem. 1990, 11, 700–
733.

(15) Lin, H.; Truhlar, D. G. QM/MM: what have we learned, where
are we, and where do we go from here? Theor. Chem. Acc.
2007, 117, 185–199.

(16) Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.;
Sieber, S.; Morokuma, K. ONIOM: A multilayered integrated
MO+MM method for geometry optimizations and single
point energy predictions. A test for Diels-Alder reactions and
Pt(P(t-Bu)(3))(2)+H-2 oxidative addition. J. Phys. Chem.
1996, 100, 19357–19363.

(17) Dapprich, S.; Komaromi, I.; Byun, K.; Morokuma, K.; Frisch,
M. J. A new ONIOM imple-mentation in Gaussian98. Part I.
The calculation of energies, gradients, vibrational frequencies
and electric field derivatives. THEOCHEM 1999, 461, 1–
21.

(18) Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld,
C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.;
Levchenko, S. V.; O’Neill, D. P.; DiStasio, R. A.; Lochan,
R. C.; Wang, T.; Beran, G. J. O.; Besley, N. A.; Herbert, J. M.;
Lin, C. Y.; Van Voorhis, T.; Chien, S. H.; Sodt, A.; Steele,
R. P.; Rassolov, V. A.; Maslen, P. E.; Korambath, P. P.;
Adamson, R. D.; Austin, B.; Baker, J.; Byrd, E. F. C.; Dachsel,
H.; Doerksen, R. J.; Dreuw, A.; Dunietz, B. D.; Dutoi, A. D.;
Furlani, T. R.; Gwaltney, S. R.; Heyden, A.; Hirata, S.; Hsu,
C. P.; Kedziora, G.; Khalliulin, R. Z.; Klunzinger, P.; Lee,
A. M.; Lee, M. S.; Liang, W.; Lotan, I.; Nair, N.; Peters, B.;
Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.; Ritchie, J.;
Rosta, E.; Sherrill, C. D.; Simmonett, A. C.; Subotnik, J. E.;
Woodcock, H. L.; Zhang, W.; Bell, A. T.; Chakraborty, A. K.;
Chipman, D. M.; Keil, F. J.; Warshel, A.; Hehre, W. J.;
Schaefer, H. F.; Kong, J.; Krylov, A. I.; Gill, P. M. W.; Head-
Gordon, M. Advances in methods and algorithms in a modern
quantum chemistry program package. Phys. Chem. Chem.
Phys. 2006, 8, 3172–3191.

(19) Brooks, B. R.; Brooks, C. L.; Mackerell, A. D.; Nilsson, L.;
Petrella, R. J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.;
Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A. R.;
Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera,
K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor,
R. W.; Post, C. B.; Pu, J. Z.; Schaefer, M.; Tidor, B.; Venable,
R. M.; Woodcock, H. L.; Wu, X.; Yang, W.; York, D. M.;
Karplus, M. CHARMM: The Biomolecular Simulation Pro-
gram. J. Comput. Chem. 2009, 30, 1545–1614.

(20) Woodcock, H. L.; Hodoscek, M.; Gilbert, A. T. B.; Gill,
P. M. W.; Schaefer, H. F.; Brooks, B. R. Interfacing Q-Chem
and CHARMM to perform QM/MM reaction path calcula-
tions. J. Comput. Chem. 2007, 28, 1485–1502.

(21) Gao, J.; Truhlar, D. G. Quantum mechanical methods for
enzyme kinetics. Annu. ReV. Phys. Chem. 2002, 53, 467–
505.

(22) Senn, H. M.; Thiel, W. QM/MM methods for biological
systems. In Atomistic Approaches in Modern Biology: from
Quantum Chemistry to Molecular Simulations; Springer-
Verlag: Berlin, 2007; Vol. 268, pp 173-290.

(23) Vreven, T.; Byun, K. S.; Komromi, I.; Dapprich, S.;
Montgomery, J. A.; Morokuma, K.; Frisch, M. J. Combining
Quantum Mechanics Methods with Molecular Mechanics
Methods in ONIOM. J. Chem. Theory Comput. 2006, 2, 815.

(24) Cui, Q.; Karplus, M. Molecular properties from combined
QM/MM methods. I. Analytical second derivative and vibra-
tional calculations. J. Chem. Phys. 2000, 112, 1133–1149.

(25) Ghysels, A.; Van Neck, D.; Van Speybroeck, V.; Verstraelen,
T.; Waroquier, M. Vibrational modes in partially optimized
molecular systems. J. Chem. Phys. 2007, 126, 224102.

(26) Ghysels, A.; Van Neck, D.; Waroquier, M. Cartesian formula-
tion of the Mobile Block Hessian approach to vibrational
analysis in partially optimized systems. J. Chem. Phys. 2007,
127, 164108.

(27) Ghysels, A.; Van Speybroeck, V.; Pauwels, E.; Catak, S.;
Brooks, B. R.; Van Neck, D.; Waroquier, M. Comparative
study of various normal mode analysis techniques based on
partial Hessians. J. Comput. Chem. 2010, 31, 994–1007.

512 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Ghysels et al.



(28) Currently described functionality is included in CHARMM
version 36a3 and later and the current development version
of Q-Chem (scheduled to be released as part of version 4.0).

(29) Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A. A.; Dick,
L. R.; Grenier, L.; Klunder, J. M.; Ma, Y. T.; Plamondon, L.;
Stein, R. L. Potent and selective inhibitors of the proteasome:
dipeptidyl boronic acids. Bioorg. Med. Chem. Lett. 1998, 8,
333–338.

(30) Adams, J.; Kaufmann, M. Development of the proteasome
inhibitor velcade (bortezomib). Cancer InVest. 2004, 22, 304–
311.

(31) Goldstone, J.; Salam, A.; Weinberg, S. Broken symmetries.
Phys. ReV. 1962, 127, 965–970.

(32) Angyan, J. G. Wigner’s (2n+1) rule for nonlinear Schrodinger
equations. J. Math. Chem. 2009, 46, 1–14.

(33) Head-Gordon, M.; Pople, J. A. Optimization of wave function
and geometry in the finite basis hartree-fock method. J. Phys.
Chem. 1988, 92, 3063–3069.

(34) Ochsenfeld, C.; Head-Gordon, M. A reformulation of the
coupled perturbed self-consistent field equations entirely
within a local atomic orbital density matrix-based scheme.
Chem. Phys. Lett. 1997, 270, 399–405.

(35) Woodcock, H. L.; Zheng, W. J.; Ghysels, A.; Shao, Y. H.;
Kong, J.; Brooks, B. R. Vibrational subsystem analysis: A
method for probing free energies and correlations in the
harmonic limit. J. Chem. Phys. 2008, 129, 214109.

(36) Liang, W.; Zhao, Y.; Head-Gordon, M. An efficient approach
for self-consistent-field energy and energy second derivatives
in the atomic-orbital basis. J. Chem. Phys. 2005, 123, 194106.

(37) Ghysels, A.; Van Neck, D.; Van Speybroeck, V.; Brooks,
B. R.; Waroquier, M. Normal modes for large molecules with
arbitrary link constraints in the Mobile Block Hessian ap-
proach. J. Chem. Phys. 2009, 130, 084107.

(38) Das, D.; Eurenius, K. P.; Billings, E. M.; Sherwood, P.;
Chatfield, D. C.; Hodoscek, M.; Brooks, B. R. Optimization
of quantum mechanical molecular mechanical partitioning
schemes: Gaussian delocalization of molecular mechanical
charges and the double link atom method. J. Chem. Phys.
2002, 117, 10534–10547.

(39) Li, H.; Jensen, J. H. Partial Hessian vibrational analysis: the
localization of the molecular vibrational energy and entropy.
Theor. Chem. Acc. 2002, 107, 211–219.

(40) Jin, S. Q.; Head, J. D. Theoretical Investigation of Molecular
Water-Adsorption on the Al(111) Surface. Surf. Sci. 1994,
318, 204–216.

(41) Calvin, M. D.; Head, J. D.; Jin, S. Q. Theoretically modelling
the water bilayer on the Al(111) surface using cluster
calculations. Surf. Sci. 1996, 345, 161–172.

(42) Head, J. D. Computation of vibrational frequencies for adsorbates
on surfaces. Int. J. Quantum Chem. 1997, 65, 827–838.

(43) Head, J. D.; Shi, Y. Characterization of Fermi resonances in
adsorbate vibrational spectra using cluster calculations: Meth-
oxy adsorption on Al(111) and Cu(111). Int. J. Quantum
Chem. 1999, 75, 815–820.

(44) Head, J. D. A vibrational analysis with Fermi resonances for
methoxy adsorption on Cu(111) using ab initio cluster
calculations. Int. J. Quantum Chem. 2000, 77, 350–357.

(45) Besley, N. A.; Metcalf, K. A. Computation of the amide I
band of polypeptides and proteins using a partial Hessian
approach. J. Chem. Phys. 2007, 126, 035101.

(46) Derat, E.; Bouquanta, J.; Humbel, S. On the link atom distance
in the ONIOM scheme. An harmonic approximation analysis.
THEOCHEM 2003, 632, 61–69.

(47) MacKerel, A., Jr.; Brooks, C., III; Nilsson, L.; Roux, B.; Won,
Y.; Karplus, M. In CHARMM: The Energy Function and
Its Parameterization with an OVerView of the Program;
Schleyer, v. R. et al., Eds.; John Wiley & Sons: Chichester,
U. K., 1998; Vol. 1, pp 271-277.

(48) Bakowies, D.; Thiel, W. Hybrid models for combined quantum
mechanical and molecular mechanical approaches. J. Phys.
Chem. 1996, 100, 10580–10594.

(49) Swart, M. AddRemove: A new link model for use in
QM/MM studies. Int. J. Quantum Chem. 2003, 91, 177–
183.

(50) CP2K Developers Home Page. http://cp2k.berlios.de (accessed
October 15, 2010).

(51) Korambath, P. P.; Kong, J.; Furlani, T. R.; Head-Gordon, M.
Parallelization of analytical Hartree-Fock and density func-
tional theory Hessian calculations. Part I: parallelization of
coupled-perturbed Hartree-Fock equations. Mol. Phys. 2002,
100, 1755–1761.

(52) Woodcock, H. L.; Hodoscek, M.; Sherwood, P.; Lee, Y. S.;
Schaefer, H. F.; Brooks, B. R. Exploring the quantum
mechanical/molecular mechanical replica path method: a
pathway optimization of the chorismate to prephenate Claisen
rearrangement catalyzed by chorismate mutase. Theor. Chem.
Acc. 2003, 109, 140–148.

(53) MacKerell, A. D., Jr.; Bashford, D.; Bellott, M.; Dunbrack,
R., Jr.; Evanseck, J. D.; Field, M.; Fischer, S.; Gao, J.; Guo,
H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.;
Lau, F.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.;
Prodhom, B.; Reiher, W. E., III; Roux, B.; Schlenkrich, M.;
Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-
Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential
for molecular modeling and dynamics Studies of proteins. J.
Phys. Chem. 1998, 102, 3586–3616.

(54) MacKerell, A. D., Jr; Feig, M.; Brooks, C. L., III. Extending
the treatment of backbone energetics in protein force fields:
limitations of gas-phase quantum mechanics in reproducing
protein conformational distributions in molecular dynamics
simulations. J. Comput. Chem. 2004, 25, 1400–1415.

(55) Fahy, B. N.; Schlieman, M. G.; Virudachalam, S.; Bold, R. J.
Schedule-dependent molecular effects of the proteasome
inhibitor bortezomib and gemcitabine in pancreatic cancer.
J. Surg. Res. 2003, 113, 88–95.

(56) Nawrocki, S. T.; Carew, J. S.; Pino, M. S.; Highshaw, R. A.;
Andtbacka, R. H. I.; Dun-ner, K.; Pal, A.; Bornmann, W. G.;
Chiao, P. J.; Huang, P.; Xiong, H.; Abbruzzese, J. L.;
McConkey, D. J. Aggresome disruption: a novel strategy to
enhance bortezomib-induced apoptosis in pancreatic cancer
cells. Cancer Res. 2006, 66, 3773–3781.

(57) Nawrocki, S. T.; Carew, J. S.; Pino, M. S.; Highshaw, R. A.;
Dunner, K.; Huang, P.; Abbruzzese, J. L.; McConkey, D. J.
Bortezomib borate anion in a hydrogen-bonded host lattice
sensitizes pancreatic cancer cells to endoplasmic reticulum
stress-mediated apoptosis. Cancer Res. 2005, 65, 11658–
11666.

(58) McCormack, T.; Baumeister, W.; Grenier, L.; Moomaw, C.;
Plamondon, L.; Pramanik, B.; Slaughter, C.; Soucy, F.; Stein,
R. L.; Zuhl, G.; Dick, L. R. Active site-directed inhibitors of
phodococcus 20 S proteasome: kinetics and mechanism.
J. Biol. Chem. 1997, 272, 26103–26109.

Efficient Calculation of QM/MM Frequencies J. Chem. Theory Comput., Vol. 7, No. 2, 2011 513



(59) Pekol, T.; Daniels, J. S.; Labutti, J.; Parsons, I.; Nix, D.;
Baronas, E.; Hsieh, F.; Gan, L.-S.; Miwa, G. Human metabo-
lism of the proteasome inhibitor bortezomib: identication of
circulating metabolites. Drug Metab. Dispos. 2005, 33, 771–
777.

(60) Labutti, J.; Pearsons, I.; Huang, R.; Miwa, G.; Gan, L.-S.;
Daniels, J. S. Oxidative deboronation of the peptide boronic
acid proteosome inhibitor bortezomib: contributions from
reactive oxygen species in this novel cytochrome P450
reaction. Chem. Res. Toxicol. 2006, 19, 539–546.

(61) Larkin, J. D.; Markham, G. D.; Milkevitch, M.; Brooks, B. R.;
Bock, C. W. Computational Investigation of the Oxidative
Deboronation of Boroglycine, H2N-CH2-B(OH)2, Using H2O
and H2O2. J. Phys. Chem. A 2009, 113, 11028–11034.

(62) Becke, A. D. Density-functional exchange-energy approxima-
tion with correct asymptotic be-havior. Phys. ReV. A 1988,
38, 3098–3100.

(63) Lee, C. T.; Yang, W. T.; Parr, R. G. Development of the Colle-
Salvetti correlation-energy formula into a functional of the
electron-density. Phys. ReV. B 1988, 37, 785–789.

(64) Ernzerhof, M.; Perdew, J. P.; Burke, K. Coupling-constant
dependence of atomization energies. Int. J. Quantum Chem.
1997, 64, 285.

(65) Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew-
Burke-Ernzerhof exchange-correlation functional. J. Chem.
Phys. 1999, 110, 5029–5036.

(66) Adamo, C.; Barone, V. Toward reliable density functional
methods without adjustable pa-rameters: The PBE0 model.
J. Chem. Phys. 1999, 110, 6158–69.

(67) Grimme, S. Semiempirical GGA-type density functional
constructed with a long-range dis-persion correction. J. Com-
put. Chem. 2006, 27, 1787–1799.

(68) Feyereisen, M.; Fitzegerald, G.; Komornicki, A. Use of
approximate integrals in ab initio theory. An application in
MP2 energy calculations. Chem. Phys. Lett. 1993, 208, 359–
363.

(69) Woon, D. E.; Dunning, T. H. J. Gaussian basis sets for use in
correlated molecular calculations. IV. Calculation of static

electrical response properties. J. Chem. Phys. 1994, 100,
2975–2988.

(70) Vangunsteren, W. F.; Berendsen, H. J. C. Algorithms for
Macromolecular Dynamics and Constraint Dynamics. Mol.
Phys. 1977, 34, 1311–1327.

(71) Ghysels, A.; Verstraelen, T.; Hemelsoet, K.; Van Speybroeck,
V.; Waroquier, M. TAMkin: a versatile package for vibrational
analysis and chemical kinetics. J. Chem. Inf. Model. 2010,
1736–1750.

(72) Grochowski, P. Rotational symmetry of the molecular potential
energy in the Cartesian coordinates. Theor. Chem. Acc. 2008,
121, 257–266.

(73) Brandhorst, K.; Grunenberg, J. Efficient computation of
compliance matrices in redundant internal coordinates from
Cartesian Hessians for nonstationary points. J. Chem. Phys.
2010, 132, 184101.

(74) Ghysels, A.; Van Speybroeck, V.; Verstraelen, T.; Van Neck,
D.; Waroquier, M. Calculating reaction rates with partial
Hessians: Validation of the mobile block Hessian approach.
J. Chem. Theory Comput. 2008, 4, 614–625.

(75) Ghysels, A.; Van Speybroeck, V.; Pauwels, E.; Van Neck,
D.; Brooks, B. R.; Waroquier, M. Mobile Block Hessian
approach with adjoined blocks: an efficient approach for the
calculation of frequencies in macromolecules. J. Chem.
Theory Comput. 2009, 5, 12031215.

(76) Mc Quarrie, D. A.; Simon, J. D. Physical Chemistry - a
molecular approach; University Science Books: Sausalito,
CA, 1997; pp 1075-1079.

(77) Brooks, B. R.; Janezic, D.; Karplus, M. Harmonic-Analysis
of Large Systems. 1. Methodology. J. Comput. Chem. 1995,
16, 1522–1542.

(78) Janezic, D.; Brooks, B. R. Harmonic-Analysis of Large
Systems. 2. Comparison of Different Protein Models. J. Com-
put. Chem. 1995, 16, 1543–1553.

(79) Janezic, D.; Venable, R. M.; Brooks, B. R. Harmonic-Analysis
of Large Systems. 3. Comparison with Molecular-Dynamics.
J. Comput. Chem. 1995, 16, 1554–1566.

CT100473F

514 J. Chem. Theory Comput., Vol. 7, No. 2, 2011 Ghysels et al.



Configurational Entropy Reallocation and Complex Loop
Dynamics of the Mosquito-Stage Pvs25 Protein

Complexed with the Fab Fragment of the Malaria
Transmission Blocking Antibody 2A8

Athanassios Stavrakoudis*,† and Ioannis G. Tsoulos‡

Department of Economics, UniVersity of Ioannina, Ioannina, Greece, and Department
of Communications, Informatics & Management, Technical Educational Institute of

Epirus, Arta, Greece

Received September 22, 2010

Abstract: Pvs25 is a protein of unique 3D structure, and it is characterized by the presence
of repeated EGF-like domains and 11 disulfide bonds. It is a very important candidate for
the transmission-blocking malaria vaccine, as it plays an important role in mosquito infection
by Plasmodium parasites. Recently, the X-ray structure of the protein complexed with the
transmission blocking antibody 2A8 has been reported. In this study, we report the loop
reorganization of the Pvs25 protein based on configurational entropy calculations and dihedral
principal component analysis as revealed from the protein complex and free molecular
dynamics simulations. While the total entropy of the protein was estimated to be almost the
same in the free and complex trajectories, the partition of the entropy contribution in the
loop fragments of the protein revealed interesting entropy reallocation after the 2A8 antibody
binding. Interestingly, the 51-71 protein loop experienced a significant reduction in its
configurational entropy, while other parts of the protein did not show any difference in it, or
even showed an entropy increase. This trend in entropy redistribution was found to be in
direct relationship with specific interactions with the antibody’s binding site. Results from
root-mean-square fluctuations/deviations and dihedral angle principal component analysis
further support this finding.

1. Introduction

Pvs25 is a protein derived from the malaria parasite Plasmo-
dium,1,2 a worldwide spread parasite.3,4 The protein plays an
essential role in infecting mosquitoes and thus transmitting
malaria.5 It is an important target in the development of a
vaccine.6,7 The 3D structure of the Pvs25 protein has been
solved8 by X-ray and is characterized by the presence of 11
disulfide bonds (Figure 1). This high number of disulfide bonds
makes Pvs25 a protein of unique structure. For example, a recent
review about the classification of disulfide bonds in proteins

analyzed the existence of up to 10 disulfide bonds in proteins.9

Given the high degree of interest in blocking the malaria
transmission by mosquitoes, it is interesting to explore the
dynamics of protein/antibody binding.

Computer simulation of molecular dynamics is a well
established method for studying several aspects of biomo-
lecular structure and function.10–12 Moreover, biomolecular
modeling can complement experimental studies,13 and recent
studies have been used in order to elucidate the dynamics
of protein folding,14 to explore the immunogenicity of
peptide-vaccine candidates,15 to facilitate vaccine design16

to help in rational drug design,17 to account for the peptide’s
flexibility in immunological complexes,18 or to dock mol-
ecules into binding sites of proteins.19 It has also been argued
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that molecular dynamics simulations can be used as an aiding
tool in experimental studies.13

Biomolecular plasticity affects in an essential way many
biological functions.20,21 The advancements in computer
power and statistical mechanics methods have contributed a
lot to targeting biomolecular flexibility.22 In this study,
computer simulation molecular dynamics have been per-
formed on the Pvs25 protein, and its complex with the Fab
fragment of the 2A8 Fab antibody, in order to get insight
into the binding mode. We have found that not all 11
disulfide loops of the Pvs25 protein behave in the same way.
Differences in loop dynamics are directly related with
protein/antibody contacts. The dynamics of the fourth loop,
formed by Cys residues 51 and 71, are most profoundly
affected. This makes the 51-71 region a candidate for
engineered protein/antibody interactions in targeting the
blocking of malaria transmission by mosquitoes.

2. Methods

2.1. Setup of the System and MD Simulations. Initial
coordinates of the Pvs25 and the Fab fragment of malaria
transmission blocking antibody 2A8 were downloaded from
the Protein Data Bank,23 PDB code: 1z3g.8 The protonation
status of histidine side chains was estimated with the
REDUCE program.24 Topology and force field parameters
for all atoms were assigned from the CHARMM22-CMAP
parameter set.25,26 It has been found that the addition of cross
terms with the CMAP potential improves system parametri-
zation and helps to avoid undesired helical transitions.27,28

Hydrogen atoms were added with the VMD program29 and
its autopsf utility. The antibody/protein complex was centered
in a rectangular box with dimensions 141.72 × 87.89 ×
109.70 Å3. The box was filled with 24 429 TIP3P water
molecules and neutralized with the addition of 40 Na+ and
33 Cl- ions to approximate a physiological ionic concentra-
tion of 0.1 mM. The total number of atoms of the whole
system was 126 818. Nonboned van der Waals interactions
were gradually turned off at a distance between 12 and 14
Å. Long-range electrostatics were calculated with the PME

method.30 Nonbonded forces and PME electrostatics were
computed every second step. The pair list was updated every
10 steps. Bonds to hydrogen atoms were constrained with
the SHAKE method,31 allowing a 2 fs time step for
integration. The system was initially subjected to energy
minimization with 5000 steps. The temperature of the system
was then gradually increased to 310 K, with Langevin
dynamics using the NVT ensemble, during a period of 3000
steps, by stepwise reassignment of velocities every 500 steps.
The simulation was continued at 310 K for 100 000 steps
(200 ps). During the minimization and equilibration phases,
protein backbone atoms (N, CR, C′, O) were restrained to
their initial positions with a force constant of 50 kcal mol-1

Å-2. The system was equilibrated for another 200 ps with
the force constant reduced to 50 kcal mol-1 Å-2. Finally,
400 ps of NVT simulation at 310 K were performed with
total elimination of the positional restraints. The simulation
was passed to the productive phase, by applying constant
pressure with the Langevin piston method.32 Pressure was
maintained at 1 atm and a temperature of 310 K. The results
are based on a period of 20 ns of this isothermal-isobaric
(NPT) run. Snapshots were saved to disk at 1 ps intervals
for structural analysis. Results from this trajectory are
denoted as the complex trajectory for the rest of this article.

An identical protocol was followed for the antibody-free
protein (PDB code 1z27) to obtain the free trajectory of the
protein.

Trajectory analysis was performed with Eucb33 and
Carma34 software packages. Appropriate corrections have
taken into account dealing with circular data statistics.35

Hydrogen bonds were estimated with a geometrical criterion
as described elsewhere.36 Structural figures were prepared
with PyMOL (www.pymol.prg).

2.2. Dihedral Angle Principal Component Analysis.
Principal component analysis (PCA) is a standard method
for analyzing MD trajectories, where the reduction of the
dimensionality of a high-dimensional data set is desired.37

The dihedral based PCA (dPCA) has been applied38–40 to
explore the energy landscape of a biomolecule. Calculations
of dPCA have been performed with Carma.34

2.3. Entropy Calculations. Molecular dynamics simula-
tions offer various methods to estimate the absolute or
relative entropy.41,42 Schliter’s formulation43 was used for
the estimation of the configurational entropy:

where S is an upper estimation of the true entropy (Strue), kB

is Boltzmann’s constant, T is the absolute temperature (in
which the system was simulated), e is the Euler number, p
is the Plank constant divided by 2π, M is the mass matrix
that holds on the diagonal the masses belonging to the atomic
Cartesian degrees of freedom, and σ is the covariance matrix
of atom positional fluctuations:

Entropy calculations were performed with the backbone
atoms (N, CR, C′) of the peptide from the bound and free

Figure 1. Ribbon representation of the X-ray structure of the
Pvs25 protein. Disulfide bonds are highlighted with balls and
sticks. CR and C� atoms of Cys residues are colored in
magenta, while Sγ atoms are colored in yellow.

Strue )
1
2

kB ln det[1 +
kBTe2

p2
Mσ] (1)
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trajectories respectively, at 0.1 ns intervals (100 frames). Two
separate trajectories (for example, free and complex trajec-
tories of a peptide) can be combined. Thus one trajectory
can be appended at the end of the other trajectory, and the
plot of configurational entropy S against time can be used
as an assessment of the overlap between configurational
spaces sampled in the two simulations.44 Such trajectories
have been derived for the backbone (bb) atoms (N, CR, C′)
of the peptide from the last 10 ns of the free (f) and bound
(b) trajectories. Both appending sequences were applied,
resulting in Sbb

trA+trB and Sbb
trB+trA calculations, where the trB

trajectory was appended to the trA one (trA+trB) or the trA
trajectory was appended to the trB one (trB+trA). Plotting
the calculated values of S from both the combined trajectories
over time demonstrates the relative size and overlap of
sampled trajectories. Plotting S over time after the combina-
tion of two trajectories results in three cases,44 briefly
described as follows:

1 S increases after appending one trajectory to the other,
with a jump observed at this point. Thus, the two
trajectories do not overlap, or there is only a small
overlap between them.

2 S evolves smoothly after the appending of the trajec-
tories, without an observable perturbation of the line
of S over time; thus, the two trajectories show significant
overlap.

3 The S curve increases during the time of the first
trajectory but decreases a little after the appending of
the second trajectory; thus, the second trajectory samples
a smaller configurational space than the first one, which
also contains the configurational space visited by the
second one.

The calculation of entropy buildup curves has been per-
formed with the Eucb program,33 which utilizes a routine
adapted from numerical recipes45 for the computation of the
eigenvalues. Moreover, trajectories for the backbone, heavy,
or heavy side chain atoms have been extracted from the
complex and free trajectories for each residue of the Pvs25
sequence, in order to obtain the entropy difference per
residue.46

2.4. Buried Surface Area. Calculation of the buried
surface area (BSA) was performed with the NACCESS
program,47 based on the formula

Thus, the BSA is the difference of the surface accessible
area of the complex (Sc) from the sum of the surface
accessible areas of the protein (Sp) and antibody molecule
(Sa). Calculations were performed for all frames of the
complex trajectory in order to get and characterize the times
series of BSA.

3. Results and Discussion

3.1. Backbone Dynamics of the Protein. The Pvs25
protein and its 2A8 antibody complex remained stable during
both free and complex MD trajectories. Figure 2 shows the
root-mean-square fluctuations (RMSF) of CR atoms and
deviations (RMSD) of backbone (N, CR, C′) atoms of the
protein and antibody’s heavy (H) and light chains (L).

As revealed in part c of Figure 2, the RMSD of the
backbone atoms of all protein chains fluctuated between 1
and 3 Å during the simulation time, without any significant
breaks or jumps. Interestingly, the Pvs25 protein showed
greater mobility in comparison to antibody’s heavy or light
chains. The mobility of the protein’s backbone atoms was
found to be approximately the same in free and complex
trajectories, where the average values for the RMSD (with
std. dev.) were 2.3 (0.3) Å and 2.1 (0.4) Å, respectively.

An interesting feature is revealed in part b of Figure 2,
where the RMSF values of the protein’s CR atoms is
displayed. The first 40 residues of the Pvs25 protein (N-
terminal) showed more flexibility in the complex form. This
picture was inversed for the next 40 residues, where
comparable values were observed, or at residues around Glu59

(peak of the RMSF line of protein’s free trajectory), a
significant reduction of the protein’s CR atom’s mobility was
recorded. The C-terminal half of the protein showed surpris-
ingly high mobility in the complex form. The trend of the
RMSF values was very similar in the free and complex
trajectories; however, the calculated values were higher in
the complex than the free trajectory. In general, it is admitted
that binding reduces a protein’s mobility. However, in this

BSA ) Sp + Sa - Sc (3)

Figure 2. Root mean square fluctuation (RMSF) of CR atoms
and root-mean-square deviation (RMSD) time series of
backbone atoms (N, CR, C′) after fitting the corresponding
atom positions from MD trajectories to the initial (X-ray)
coordinates. (a) RMSF of CR atoms of heavy (H) and light (L)
chains of the antibody. (b) RMSF of CR atoms of the protein
in complex and free forms. (c) RMSD of backbone atoms of
heavy (H) and light (L) chains of the antibody, and the
backbone atoms of the protein in complex and free forms.
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case, it is evident that this happened selectively in some part
of the protein, while the remaining part increased its mobility.

The Pvs25 protein contains 22 Cys residues that are all
paired in 11 disulfide bonds. Pvs25 is a unique protein in
this respect, especially if its 177 residue length is taken into
consideration. Its unique 3D structure is characterized by the
presence of repeated EGF like domains.8 In order to see how
the mobility of these disulfide loops is affected by the 2A8
binding of the Pvs25 protein, we split the protein’s sequence
into 11 (overlapping) parts, according to disulfide bond
formation, and we measured the RMSD of the backbone
atoms of these loops. The results of this procedure are
displayed in Figure 3. The first three loops, 8-22, 24-36,
and 42-57, did not show any difference worth mentioning
in the time evolution of the RMSD. The same conclusion
can be drawn for the last seven loops, 73-84, 89-100,
94-113, 115-129, 137-148, 141-157, and 159-172. The
RMSD values could be very small, as in loops 8-22 and
115-129, or bigger like in loops 94-113 or 159-172, but
in all of these cases, the pattern of the RMSD time evolution
was very similar. This fact indicates that the antibody binding
of the protein greatly influenced the intrinsic mobility of the
protein’s loops.

The most notable difference between the free and complex
trajectories concerns the 51-71 loop. It must be underlined
also that this loop contains the Glu59 residue, which showed
the highest RMSF value in the free trajectory (Figure 2).
Thus, the 0.5 Å value that was approximately observed
during the complex trajectory increased by approximately
1-1.2 Å in the free trajectory. The 51-71 disulfide loop
directly contacts the antibody’s heavy chain, and its reduced
mobility after binding is somewhat expected. What is most
notable here is that this is the only loop that is affected by
the binding.

3.2. Dihedral Principal Component Analysis. In order
to explore more thoroughly the backbone dynamics of the
protein loops and the influence of the binding of the 2A8
antibody, we performed a principal component analysis of
the complex and free trajectories, based on backbone dihedral
angles. This technique has been routinely used during recent
years in energy landscape studies of peptides and small
proteins.38,39,48 At this stage, as in the RMSD calculation of
the disulfide loops, we examined the energy landscape of
the 11 loops of the protein, as determined by the presence
of 11 disulfide bonds. The results of these calculations are
illustrated in Figure 4.

Loop 8-22 showed almost identical results before and
after the binding. This is also implied from the RMSD
analysis, previously analyzed (Figure 3).

Loop 24-36 showed an interesting feature because of the
widening of distribution in the dihedral angle space. While
in the free trajectory the protein’s structures clustered mainly
in very close conformations, in the complex structure, a more
wide distribution can be observed. The inverse picture can
be seen for the 42-57 loop, where we observed a reduction
in conformational space sampling upon antibody binding of
the protein.

Similarly to the situation in the 34-46 loop, a significant
reduction in the sampled conformational space can be

extracted for the 51-71 loop, from the corresponding parts
of Figure 4. A second small conformational cluster is also
seen in the complex trajectory. However, it seems that the
antibody binding of the Pvs25 protein restricted the mobility
on this fragment. The main big cluster in the complex
trajectory has a center very close to those observed in the
free trajectory, so it can be concluded that the 51-71 loop

Figure 3. Time evolution of root-mean-square deviation
(RMSD) of the backbone atoms of the 11 disulfide loops of
the Pvs25 protein, in free and complex trajectories. RMSD is
measured in Ångstroms. Numbers, e.g., 8-22, on the top left
side of the plots indicate the residues that form the corre-
sponding disulfide bond.
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sampled, in the complex trajectory, a part of the conforma-
tional space sampled in the free trajectory.

The rest of the loops showed remarkable similarity in
dihedral principal component analysis results, before and
after the antibody binding.

Quite encouraging for the MD analysis process, the results
from the dPCA and loop RMSD fall in line and support the
hypothesis that the flexibility in the protein’s backbone, after
the antibody binding, followed complex dynamics, without
being uniformly distributed. Evidence is now accumulated

that the flexibility of 51-71 loop, which dominates the
protein/antibody interaction interface, was considerably
reduced upon antibody binding. At the same time, other parts
of the protein retained almost the same flexibility, or even
showed an increase of their flexibility upon binding.

3.3. Configurational Entropy Analysis. The reduction
of the configurational entropy of charged residues involved
in protein/protein interaction interfaces is a well-known
issue.46

We have extracted the heavy atoms of the protein from
both the complex and free trajectories, and we have
calculated the configurational entropies. The values we
obtained were 36.31 and 36.21 kJ K-1 mol-1, respectively.
We also measured the configurational entropy of the
backbone atoms of the protein, and we obtained values of
11.99 and 11.61 kJ K-1 mol-1 for the complex and free
trajectories, respectively. The negligible difference in a
protein’s configurational entropy upon antibody complexation
is quite interesting and deserves further investigation.

We split the protein sequence into 11 parts, as defined by
the protein’s disulfide bonds, and we extracted the coordi-
nates of the backbone atoms from both trajectories. We
appended the complex trajectory to the free trajectory (and
Vice Versa) for all 11 loops, and we applied a positional least-
squares fitting of the combined trajectory frames’ coordinates
to the first frame to remove any translational/rotational
components in the configurational entropy calculations. We
then calculated the configurational entropy of the combined
trajectories at a 0.5 ns time interval. Then, we plotted the
buildup entropy curves over time. The results of this
procedure are illustrated in Figure 5. From a visual inspection
of these plots, one can estimate if the conformational space
sampled in the two trajectories overlapped or not, or if the
two trajectories sampled different conformational spaces.

It can be easily extracted from Figure 5 that not all
disulfide loops behave in the same way during the complex
and free trajectories. For example, the configurational entropy
of some loops located at the middle of the protein’s sequence
(42-57, 51-71, 73-84, or 89-100) experienced reduced
values upon complexation, while some other loops located
at the C-terminal part of the protein’s sequence (137-148,
141-157, or 159-172) showed increased values upon
complexation. Thus, it seems that despite the conservation
of the protein’s configurational entropy upon complexation,
the protein did not remain static but redistributed its flexibility
in order to adapt to conformational changes imposed by the
antibody binding. This observation is also in line with the
RMSF calculations analyzed previously (Figure 2) and dpCA
calculations (Figure 9).

The first loop, 8-22, did not show any difference in the
configurational entropy upon binding. The calculated ∆S was
only -0.4 J K-1 mol-1. This is in perfect agreement with
the dPCA calculations of the 8-22 loop. The loops 24-36
and 42-57 showed a moderate decrease of -10.8 and -9.8
J K-1 mol-1, respectively, in the configurational entropy of
the backbone atoms.

In line with the RMS (Figure 2) and dPCA (Figure 4)
analysis, loop 51-71 experienced a great decrease in
configurational entropy of -54.3 J K-1 mol-1. Entropy

Figure 4. Dihedral principal component analysis of the 11
loops of the Pvs25 by disulfide bonds. Numbers in the plots
indicate the cysteine residues that form the disulfide bonds.
The letter “F” or “C” is used in order to discriminate the free
or complex MD trajectory, respectively. All diagrams shown
in this figure are pseudocolor representations of density
functions corresponding to the projections of the fluctuations
of the backbone dihedral angles (�,Ψ) on the planes of the
top two eigenvectors. The density function shown is 4G )
-kBT ln(p/pmax) where kB is the Boltzmann constant, T is the
temperature in Kelvin, and p and pmax are probabilities
obtained from the distribution of the principal components for
each structure (frame) from the corresponding trajectory. The
4G values obtained from this procedure are on an arbitrary
scale in the sense that they depend on the binning procedure
used for calculating the p and pmax values. For all diagrams
of this figure, the raw data were binned on a square matrix of
size N/2, where N is the number of frames of the correspond-
ing trajectory.
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calculations of the backbone atoms of this loop further
confirmed the hypothesis that antibody binding of the Pvs25
protein greatly reduced the flexibility of this protein fragment.

Moderate entropy decreases have been observed in the
73-84 and 79-100 loops, with ∆S values of -13.1 and
-19.9 J K-1 mol-1, respectively. The values are comparable
with those observed for loops 24-36 and 42-57, preceding
loop 51-71. As in the first loop, 8-22, the ∆S value for
the 94-113 loop was found to be quite close to 0, a value
of 1.1 J K-1 mol-1. If we consider loop 51-71 at site 0,

then loops at position (1,2 showed a moderate decrease in
∆S and loops at position (1,2 showed almost no difference
in ∆S values upon complexation. This trend fits well with
the hypothesis that the conformational flexibility restriction
focused on the 51-71 loop and died out as we drew away.
The trend of configurational entropy reduction fits also very
well with the calculated RMSF values (Figure 2).

The remaining part of the protein showed mixed results
about the ∆S. Most interesting is the increase of configura-
tional entropies of the last two loops, 141-157 and 159-172,
by 11.7 and 31.3 J K-1 mol-1, respectively. The redistribu-
tion of configurational entropy49,50 is an important feature
of the protein/antibody binding studied here.

Additional insight into the role of the configurational
entropy in protein/antibody binding can be provided by
examination of the per residue contribution of the configu-
rational entropy. Figure 6 shows the intraresidue contribution
in ∆S of the backbone, heavy, and heavy side chain atoms.
Similarly with other analyzed observations, residues of loop
51-71 contributed with highly negative values to ∆S.
Interestingly, residues of the first two loops 8-22 and 24-36
showed mostly positive ∆S values. The same conclusion can
be drawn for the C-terminal part of the peptide, in line with
the backbone entropy per loop difference analyzed in the
preceding paragraphs. The most negative peaks of the heavy
atom line correspond to residues Lys44, Glu59, and Val66.
Unsurprisingly, these residues made significant contacts with
the antibody, and the reduction of their flexibility upon
binding is highly expected.

The negative valley of ∆S (Figure 6) for the backbone
atoms corresponds to the 58-72 sequence of the protein,
which consists mostly of the 51-71 loop. There is also a
small region, 43-47, of marginally negative values in the
backbone entropy per residue. These findings are in excellent
agreement with other parts of the MD analysis presented in
this work and further corroborate the hypothesis of entropy
redistribution in the binding of the Pvs25 protein by the 2A8
antibody.

The difference in the protein’s configurational entropy
upon antibody binding has been visualized in Figure 7. From
this representation, it can be seen that region 58-69, which
constituted the main region of the binding site, showed the
greatest entropy reduction upon binding (colored with blue).
The C-terminal end of the protein, some 45-50 Å away from
the binding site, showed a considerable increase (colored red)
in configurational entropy upon binding. In general, the color

Figure 5. Configurational entropy of the 11 disulfide loops.
Entropy units in the vertical axis of the plots are J K-1 mol-1.
Covariance matrices were generated after a least-squares
fitting of atoms’ positions of the protein to initial (X-ray)
coordinates. The configurational entropy buildup curve was
calculated every 500 frames (0.5 ns). The “F-C” notation
indicates the appending of the complex to the free trajectory,
while the “C-F” notation indicates the appending of the free
to the complex trajectory.

Figure 6. Differences in intraresidue configurational entropy
between the complex and free trajectories measure the heavy,
backbone, or side chain heavy atoms.
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distribution in this figure indicates that configurational
entropy redistributed smoothly in the 3D structure of the
protein, from the binding site to the remote sites of the
protein.

3.4. Antibody/Protein Interactions. The 2A8 antibody
binds the Pvs25 protein in a discontinuous mode. Residues
Lys44, Leu47-Gly48, Gln56-Cys-Ile-Glu-Asn-Pro-Asp-
Pro63, Gln65-Val-Asn-Met-Tyr69, Gly72-Cys73, and Glu75

contact the heavy chain of the antibody. This information
can be visualized with the conformational epitope database,51

URL: http://immunet.cn/ced/view.php?ceid)CE0200.
At the center of the contact sequences lies the Glu59

residue, the one with the greatest entropy change upon
antibody binding of the protein. It is thus very interesting to
see its interactions with the antibody. An analysis of
hydrogen bonds between the protein and the antibody
revealed that the side chain of the Glu59 side chain formed
two stable hydrogen bonds with backbone amides of the
Trp33H and Trp100H residues from the CDR1 and CDR3
regions of the antibody’s heavy chain, respectively, Figure
8. Under the light of the current analysis, it is suggested that
immobilizing Glu59’s side chain with two strong hydrogen
bonds was the driving force behind the significant reduction
in configurational entropy of the 51-71 loop.

The Lys44 side chain was found in the salt bridge state
with the side chain of Asp101H, for 100% of the simulation
time. The distance of the polar side chain atoms remained
under 4.5 Å for the whole simulation time, while for 65%
of the MD trajectory, a hydrogen bond between the two side
chains was established. Val66 made important side chain
hydrophobic interactions with the antibody’s Trp90H and

Trp100H side chains. The side chain distances between the
Val66-Trp90H and Val66-Trp90H residue pairs were found to
average at 3.7 (0.3) Å and 3.8 (0.2) Å, respectively, while
the corresponding percentages of the frames with a side chain
distance of less than 4 Å was 84% and 80%.

The reduction of the configurational entropy of residues
making important side chain interactions has been previously
noticed and analyzed with MD simulations in a protein
thermostability study.46 Here, similar observations can be
drawn from the protein/antibody association.

3.5. Buried Surface Area. The buried surface area (BSA)
is a useful quantity for estimating the extent and stability of
protein stability of protein/protein interaction interfaces.52,53

Despite the concerns about the measurement accuracy of
BSA,54 it is interesting to see the value of BSA between the
protein and the antibody, as evolved over the simulation time.
We have calculated the BSA from the complex trajectory.
The results are illustrated in Figure 9. The BSA fluctuated
between 745 and 987 Å2 during the MD trajectory and
averaged at 861(35) Å2. This average value is substantially
lower than the approximately 1300 Å2 observed in the X-ray

Figure 7. Ribbon representation of the X-ray structure of the
Pvs25 protein. Disulfide bonds are highlighted with balls and
sticks colored in white. The color spectrum in this figure
represents a configurational entropy difference (complex-free)
as calculated in a per residue mode (as in Figure 6) for
backbone atoms. A constant value of 38.02 J kJ mol-1 has
been added to all values, to scale the entropy difference to
positive values so that the B-factor column of the 1z27 PDB
file could be used for the representation. Regions with blue
color (like the 51-71 loop) represent negative values (entropy
has been reduced upon binding), while the red color repre-
sents regions with positive values (entropy has been raised
upon binding).

Figure 8. Interactions of the Glu59 side chain of the protein
with the CDR1 (Trp33 on the right) and CDR3 (Trp100 on
the left) loops of the antibody’s heavy chain. Hydrogen bonds
of Glu’s side chain carboxyl group and main chain Trp’s amide
group are shown with dashed lines. These hydrogen bonds
remained stable through the 20 ns MD trajectory.

Figure 9. Time evolution of the buried surface area (BSA)
between the Pvs25 protein and the 2A8 antibody, as com-
puted from the complex directory. Calculations have been
performed for all 20 000 stored frames of the MD trajectory.
Data points in this plot have been averaged every 10 frames
(10 ps).
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structure of the protein/antibody complex. However, what
is under investigation here is the stability of the complex,
and this can be confirmed by the absence of any trend line
in the time series of the BSA. For example, it has been
proposed that the BSA decline during the MD trajectory can
suggest a disruption of the binding interface.55

3.6. Water at the Protein/Antibody Interface. Water
plays an important role in biomolecular binding processes.
Figure 10 displays the number of water molecules close to
the protein’s binding site in the complex and free MD
trajectories. It is expected that, upon antibody binding, the
protein loses some of the solvent that is in close contact with
the protein’s polar groups. Indeed, this is exactly what has
been observed.

In the free MD trajectory, the number of water molecules
that were found in proximity to the protein ranged between
15 and 40 and averaged at 27.7 (3.7). In the complex MD
trajectory, this quantity ranged between 20 and 49 and
averaged at 34.8 (3.8). Thus, the Pvs25 protein lost ap-
proximately seven water molecules from its first solvation
shell, upon binding to the 2A8 antibody.

Another important finding of these calculations was a
water-bridged hydrogen bond between Glu59 protein’s residue
and Asp101H from the antibody’s CDR3 heavy chain. The
Glu59:Oε2 atom and Asp101H:Oδ1 or Asp101H:Oδ2 atom par-
ticipated in this water-bridged hydrogen bond interaction
from the whole trajectory. It must be noted that Asp101H’s
side chain also made a salt bridge with the protein’s Lys44

side chain.

4. Conclusions

Pvs25 is an essential protein for Plasmodium parasites to
infect mosquitoes and currently is a leading candidate for a
transmission-blocking malaria vaccine. Pvs25’s structure is
characterized by the presence of 11 disulfide bonds, a unique
feature in the protein structure of approximately 180 residues.
Thus, a detailed atomistic view of the dynamics of these
loops can elucidate important views in order to design
potential loop mimetics for a potential transmission-blocking
malaria vaccine. To hit this target, we employed molecular
dynamics simulations of the Pvs25 protein in free and
complex forms with the 2A8 antibody.

The results presented in this study provide accumulated
evidence of the role of the 51-71 loop in the recognition of

the Pvs25 protein by the 2A8 antibody. The flexibility of
this loop significantly reduced upon antibody-antibody
binding, as indicated by RMSF, RMSD, dDCA, and con-
figurational entropy analysis. The reduction in configurational
entropy is directly correlated by interactions made by
selective residues at the protein/antibody interface. Our
results are in very good agreement with similar studies in
the literature and provide more evidence about the important
role of biomolecular plasticity in the protein’s functionality.

Interestingly, we found out that the protein’s configura-
tional entropy remained virtually the same, before and after
the binding. However, entropy reduction in some loops was
accompanied with an entropy increase in other parts of the
protein. A detailed look at loop and per residue configura-
tional entropy results revealed that a significant entropy
reallocation occurred after antibody binding of the protein,
with direct dependence on the distance from the main loop
(51-71) that contacts the antibody’s binding site. The
corroboration of RMSF, RMSD, and dPCA results with the
entropy analysis further supports these findings.
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(35) Döker, R.; Maurer, T.; Kremer, W.; Neidig, K.; Kalbitzer,
H. R. Determination of mean and standard deviation of
dihedral angles. Biochem. Biophys. Res. Commun. 1999, 257,
348–350.

(36) Stavrakoudis, A. A disulfide linked model of the complement
protein C 8γ complexed with C 8R indel peptide. J. Mol.
Model. 2009, 15, 165–171.

Configurational Entropy Reallocation J. Chem. Theory Comput., Vol. 7, No. 2, 2011 523



(37) Jolliffe, I. T. Principal component analysis; Springer: New
York, 2002.

(38) Mu, Y.; Nguyen, P. H.; Stock, G. Energy landscape of a small
peptide revealed by dihedral angle principal component
analysis. Proteins: Struct Funct Bioinfo 2005, 58, 45–52.

(39) Maisuradze, G. G.; Leitner, D. M. Free energy landscape of
a biomolecule in dihedral principal component space: Sam-
pling convergence and correspondence between structures and
minima. Proteins: Struct Funct Bioinfo 2007, 67, 569–578.

(40) Altis, A.; Otten, M.; Nguyen, P. H.; Hegger, R.; Stock, G.
Construction of the free energy landscape of biomolecules
via dihedral angle principal component analysis. J. Chem.
Phys. 2008, 128, 245102.
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Abstract: In this study, we have revised the rules and parameters for one of the most commonly
used empirical pKa predictors, PROPKA, based on better physical description of the desolvation
and dielectric response for the protein. We have introduced a new and consistent approach to
interpolate the description between the previously distinct classifications into internal and surface
residues, which otherwise is found to give rise to an erratic and discontinuous behavior. Since
the goal of this study is to lay out the framework and validate the concept, it focuses on Asp
and Glu residues where the protein pKa values and structures are assumed to be more reliable.
The new and improved implementation is evaluated and discussed; it is found to agree better
with experiment than the previous implementation (in parentheses): rmsd ) 0.79 (0.91) for Asp
and Glu, 0.75 (0.97) for Tyr, 0.65 (0.72) for Lys, and 1.00 (1.37) for His residues. The most
significant advance, however, is in reducing the number of outliers and removing unreasonable
sensitivity to small structural changes that arise from classifying residues as either internal or
surface.

Introduction

Ionizable residues in proteins play key roles in protein
function; they are of profound importance for protein
catalysis, protein stability, and ligand-protein and protein-
protein interactions.1–6 All properties that depend on these
ionizable residues are therefore also pH-dependent, for
example, proteins for acidophilic organisms are usually more
stable toward lower pH values than normal and acid-base
catalytic proteins have a pH optimum when the acid is
protonated and the base is unprotonated, which can be traced
to the protein pKa values. Thus, understanding, predicting
and modulating protein pKa values has become an important
feat for biochemistry and protein engineering in its own right.
During the last decades, however, calculating pKa values has
also become a gauge for our ability to describe and predict
the electrostatic interactions in proteins and therefore a first
reliable validation of assessing the energetics in protein
reactions.5 Titrating a residue is a well-defined and from a

kinetic perspective uncomplicated event that can be measured
with, for instance, NMR. From a computational perspective,
on the other hand, a residue titration is still a major challenge
that depends on the dielectric response of the entire protein
+ water environment surrounding the ionizable residue. It
is in other words sensitive to all of its surroundings: water
reorientation, protein reorganization, water penetration, and
for the extreme cases, partial protein unfolding.

Over the last decades, there has been a major effort, and
significant progress, in describing protein electrostatics; see
references for reviews.7–13 The majority of methods describe
the environment using continuum electrostatics, such as
Poisson-Boltzmann (PB) and generalized Born (GB) ap-
proaches, or a regular force field approach, for example, all-
atom molecular dynamics simulations. Though the increasing
number of pKa predicting methods is encouraging, most
methods require a significant computational effort with
calculation times ranging from several minutes or hours to
days. In response to this shortcoming, empirical methods
provide an alternative in that they can calculate all pKa values
for a medium-sized protein within a few seconds. All these
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methods have their strengths and weaknesses. Typically, the
force-field based methods are the more rigorous since they
include a full microscopic protein-dipole model (with or
without electronic polarization) and can calculate the full
thermodynamic cycle by free energy perturbation (FEP),
thereby including explicit protein configurational sampling
as the residue changes from the charged to uncharged form.
However, severe convergence problems, a steep learning
curve, and an exceptionally large computational effort make
these approaches impractical for most real-life protein
applications. On the other extreme, we have the empirical
approaches that use scoring functions or effective potentials
to describe the influence of the environment. These are easy-
to-use and exceptionally fast, but in contrast to the other
methods, empirical methods rely on representing the envi-
ronment by undefined functions or descriptors. These are by
definition nonrigorous, and since they are normally based
on using single averaged structures obtained, for example,
by X-ray crystallography, they cannot include configurational
sampling in the conventional explicit sense. Empirical
approaches are nevertheless very useful for the vast majority
of protein pKa values, and they are typically found to predict
protein pKa values as reliably as most more rigorous
methods.14–16 For PROPKA, which has recently been
referred to as “the empirical method to beat”,14 the initially
reported rmsd was found to be 0.79 (0.89 if pKa values
determined within an upper or lower bound is included).17

In a recent and independent study, where the more
common and most easy-to-use programs were validated,
PROPKA was found to be one of the most reliable protein
pKa predictors of the four tested.15 Even though this is clearly
encouraging, we have recently found physical inconsistencies
in the previous and current versions of PROPKA (PROP-
KA117 and PROPKA218) that make some predictions behave
erratic. The major problems arise from the discrete clas-
sification of residues into either surface or buried groups.
Though such a distinction seem to have been very fruitful,
it is clearly not a division made by nature; and undoubtedly,
the correct physics is identical even though one type of
residues might be more difficult to model than the other.
The unfortunate either/or classification is further aggravated
since coulomb interactions, which can be quite large, are
only included for buried residues. Since a contact number
defines the buried residues, that is, counting atoms within a
radius cutoff, the residue classification can become very
sensitive to the position of the residue or atoms close to a
radius cutoff when the atom count is close to the junction
between these classifications (see Results and Discussion for
an illustrative example).

In this study, we have resolved the erratic behavior caused
by the distinct classification into surface and internal residues
by interpolating between these residue types to make the
transition continuous. Since the surface versus buried clas-
sification of residues is central to calculating the charge-
charge and hydrogen-bonding contributions to the pKa shift
and all contributions are interdependent, it has been necessary
to reevaluate all aspects of the PROPKA theory. Thus, we
have altered the functional forms of the charge-charge and
desolvation contributions very significantly and PROPKA

has been reparameterized completely. This reassessment has
rectified some significant outliers where the error in the
predicted pKa value has been several pH units, and concur-
rently we have removed a number of irregular interaction
exceptions and reduced the number of parameters. The
objective of this work, however, has not primarily been to
increase the accuracy by the reparameterization, but to
describe the interactions consistently and to call attention
to a problem that might appear in other methods that utilize
empirical information.

As we move to justifying and describing the model in the
following section, we should keep in mind that we are not
looking for an exact theory or rigorous treatment but for a
simple and computationally fast approximation that has the
most important features of our system and treats the dominant
physical effects appropriately. In the following section, we
introduce the overall concepts and contributions to calculating
pKa values. In the remaining section, we determine the model
parameters, evaluate its expected accuracy by applying it to
a set of proteins where the pKa values have been determined
experimentally, and discuss the performance and validity of
both our approach and data test set. Finally we look at an
illustrative example where the surface/internal classification
makes the pKa prediction exceedingly sensitive to a small
change in structure for PROPKA2 and how this is resolved
with the new approach.

Methods and Concepts

Since empirical pKa predictors rely heavily on parametriza-
tion and calculating perturbations, and the relation between
their contributions and conventional electrostatics is less
obvious, we start by briefly scrutinizing the relevant ther-
modynamic cycle. The reaction we want to describe is the
deprotonation of an ionizable residue in its protein environ-
ment and its change in free energy. Thus, we write a general
deprotonation reaction as

where A can be any ionizable group. The relevant free energy
change we need to consider for protein pKa calculations is
best obtained by examining a thermodynamic cycle that
considers a residue in its protein position and its reference
water reaction as was previously introduced by Warshel and
co-workers.5 Thus, we write the free energy change for eq
1 in the protein as

Here, the ∆GProtein and ∆GWater terms are the definition of
the pKa value of AH in the protein and in water, in free-
energy units, and the two last terms are the solvation free
energies of moving the deprotonated and protonated form
of the residue from water to its site in the protein. Since, we
are ultimately interested in calculating protein pKa values,
we use the relationship between free energy and pKa values

AH f A- + H+ (1)

∆GProtein(AH f A- + H+) ) ∆GWater(AH f A- + H+) +
∆GSolvation

WaterfProtein(A-) - ∆GSolvation
WaterfProtein(AH) (2)

∆G ) 2.30RT · ∆pKa (3)
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define the effect of the protein on the reference water reaction
as

and rewrite eq 2 for residue i as

Here, pKa,i
Water, which is usually referred to as the model

value, is the pKa value of the corresponding residue in water,
and since these values are well-known (and collected in table
S1 in Supporting Information), we are left with calculating
the difference in pKa between protein and water. This is the
effect exerted by the protein on the pKa value and can in
principle be calculated correctly for instance with FEP
approaches. In PROPKA, however, we emphasize compu-
tational speed and simplicity and see the protein as a small
environmental perturbation to the water reference. Thus, we
express the total environmental perturbation as a sum of
effective perturbation contributions from protein groups. This
is generally justified if the effect of the protein,
∆pKa

WaterfProtein, is small compared to the solvation energies
involved in the reference reaction. This seems indeed to be
the case: the vast majority of protein ionizable residues have
pKa values very similar to their corresponding water refer-
ence, and even for a significantly shifted residue the effect
of the protein is more than an order of magnitude smaller
than the absolute solvation energies involved (i.e., the
solvation energy for acetic acid is close to 10 and 80 kcal/
mol for the protonated and unprotonated form, respectively,
whereas each pH-unit shift from the protein environment
corresponds to 1.36 kcal/mol of perturbed solvation free
energy). If the perturbation becomes too large or, more
importantly, is associated with significant structural rear-
rangement, it is quite likely that this description will fail. A
reaction where the solute is being charged, as in eq 1, is by
nature also strongly coupled to the environment and will
therefore also undergo non-negligible structural rearrange-
ment. However, since we never calculate any single-
configuration energies, but define effective pKa contributions,
∆pKa

WaterfProtein or ∆GWaterfProtein, we can fit the functions
to include “average structural reorganization” implicitly. The
challenge we face at this point is obviously that we do not
know the functional form of these effective protein perturba-
tions. Before we proceed to an atomistic detail, which is done
in separate subsections below, we need to get an overview
and define the types of perturbations we need to consider.
Since we now have defined that we need to calculate “Water
f Protein” perturbations, we omit the superscript and start
by writing the protein perturbation, ∆pKa, for residue i as

Here, the second term is the Coulomb contribution because
of the protein charge-charge interactions with all other
charged or ionizable groups, and the first term, the self-
energy or intrinsic contribution, is the remaining contribution

that is obtained when all other charged and ionizable groups
are kept in their neutral form. The self-perturbation can in
turn be divided into two major components: the desolvation
and intrinsic electrostatic energy according to

The desolvation term describes the desolvation penalty or
the loss of solvation energy exerted by the protein as protein
atoms replace ambient water, whereas the electrostatic term
describes the substituting solvating effect from those atoms
(i.e., interactions from nearby protein (di)polar groups such
as NH and CO groups). For practical purpose, which is
explained below, we approximate this term with the dominant
hydrogen-bonding interactions and a usually much less
important interaction representing unfavorable electrostatic
interactions that typically cannot be assigned to hydrogen
bonding according to

Coulomb. Even though Coulomb interactions were early
seen as the major contribution to protein pKa values,19 it has
since long been recognized that, in fact, the intrinsic term is
usually more important.20 In PROPKA3, we have, contrary
to previous versions of PROPKA that use a linearized form
of Coulombic interactions for buried residues and no
Coulomb interactions for surface residues, decided to adopt
a regular 1/r term and calculate the pKa contribution to
residue i from charge j as

Here, σij is the sign of the function determining if the
interaction shifts pKa,i up or down, 244 is the normal
Coulomb’s law coefficient converted into pKa units, ε is the
dielectric constant that screens the Coulomb interaction
between two ionizable residues, rij is the distance between
the residue charge-centers (defined by Table S1 in Supporting
Information), and w(rij) is a distance-dependent weight
function.

σ clearly depends on the residue types. For instance, the
Coulomb interaction between the opposite charges of an acid
and a base stabilizes the configuration where both residues
are ionized; thus, the pKa is shifted down for the acid (σ )
-1) and shifted up for the base (σ ) +1). For two acids,
however, there will only be a Coulomb interaction for the
residue with the higher pKa value since this residue is in its
neutral form when the residue with lower pKa value titrates.
The Coulomb interaction between two negative groups is
unfavorable and results in raising the higher pKa value (i.e.,
σ ) +1), whereas the lower pKa value is unaffected (i.e.,
σ ) 0). In summary, σ can be defined as

∆pKa
Waterfprotein ) 1

2.30RT
· (∆GSolvation

WaterfProtein(A-) -

∆GSolvation
WaterfProtein(AH)) (4)

pKa,i
Protein ) pKa,i

Water + ∆pKa,i
WaterfProtein (5)

∆pKa,i ) ∆pKa,i
Self + ∆pKa,i

QQ (6)

∆pKa,i
Self ) ∆pKa,i

Desolv + ∆pKa,i
Qµ (7)

∆pKa,i
Qµ = ∆pKa,i

HB + ∆pKa,i
RE (8)

∆pKa,i
QQ ) σij ·

244
ε ·rij

· w(rij) (9)

σij ) {-1 if i ∈ acids and j ∈ bases
or i ∈ bases and pKa,i < pKa,j

+1 if i ∈ bases and j ∈ acids
or i ∈ acids and pKa,i > pKa,j

0 otherwise

(10)
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The resulting coupled titrations are then resolved iteratively
using a scheme akin to the Tanford-Roxby scheme.21

The value of the dielectric constant in proteins is a matter
of much debate and frequently some confusion and is
therefore maybe not so straightforward. In principle, each
ion-ion pair interaction has its own dielectric constant
depending on the two residues’ position in the protein, their
solvent exposure, and the ability of the surrounding environ-
ment to respond to changes in the electric field. Clearly,
PROPKA must be pragmatic in this context, but it seems
reasonable to use a comparatively large value, εsurface that is
close to εwater, if the residues are close to the protein surface,
and a smaller value, εburied, if they are buried deeply in the
interior of the protein (see table 2). Since it also seems
reasonable to make a linear interpolation between these
extreme cases, we use an effective dielectric constant
obtained as

where wpair(N) is a position-dependent weight function that
depends on the location of the two residues in the protein,
that is, to what degree the residues are buried in the protein
(their buried ratios). A residue’s buried ratio is obtained by
its contact number, that is, by counting the number of protein
heavy atoms, N, within a 15 Å sphere from its charge center,
and defined according to

This function is depicted by the red line in Figure 1, and as
can be seen in the figure, a residue is considered fully on
the surface when N e 280 (NMin) and fully buried when N
g 560 (NMax). Thus, a buried residue concurs with being

surrounded by a large number of protein atoms, whereas a
surface residue concurs with being surrounded by few protein
atoms and therefore many solvent molecules. Between these
extremes, a straight line interpolates the buried ratio. From
the background (green) histogram one can also see that the
majority of Asp and Glu residues are with these cutoff values
as expected identified as surface residues (237 of 363) or
only slightly buried, and only 11 of 363 residues are
considered fully buried. This is reasonable since most
proteins considered in this study are comparatively small and
therefore have few truly buried residues. For Coulomb
interactions it is more useful to consider the residue pair
rather than the individual residues. Therefore wpair(N) in eq
11 is instead obtained by summing the interacting residues’
contact numbers (NPair ) Ni + Nj) and use NMin ) 560 and
NMax ) 1120, that is, doubling the single-residue based
values, when calculating the position dependent weight for
the pair. Thus, for two surface residues, where the number
of neighboring protein atoms is small, NPair is close to or
smaller than NMin, wpair(N) ≈ 0, and we obtain the anticipated
ε ) εsurface from eq 11. Similarly, for two buried residues,
where the residues are surrounded by an abundance of protein
atoms, NPair is close to or larger than NMax, wpair(N) ≈ 1, thus,
recapturing ε ) εburied.

Before we continue showing the resulting pKa Coulomb
contribution, we note that the way we use the contact number
is different compared to what is commonly used in structural
bioinformatics since we use a comparatively large sphere
radius, use the charge center for the titrating group as center,
and count all heavy atoms rather than only the CR or C�
atoms. Though these modifications clearly evade the concept
of “contact”, since an atom 15 Å away is hardly in contact
with the center, our modification is clearly more suitable for
pKa calculations since they are centered on the site of interest
for titration and more sensitive to report on the local
environment. Using atom-based contact numbers rather than
residue-based, which is the case when you count CR or C�
atoms, makes our approach less sensitive to the “all or
nothing” behavior because of the radius cutoff and can also
account for fractions of residues. More importantly, Coulomb
interactions and solvation effects are usually considered long-
ranged and goes beyond the first coordination sphere.

The distance-dependent weight function, w(rij) in eq 9, is
formally defined by

where rMax and rMin are cutoff values that defines two extreme
points: the distance where the Coulomb contribution attains
an upper limiting value and the distance cutoff for the
interaction. The first makes PROPKA predictions more
robust by enforcing the contribution to stay constant at
distances shorter than rMin (4 Å), see also Figure 2. Omitting
this cap increases the sensitivity for short-distance contribu-
tions that are more likely to be due to problems in geometry

Figure 1. Problem with classifying residues as either surface
or buried is resolved by interpolating between these extremes
using a buried ratio. The figure shows the buried ratio (the
single-residue based position-dependent weight function,
w(N)) for PROPKA3 (red) and PROPKA2 (black) as a function
of heavy-atom count (N) within a 15 Å radius of the charge
center (left y-axis). The background histogram (green) shows
the distribution of heavy-atom counts for the 363 Asp + Glu
residues found in the 22 proteins used for validating Asp and
Glu pKa values (right y-axis).

ε ) εsurface - (εsurface - εburied) · wpair(N) (11)

w(N) ) {0 if N e Nmin

N - Nmin

Nmax - Nmin
if Nmin < N < Nmax

1 if N g Nmax

(12)

w(rij) ) { rij

rmin
if rij e rmin

rij - rmin

rmax - rmin
if rmin < rij < rmax

1 if rij g rmax

(13)
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for poor-resolution X-ray structures rather than real effects.
At distances between rMin and rMax, w(rij) decreases linearly
from 1 to 0 so that the Coulomb contribution vanishes
smoothly at rMax (10 Å). The important property in this range,
unlike for a regular cutoff, is that we avoid discontinuous
jumps. By using this weight function we effectively also
obtain a distance-dependent dielectric response of the
environment since the effective dielectric at longer distances
is much larger than at short distances. However, though this
is an important and nontrivial topic, see for instance the
introduction of ref 22 for an overview, we see our approach
as rather pragmatic but effective and gives a well-defined
interaction cutoff.

The resulting Coulomb contribution is depicted for two
extreme cases in Figure 2: the Coulomb interaction between
two surface residues (solid blue line) and between two buried
residues (solid red line); for comparison we have also
included the linearized Coulomb contribution that was used
for buried interactions in PROPKA2 (solid black line). We
find that reasonable values for the dielectric constants are
εsurface ) 160 and εburied ) 30. These seemingly counterin-
tuitive values are actually quite well founded. First, since
PROPKA is parametrized using pdbfiles determined by X-ray
crystallography, we have to accept that εsurface * εwater since
the surface residues are heavily influenced by neighboring
protein cells by, for example, making hydrogen bonds to
neighboring proteins and do not reflect the “correct” residue
geometry in water. Presumably, the lack of solvation also
makes charged residues seek alternative positions to fully
solvated configurations. Therefore, ion-pairs between a
surface acid and base are much more common in crystals
than in a fully solvated protein in water, and in order to
compensate for these artificial interactions it is necessary to
“over-screen” the Coulomb interaction. If structures, how-
ever, are obtained from long MD simulations with correct

boundary conditions, or possibly also from NMR constraints,
it is probably a better strategy to use εsurface ) 80. Without
going much further into what the more commonly used
protein dielectric constants signifies, we conclude that the
popular εp ) 4, which is associated with the self-energy, is
inappropriate for charge-charge screening.23 Instead, one
needs to consider the dielectric response of the entire protein
+ water system with electronic polarization, protein+water
dipolar reorganization, and water penetration; and eventually
find that an appropriate value is probably in the range 20 to
80, which is in agreement with our εburied ) 30. We also
note that the previous version of PROPKA effectively used
the corresponding εsurface ) ∞ and εburied ≈ 25, but without
interpolating between the two types. In fact, our εsurface and
εburied should instead be compared to the εapp used by Warshel
and co-workers who have used εapp ) 40 with success in
the PDLD/S-LRA model.24 We also find significant similari-
ties in the screening of Coulomb interactions between our
approach and the modulated screened Coulomb potential
(SCP) approach by Mehler et al.,25 which uses distance-
dependent sigmoidal screening functions, modulated by the
protein microenvironment, to screen electrostatic interactions.
The dielectric constant of these screening functions approach
80 as the distance increases and attains 40 already at a
distance of 8 Å. For comparison, we have also included the
regular Coulomb’s law contribution, which can be obtained
by using w(rij) ) 1, as dashed blue (surface residues) and
dashed red (buried residues) lines in Figure 2. Thus, the effect
of w(rij) can be seen by comparing the corresponding solid
and dashed lines. Finally, it should be noted that though the
PROPKA2 (black line) and PROPKA3 (red solid line)
contributions seem to be quite similar for fully buried
residues, for example, the max pKa contribution is capped
at similar 2.4 and 2.0 pH units for 4 Å, the most important
advance lies in interpolating those residues that are only
slightly buried.

Desolvation. The desolvation contribution to the ∆pKa

values corresponds in principle to creating the cavity in the
solvent that is occupied by the protein surrounding the
ionizable residue. Thus, it is an energy penalty for excluding
parts of the water solvation that disfavors the charged form
and raises the pKa value of acids and lowers the pKa value
of bases. The full details of the model we use in PROPKA3
will be published elsewhere, but in essence it depends on
the solvent volume that has been excluded and its distance
from the ionizable residue’s charge center. The total desol-
vation to residue i is calculated as

where the sum runs over all non-hydrogen atoms (N), c is
an empirically determined constant whose value depend on
the solvation properties of water, Vj is the effective volume
occupied by a nearby atom j, and rij is the distance from the
charge center of residue i to the center of atom j. Each protein
atom thus increases the desolvation contribution to the pKa,
but large atoms (with larger volume) change the pKa more
than smaller atoms and atoms very close to the residue
change the pKa values much more than more distant atoms.

Figure 2. Coulomb interaction in PROPKA3 depends on how
buried the interacting pair is. The interaction between two
surface residues is screened by a dielectric constant similar
to water (blue), whereas two buried residues are screened
significantly less (red). The corresponding dashed lines
correspond to a true Coulomb energy where w(r) ) 1 is
constant. The Coulomb contribution used for buried interac-
tions in previous PROPKA versions is included in black for
comparison; note that Coulomb contribution is zero for surface
residues in previous versions.

∆pKa,i
Desolv ) c · ∑

j

N Vj

rij
4

(14)
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As it turns out, our pKa value predictions are greatly
improved if we use the same scheme as for the Coulomb
contribution and define one constant, csurface, for surface
residues and one, cburied, for buried residues (see Table 2)
and interpolate between them to get

Here, w(N) is again the buried ratio defined in eq 12 for the
Coulomb interaction, but note that we use the single-charge-
center based contact number N and NMin and NMax is half
the value of those in the Coulomb contribution. The reason
for the improved accuracy with two c values could be several,
but probably again it is associated with the dielectric response
and problems with the structure; surface residues have an
artificial tendency to aggregate in ion-pairs and seek alterna-
tive interactions on the protein surface because of crystal
packing rather than extend into the solvent. Thus, its value
is on the average smaller to compensate for artificial
interactions. Other plausible reasons are that we have
interaction cutoff distances that effectively truncate the
protein, a simplified term for the electrostatic self-energy,
thereby omitting protein solvation, or simply by using
different Coulomb contributions for surface and buried
interactions. Another, and maybe more likely, reason is that
we are using a static average structure for the protein and
are therefore missing protein reorganization and water
penetration due to changes in the local structure around the
ionizable residue as it changes protonation state. Regardless
of the true origin, all these effects make the effective
desolvation notably smaller on the surface than in the interior
of the protein.

Intrinsic Electrostatics. In principle, the intrinsic elec-
trostatics includes all interactions between the ionizable
residue and the remaining protein, apart from the Coulomb
energy, that affects the deprotonation energy of the residue.
In a classical electrostatic sense this would include protein
permanent dipoles (and higher multipole terms) and van der
Waals interactions from the entire protein. To include all
these interactions, however, would not be feasible for
PROPKA if we want to apply it to larger systems with a
reasonable computational effort. Instead, we partition the
contribution into short-distance and long-distance contribu-
tions based on a hypothetical cutoff value, say 6 Å, and
assume that the contribution from groups further than this
cutoff tend to contribute to the residue deprotonation energy,
on the average, with similar magnitude as ambient water and
therefore do not contribute to ∆pKa. Thus, we use a minimal
model26 of the protein and focus on the short-distance
contributions for the water f protein perturbation. This is
of course not strictly true, as can be seen for protein solvation
free-energy simulations that typically converges with 16 Å
simulation radii,27 but it is probably a good approximation
for surface and moderately buried residues. Nevertheless, this
approximation is probably case-dependent and rely to a great
degree on contribution cancelations for more buried residues.
The dominant short-distance contributions come from close
polar interactions, for example, hydrogen bonds of the type
COOQ · · · HN for carboxylic acids or NHx · · ·OC for bases.
Since, presumably, a large part of the calculation time is

spend on these evaluations, we use the simplest possible
function to describe this interaction, that is,

Here, cHB is a constant parameter determined in this study
(which contains both dipole and van der Waals contribu-
tions), w(rij) is a distance dependent weight function, and θ
is the angle formed by the hydrogen bond and hydrogen-
bond acceptor (with the hydrogen atom as the apical center).
This way, we have a simple function that describes the most
important features of a hydrogen bond: a strong interaction
for close distances where the hydrogen is aligned pointing
directly toward the ionizable group or hydrogen-bond ac-
ceptor, and a vanishing contribution for distant interactions
or where the hydrogen does not point toward the acceptor.

The distance dependence for these hydrogen-bonding
interactions is a compromise between what is reasonable and
what is computationally convenient. In principle, the interac-
tion is akin to a charge-dipole interaction and should
therefore depend on 1/r2. However, as it represents the
effective ∆pKa contribution, which also contains reorganiza-
tion and other compensating effects from the environment,
we cannot assume such a form apriori. Instead, we use the
simpler linearized form that was also previously employed
in PROPKA217

where rij is the hydrogen-bond distance (e.g., the shortest
distance between H and OD1 or OD2 for an Asp backbone
hydrogen bond), rMin is a short cutoff where the contribution
attains a plateau, and rMax is the distance cutoff where the
interaction vanishes. Just as for the Coulomb contribution,
the contribution cap for short distances helps making the
predictions insensitive to exceptionally short contacts, which
probably arise from uncertainties in structure rather than from
physical strong interactions. In PROPKA2, the value of these
cutoffs were set to 2 and 3 Å, respectively, and then adjusted
for some interaction types to accommodate experimental
points. In the new PROPKA3 parameter set, however, we
have only fitted the cHB parameter, and instead obtain the
cutoffs by considering histograms with observed bonding
distances in X-ray pdb structures (an example of such a
histogram, the resulting distances, and further discussion can
be found in Figure S1 and Table S2 in the Supporting
Information). Clearly, it would be desirable to fit also these
values, but since we have a limited data set to fit against
and an approximate model, we believe the structure-derived
values are more appropriate.

For freely rotating hydrogen bonds, for example, the ROH
group of Ser, we assume that the hydrogen bond is flexible
enough to reorient its direction to its optimal orientation,
i.e. directly point toward its hydrogen-bond acceptor, which
is equivalent to setting cos θ ) 1 in eq 16 and gives

c ) csurface - (csurface - cburied) · w(N) (15)

∆pKa,i
HB ) {cHB · w(rij) · cos θ if θ g 90o

0 if θ < 90o
(16)

w(rij) ) {1 if rij e rmin

rij - rmin

rmax - rmin
if rmin < rij < rmax

0 if rij g rmax

(17)
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For such an interaction, we do not need to predict the actual
position of the hydrogen atom but use the heavy-atom
distance as a measure of hydrogen-bond strength, and thereby
avoid a well-known problem in single-structure modeling
of proteins (the values of rMin and rMax will be ∼1 Å larger
for heavy-atom distances on the account of not using the
hydrogen position). For the remaining sp2-hybridized hy-
drogen atoms, however, we have to create its position
explicitly since we cannot assume that the hydrogen atom
can adopt such an optimal interaction. This is done in a
simplified way described elsewhere.18 Note that PROPKA3
uses eq 15 with explicit hydrogen atoms for all sp2-
hybridized atoms, whereas PROPKA2 used eq 18 for all
hydrogen bonds except for interactions with the peptide
backbone. This alteration was not found to give any
significant difference for the training set, but was adopted
to make the description more consistent. As was found in
this study, however, it is necessary to include these hydrogen-
bonded interactions consistently for all types of ionizable
residues. Failing to include this interaction term, as in
PROPKA2 where it was included for acids but not for bases,
overturns the important desolvation/resolvation balance and
results in unphysical pKa predictions (as can be seen for Lys
in the following section).

Another short-distance term that is included in the intrinsic
electrostatic contribution, ∆pKa

RE, has the opposite effect to
the previous hydrogen bonding in that it presents a possible
hydrogen-bond acceptor for acids or hydrogen-bond donor
for bases. The effect of this “reversed hydrogen bond”,
however, is presumably better described as an unfavorable
dipole interaction of the type COOQ · · ·OC for acids, raising
the pKa value, and NHx · · ·HN for bases, lowering the pKa

value. These interactions are far less common since it is
destabilizing in nature, effectively raising the energy of the
ionized form of the residue and thereby contributes to making
the local protein structure less stable. However, these types
of interactions are found in proteins, and can in some cases
be used by the protein to tune pKa values for catalytic
function; for instance acid-base catalyzed reactions require
a protonated acid with an elevated pKa value for the catalytic
activity. Since it is unfavorable in nature, it rarely interacts
with a specific atom but with the charge of the ionizable
residue, and thus, we model it with the same functional form
as eqs 16 and 17, but instead of using the shortest atom-to-
atom distance we use the atom-to-charge-center distance.
These interactions are not considered freely rotatable and
therefore always angular dependent. This term was not
included in previous versions of PROPKA since it is not a
hydrogen bond, but it does make sense from an electrostatic
point of view and contribute to some pKa values if given
similar parameters as for the hydrogen bonding interactions.
Unfortunately, there are too few instances of this interaction

in the training set to further probe its effect and to obtain
reliable parameters; thus, the interaction remains rather ad
hoc.

Results and Discussion

The main goal of this study is to probe and correct the
inconsistent treatment of internal and surface residues. In
this section, we parametrize and validate our new imple-
mentation of PROPKA that uses the interpolation scheme
outlined in the previous section. For this purpose, we
primarily consider Asp and Glu residues since we believe
the protein pKa values and structures are more reliable for
these than for Tyr, Lys, and His residues.

Consistent Treatment of Internal and Surface Residues.
The best way to exemplify the inconsistent treatment of
internal and surface residues is to consider the three protein
configurations of barnase, that is, models, in the crystal-
lographic asymmetric unit provided by pdbfile 1A2P. For
most residues, the pKa values are very similar for these
copies, but for Glu 73 and Lys 27, PROPKA2 predicts pKa

values to be 1.5, 1.3, and 3.4 and 11.6, 11.3, and 10.2,
respectively, for the three models (see Figure S2 and Table
S3 in Supporting Information). The conspicuous deviation
for the third model is because the charge center of Lys 27,
the NZ atom, has moved 0.3 Å toward the solvent, which
results in the heavy-atom count, 412, 412, and 381, going
under the critical cutoff value 400 and therefore reclassifies
the residue from being buried to being on the surface. This
reclassification leaves out the charge-stabilizing Coulomb
interaction, worth 1.9 pH units for each residue, giving a
higher pKa value for Glu 73 and lower pKa value for Lys
27. This is clearly an artifact of the model, where in extreme
cases, a miniscule change such as moving one or a few atoms
from being 15.6 Å from the residue to 15.4 Å can abruptly
“switch on” Coulomb interactions worth up to 2.4 pKa units
each. In this particular case, the problem is not so problematic
since we would average the pKa values of the three
configurations to obtain an apparent pKa value. PROPKA3,
on the other hand, finds Glu 73 to be 71%, 72%, and 72%
buried and Lys 27 to be 32, 33, and 23% buried for each
model structure, and includes the Coulomb interaction with
a pair-weight of 52%, 53%, and 48% for each model
structure and gives pKa values of 5.2, 5.2, and 5.3 and 10.9,
10.9, and 10.6, respectively.

A more common and more severe manifestation, however,
is when making mutations or adding/removing ligands close
to ionizable residues. This can easily change the heavy-atom
count within a fixed radius for residues in the vicinity of the
mutation; for example, a single mutation G f R adds 7
heavy atoms. It should also be noted that this inconsistent
treatment of surface and internal residues would most likely
give severe problems when improving the geometry by using
a rotational library or Monte Carlo configuration searches
since it creates discontinuous jumps in the scoring function.

Parameterization. Part of the new parametrization strat-
egy is to fit the PROPKA parameters to fewer, in most cases
uncomplicated, and more trusted experimental pKa values.
To avoid the more difficult ionizable groups in the para-

∆pKa,i
HB ) {cHB if rij e rmin

cHB ·
rij - rmin

rmax - rmin
if rmin < rij < rmax

0 if rij g rmax

(18)
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metrization might seem a bit counterintuitive since improving
these would also improve our agreement with experiment
the most (lower the rmsd), but if the ionization process
involves interaction changes that we do not include in our
model, we could introduce significant inconsistencies and
cover up problems. This seems to have been the case with
previous versions of PROPKA. Such cases could include
parametrizing against coupled residues where it is even
difficult to assign experimental pKa values to individual
residues or using poor structures with significant errors
(including crystal effects). Thus, we avoid ionizable residues
with seemingly unorthodox interactions, residues whose
titration is strongly coupled with nearby residues, multichain
proteins, and proteins where we cannot find a reasonable
X-ray structure (we avoid NMR structures since they
generally seem to give poorer agreement with experiments28).
Likewise, pKa values that are known by upper or lower
bounds seem less reliable since in fact we do not know the
pKa values of these and do not know what error we are
making for them. Our goal is to make as general interactions
as possible and to avoid exceptions that in effect only impact
very few buried residues and therefore can be seen as
adjusting individual points. It is quite conceivable that such
exceptions and overparameterization could in fact be con-
tributing to the low rmsd initially reported for PROPKA and
in part behind some of the problematic residues reported.17

The effective perturbations described in the previous
section use two sets of parameters: nonadjustable descriptors
that describe a property or cutoff value of the system
(compiled in Table 1), and adjustable parameters that directly
determine the contribution to the pKa values (compiled in
Table 2). The latter fitted parameters are then obtained by
modifying their value to give a reasonable representation of
the training set consisting of 85 ionizable Asp and Glu
residues from the compilation of Forsyth et al.29 and Song
et al.30 (compiled in tables S4 and S5 in Supporting
Information) and a low rmsd compared to experiment. Thus,
we have not automatically minimized the rmsd since we find

that doing so give outliers unreasonably large weight and
return seemingly untenable parameters, which probably
comes from having too few pKa values with reliable X-ray
structure. In addition to these 85 training residues, we
acknowledge that our participation in the pKa cooperative31

and especially 20 Asp and Glu residues from what we term
the Telluride data set has willingly or unwillingly affected
the way we have defined and obtained the perturbations.

Aspartic and Glutamic Acids. Even though the training
set cannot tell us what accuracy to expect from our new
approach, it does provide a first indication how well
PROPKA3 predicts Glu and Asp pKa values compare to
PROPKA2. As it turns out, the overall performance is very
similar when compared for the 85-residue training set: the
rmsd is 0.59 and 0.56 respectively. This correspondence with
experiment seems exceptionally good, but we should keep
in mind that we have chosen this data set to be uncompli-
cated. Never the less, the rmsd for the Null model, that is,
setting all protein pKa shifts to 0 and therefore all pKa values
to its model value (3.8 for Asp and 4.5 for Glu), provides a
useful metric for assessing the quality of a particular data
set. In this case, we obtain 0.89, which seems to be moderate,
and find 26% of the residues being shifted by more than 1
pH unit. To get a better validation we need to consider
another test set, but before we do that, we find it useful to
assess the result closer.

A more detailed analysis of the outcome is provided by
Figure 3, which shows the error distribution (as the error
fraction of a given error limit) for the pKa values in a
convenient way. The dashed black lines depict the expected
error fractions for a set of pKa values whose error is given
by a normal distribution with a standard deviation of 0.5,
1.0, and 1.5 (from left to right). By inspection, we can see
that the red and green lines follow reasonably well the dashed

Table 1. Nonadjustable Parameters and Descriptors

interaction type/use parameter value

Coulomb buried ratio RC
a 15.0

buried ratio NMin 280
buried ratio NMax 560
w(r) rMin 4.0
w(r) rMax 10.0

desolvation VDW volume VC 20.58
VDW volume VC4 38.79
VDW volume VN 15.60
VDW volume VO 14.71
VDW volume VS 24.43

a Contact radius.

Table 2. Fitted PROPKA3 Parameters

interaction parameter value

Coulomb εsurface 30
εburied 160

desolvation csurface 3.375
cburied 13.5

intrinsic electrostatics cHB 0.85
cRE 0.80

Figure 3. Error-fraction plot shows that predictions with
PROPKA3 are comparable to PROPKA2 for the training set
of 85 Asp and Glu pKa values. The plot shows the error
fraction for a given error limit (red: PROPKA3 and green:
PROPKA2); for example, it can be seen that 9% of the points
have an error >1 pH unit. For comparison the black solid line
shows the predictions using the Null-model, and the dashed
black lines show the error fraction corresponding to a normal
distribution with standard deviations of 0.5, 1.0, and 1.5
(starting from bottom left corner). The inset shows a traditional
scatter plot with the black solid line representing pKa

calcd )
pKa

exp and black dashed lines pKa
calcd ) pKa

exp ( 1.
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line corresponding to standard deviation 0.5 as expected from
rmsd values of 0.59 and 0.56. Moreover, we can get the
expected fraction of points with an error worse than any
given acceptable limit. For instance, from the red line, we
see that 9% of the pKa values has an error larger than 1 pH
unit for PROPKA3, whereas the corresponding value for
PROPKA2 is 7%. From the inset scatter plot, it can also be
verified in a traditional way that the two distributions indeed
seem very similar. Obviously, we have not learnt more about
pKa values by comparing our result with normal distributions;
however, the graph provides a more consistent and unbiased
view on the result. For instance, frequently results are
presented in terms of the percentage of points having an error
<1 pH unit, for example, in a recent study PROPKA was
found to have 88% within 1 pKa unit error.15 This number
is clearly useful, but there is a reasonable risk that considering
only one (or a few) limits could give a misleading view on
one method over another; for example, if one method has
more outliers than another but does better for the majority
of points, choosing a relatively small limit favors that method
whereas choosing a relatively large acceptable error disfavors
it. As can be seen from this plot in Figure 3, choosing the
limit close to 0.4 pH units gives 55% and 46% for PROPKA3
and PROPKA2, respectively, whereas choosing a limit of
0.75 pH units gives 76% and 84% respectively. In our view,
there is no significant difference in accuracy based on this
data set between these two versions. For the limit 1 pH unit,
there is no problem, since we get 91% and 93%, respectively,
which correctly reflect the similarity, but chances may be
that a biased behavior occurs at this point, and clearly
routinely choosing a value might lead to misleading percent-
ages. Regardless of the outcome, presenting the error as in
Figure 3 gives the entire picture and the expected error
fraction can easily be read for any limit. Judging from the
rmsd and the error-fraction curves, both PROPKA versions
perform significantly better than the Null model.

A better test set can be conceived by combining the
previous test sets compiled in studies by Forsyth et al.,29

Stanton and Houk,16 and Song et al.30 and again exclude
those titrations that are determined by upper or lower bounds,
those deemed ambiguous assignment (in Song et al.), and
proteins where we only find NMR structures but include
those that were found to have unorthodox interactions or
otherwise difficult. Also the 85 pKa values in the training
set are included in this data set, which, though it does not
follow traditional test-set philosophy, we think is reasonable
when comparing to PROPKA2 since PROPKA2 was pa-
rametrized using 314 pKa values, and the study did not make
any distinction between training set and test set. Thus, setting
up a fictitious “test set” that has been included when
parametrizing one version but not the other will clearly bias
the evaluation. For the resulting 201 Asp and Glu residues,
we obtain an rmsd of 0.79, 0.91, and 1.06 for PROPKA3,
PROPKA2, and the Null-model respectively, which show
that PROPKA3 provides a moderate but significant improve-
ment over PROPKA2. The rmsd values are summarized in
Table 3.

Even though obtaining an rmsd below 0.8 (for PROPKA3)
is overall pretty good, it seems from the error-fraction plot

in Figure 4 and the rmsd values in Table 3 that PROPKA
outperforms the Null-model by disappointingly little; the
solid thin black error-fraction curve representing the Null-
model prediction is much closer to the red and green
PROPKA curves than it was for the training set. It seems
obvious that all pKa-predicting methods should outperform
that model. However, it rather reflects a common problem
with pKa benchmarks: a comparatively poor test set. In this
test set, similar to most others, the vast majority of
experimental pKa values is only shifted by -1.5 to 0.5 pH
units and therefore reflects the model pKa value rather than
the ∆pKa

WaterfProtein perturbation.
We also find by comparing the colored error-fraction

curves with the black dashed curves that the error distribu-
tions do not follow the expected errors from a normal
distribution. Instead, there is a larger fraction of residues that
have a larger error. Even though PROPKA generally predicts
pKa values as reliably as other methods, it reveals a major
problem for empirical pKa predictors; they probably rely
more than the more rigorous methods on the quality of the
data set, and not surprisingly, it has been found that PROPKA
did especially well for surface residues.15

We also find that much of the improvement comes from
reducing the number of outliers; looking at the scatter-plot
inset to the error fraction plot presented in Figure 4, we find
that PROPKA2 has two extreme outliers, Asp 73 in barnase
and Glu 178 in Bacillus agaradhaerens xylanase, whereas
the outliers for PROPKA3 are much less pronounced. This
is indeed also verified by the rmsd 0.73, 0.79, and 1.03 we
instead get if we reduce the data set with four residues (the
two worst for each version). However, from the error fraction
in figure 4 we can see that PROPKA3 (red curve) is slightly
better than PROPKA2 (green curve) for the entire range of

Table 3. rmsd Summarized for Each Residue Type

COO ASP GLU TYR LYS HIS

pKa values 201 101 100 11 51 30
PROPKA 3 0.79 0.77 0.80 0.75 0.65 1.00
PROPKA 2 0.91 0.94 0.87 0.97 0.72 1.37
Null-model 1.06 1.23 0.86 0.70 1.01 0.93

Figure 4. Error-fraction plot shows that PROPKA3 (red) is
an overall improvement compared to PROPKA2 (green) using
all 201 Asp+Glu residues considered in this study; this is also
confirmed by the rmsd of 0.79 and 0.91, respectively.
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error limits, which indicates that the improvement cannot
necessarily be attributed to fewer outliers.

If we instead of using all 201 pKa values follow more
traditional test-set philosophy and remove the 85-point
training set from the test set, the rmsd increases to 0.86, 1.08,
and 1.17 for PROPKA3, PROPKA2, and the Null-model.
This seems to be only a moderate increase for PROPKA3,
whereas it is more significant for PROPKA2. This seems
quite counterintuitive since many of these residues have been
included in parametrizing PROPKA2 but not PROPKA3.
However, this reduces the size of the test set significantly
and is therefore uncertain how statistically significant these
number dissections are, which is why we prefer relying on
the extended test set. Never the less, obtaining clearly better
rmsd for PROPKA3 for a test set depleted of uncomplicated
residues and enriched with difficult, and generally biased
toward PROPKA2, again underlines that PROPKA3 is really
a significant improvement over PROPKA2.

In this study, we have not made an effort separating
between Asp and Glu residues since we believe the system-
atic error between the two is probably much smaller than
the error for the individual Asp or Glu residues, but we note
that the rmsd is 0.77 (101 residues) for Asp and 0.80 (100
residues) for Glu residues using PROPKA3. This cor-
roborates that the accuracy is not significantly different
between these residues as suggested by the studies of Stanton
et al.16 and Song et al.30 (we obtain 0.78 (89) for Asp and
0.82 (94) for Glu using the data set in Song et al). Instead,
the corresponding rmsd for the Null-model, 1.23 and 0.86
(1.28 and 0.84 for the Song et al data set), indicates that the
data set for Asp contains far more shifted residues than that
of Glu and is therefore inherently more difficult to predict.
This further illustrates the importance of having comparable
data sets when making validation comparisons.

Specific Residues. Asp 75 in Barnase: As was discussed
previously,17 PROPKA2 predicts Asp 75 in barnase to have
a pKa value of -1.2, giving an error of 4.3 pH units
compared to the experimental 3.1. This was attributed to a
possible miss-assignment with Asp 54. PROPKA3, however,

predicts this pKa value to be close to 4.8, which is in much
better agreement with experiment, but instead overshooting
it with 1.7 pH units. The difference between these extremes
can be traced to the larger, and more realistic, desolvation
contribution from the close Arg 83, Arg 87 and Ile 51
residues. In PROPKA2, the residue is identified as buried,
and experiences the full lowering of pKa from the Arg
residues (2 × 2.4 pH units), but only a small part of the
desolvation penalty, whereas these contributions are better
balanced in PROPKA3 (see figure 5A). This is a good
example of the challenge to get the balance between
electrostatic solvation and the desolvation penalty correctly
(this residue was not included in the PROPKA3 training set).

Glu 178 and Glu 17 in Bacillus agaradhaerens Xylanase:
Glu 178 was also found to have an extreme pKa value of
-0.4, giving it an error of 4.5 pH units compared to the
observed 4.1. In this case, the error was attributed to local
structural distortions by a ligand sugar. However, PROPKA3
predicts the pKa value to be close to 3.6, which again is in
much better agreement with experiment. Again, the discrep-
ancy can be traced to the desolvation contribution by nearby
Lys 53, Arg 49, Tyr 177, and Ala 180 residues (see Figure
5B). Also here PROPKA2 identifies the residue as buried,
and it experiences the full lowering of the close Lys and
Arg residues but only a small part of the desolvation penalty.
The same improved behavior is seen for the nearby Glu 17,
where the pKa value is predicted to be 1.7 with PROPKA2,
whereas the 4.2 obtained with PROPKA3 is much closer to
the experimental 4.3. Again, the same Lys and Arg residues
lowers the pKa value for PROPKA2 but is not compensated
for correctly by the desolvation penalty.

Asp 76 in RNase T1: Asp 76 in RNase T1 is predicted to
be 3.5, which makes it the residue with the largest error for
PROPKA3 in this study (compared to 0.5 for the experi-
ment). This large error is difficult to rationalize using pdbfiles
1I0V and 1RGA, but we note that there is a nearby disulfide
bridge, and since the titration experiment has been conducted
in a low-pH environment (0.5), it seems reasonable that the
large discrepancy could come from using a neutral-pH

Figure 5. The figure shows the most important interactions identified by PROPKA3 determining the pKa value of (A) Glu 75 in
Barnase, (B) Glu 17 and Glu 178 in Bacillus agaradhaerens xylanase, (C) Asp 79 in RNase SA, and (D) Glu 73 in Barnase as
discussed in the text. Hydrogen bonds are depicted by dashed lines and Coulomb interactions are indicated by solid lines. A:
Hydrogen bonds with Arg 83 lowers the pKa value of Glu 75 by 1.0 pH unit and Coulomb interactions with Arg 83 and Arg 87
by 0.9 pH units each. B: The Coulomb interaction with Arg 49 lowers the pKa value of Glu 17 by 1.7 pH units, and the interaction
with Lys 53 lowers it by 1.9 pH units (0.9 from hydrogen bond and 1.0 from Coulomb). Interactions with Arg 49 lowers the pKa

value of Glu 178 with 2.9 pH units (0.9 and 2.0) and Lys 53 lowers it with 2.5 pH units (0.8 and 1.7). C: Desolvation from nearby
hydrophobic residues raises the pKa value of Asp 79; an unfavorable interaction with Gln 94 probably raises the pKa further
making it more similar to the experimental value. D: A hydrogen bond from Tyr 103 lowers the pKa value of Glu 73 by 0.9 pH
units, and Coulomb interactions with Lys 27, Arg 83, and Arg 87 lowers it further by 0.5, 0.4, and 0.4 pH units.
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structure when the experiment titration represents a low-pH
environment without an SS-bond. A broken SS-bond would
probably result in additional stabilization of the ionized form
of the acid and lower its pKa values. We also note that the
PROPKA2 prediction is only slightly better, 2.8, and MCCE2
obtains similar unshifted pKa values as we do, 4.1.30

Asp 79 in RNase SA: Asp 79 in RNase SA is predicted to
have a pKa value of 5.7, which is a 1.6 pH-unit underestimate
compared to the experimental 7.3. The significant upshift in
pKa comes predominantly from the desolvation contribution
from the local hydrophobic region formed by Leu 19, Thr
72, Ile 70, and Ile 22. However, inspecting the pdbfile one
finds also an unfavorable side-chain amide CO interaction
from Gln 94 pointing directly toward the acid (see Figure
5C). These types of interactions are presently not included
in the PROPKA rules and undoubtedly this interaction make
up parts of the pKa discrepancy (we get about 0.5 pH units
using the parameters for the backbone ∆pKa

RE term).

Glu 73 in Barnase: Three close bases surround Glu 73 in
barnase: Lys 27, Arg 87, and Arg 83 (at 4.6, 6.3, and 6.4 Å
distance, see Figure 5D). Intuitively, it seems that a residue
in this environment would have a significantly downshifted
pKa value because of the charge-charge stabilization, which
is confirmed by an experimental pKa of 2.2. However,
PROPKA3 seem to underestimate these close Coulomb
interactions (or possibly overestimate the desolvation) and
we obtain 5.1; both MCCE2 and PROPKA2 predict the pKa

to be 2.1.

Glu 94 and Glu 184 in Bacillus agaradhaerens Xylanase:
PROPKA3 and PROPKA2 predict the pKa value of these
residues to be 6.1 and 7.4 and 4.9 and 7.2, whereas it is
found to be 3.9 and 6.5 experimentally. Even though both
versions identify the catalytic residues as nucleophile and
acid correctly, PROPKA2 is closer to their experimental
values. However, the differences in determinants are not as
significant as the pKa values might imply; overall they are
similar, but the desolvation is 0.6 pH units larger and the
hydrogen bonds from Tyr 85, Tyr 96 and Gln 143 is together
0.7 pH units smaller. A possible source of error in PROPKA3
could be the Coulomb interactions with two nearby bases,
that is, Arg 49 and Arg 129. Considering that the active-site
region is buried and contains two tyrosine, two tryptophan,
and at least one phenylalanine residue, it seems also plausible
that the effective dielectric constant should be smaller than
what we use (30) and the Coulomb interaction between the
acids and bases therefore larger. This would lower the pKa

values of both catalytic acids.

As we have gone through the Asp and Glu acids that give
PROPKA3 the biggest errors, it seems that much of the
problems might be attributed to a too small Coulomb
interaction with nearby bases, which typically leads to an
over estimation of down-shifted pKa values. The simplest
remedy to this would be to reduce the dielectric constant.
However, it was found that reducing ε to 20 and 80 resulted
in worse rmsd for the training set, and as can be seen from
Figure 4 most residues are well accounted for by εburied )
30 and εsurface ) 160; the exception is a number of down-
shifted pKa values. Including some of these residues in the

training set and refitting ε would clearly improve our model,
however, it would also reduce the value of our test set.

Tyrosine, Lysine, and Histidine. Even though the focus
in this study is on carboxylic acids, we also briefly assess
the expected accuracy for predicting Tyr, Lys, and His pKa

values. If we use the experimental compilation of Song et
al30 and Stanton et al16 and remove pKa values that are
determined to an upper and lower-limit, those deemed
ambiguous assignment, and those where we only find NMR
structures, we obtain 11 Tyr residues, 51 Lys residues, and
31 His residues. The error distribution for these data sets
can be found in figures S4-S6 in the Supporting Information.
For Tyr, the 11 residues result in an rmsd of 0.75, 0.97, and
0.70 for PROPKA3, PROPKA2, and the Null-model respec-
tively. It may seem unfortunate that the Null-model has the
lowest rmsd. However, in this case it reflects a rather poor
test set whose residues are predominantly unshifted from their
model values. For such a data set even the most accurate
prediction methods would have problems out performing the
Null-model. The only conclusion that seems reasonable at
this point is that PROPKA3 represents a significant improve-
ment compared with PROPKA2.

For the 51 Lys residues, we obtain an rmsd of 0.65, 0.72,
and 1.01 for PROPKA3, PROPKA2, and the Null-model
respectively. In this case we have significantly more points
that covers a larger range, especially with the two mutations
V66K and M102K (in the mutant C54T/C97A/M102K) in
staphylococcal nuclease and RNase T1 where the residues
have been buried in hydrophobic patches in the protein and
therefore have 4 pH-unit down-shifted pKa values. As
expected, the rmsd of the Null-model is much worse when
including these significantly shifted residues. Removing these
points result in an rmsd of 0.65, 0.68, and 0.64, showing
that much of the difficulty comes from these two residues.
Never the less, we can also for Lys see an improvement for
PROPKA3 compared to PROPKA2. From the inset scatter
plot in figure S7, it can be seen that PROPKA2 predicts all
Lys pKa shifts to be negative. This comes from omitting the
hydrogen-bond interactions with neighboring protein resi-
dues, thus, only including desolvation and Coulomb contri-
butions. Since Lys is typically found close to the protein
surface and PROPKA2 does not include surface Coulomb
contributions, the pKa shift is effectively determined by the
desolvation penalty alone. Thus, the important balance
between desolvation and protein resolvation is overturned
resulting in these unrealistic predictions. In PROPKA3,
however, all terms are included consistently, albeit param-
etrized for carboxylic acids, which results in an overall better
physical description and a slightly better rmsd; part of this
should probably also be attributed to the improved desol-
vation model.

For the 31 His residues, we obtain an overall rmsd of 1.00,
1.35, and 0.92 for PROPKA3, PROPKA2, and the Null-
model, respectively. Before looking closer at His, however,
it should be noted that we have in addition to the above
criteria also excluded the residues coming from myoglobin
from this data set since the large heme-ligand can presumably
have significant influence on the pKa value or structure and
PROPKA3 cannot treat ligands yet. Much of the difference
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in rmsd between PROPKA3 and PROPKA2 can be traced
to four slightly downshifted pKa values (experimental pKa

shift -0.5 to -0.2) that PROPKA2 greatly overestimate
(calculated pKa-shift -4.6 to -2.0). These are all buried
residues that in PROPKA2 use the special extended radius
for calculating the local desolvation, which seem to be greatly
overestimated. The improved desolvation model in
PROPKA3, on the other hand, seems to treat the desolvation
penalty more balanced and predict the pKa values much
better. PROPKA3, on the other hand, seem to underestimate
stabilizing interactions for three residues: the pKa values of
His 12 in RNase A, His 31 in Lysozyme T4, and His 53 in
RNase SA are all underestimated by 2-2.5 pH units. Judging
from these 31 residues, it seems that PROPKA3 is a
significant improvement over PROPKA2. However, consid-
ering the better rmsd for the Null-model and the generally
very spread out scatter plot, we can only conclude that His
residues continue to be a challenge for PROPKA and their
rules needs to be revised at some point. Saying this, one
should also keep in mind that these parameters have been
obtained for carboxylic acids, and predicting His pKa values
is probably inherently much more difficult since the charge
is much more delocalized and there are two potential titration
sites.

Comparing to Other pKa Predictors. Clearly, it is not
straightforward to compare different pKa predictors and
validate them relative each other since it strictly requires us
to compare the rmsd using identical data sets, but two of
the data sets we have included in this study can give us an
indication. If we reevaluate the rmsd values using the 183
Asp and Glu residues we have included from the Song et al.
compilation,30 we obtain rmsd values of 0.80 (PROPKA3),
0.91 (PROPKA2), 0.85 (MCCE2), and 1.08 (Null-model),
and find that the performance is quite similar. If we instead
use the 40 Asp and Glu residues we have included from the
more stringent data set used in Stanton and Houk,16 we obtain
rmsd values of 0.96 (PROPKA3), 1.06 (PROPKA2), 0.74
(microenvironment SCP32), 0.97 (geometry-dependent di-
electric33), 1.15 (MD/GB/TI34), 1.18 (EGAD35), 1.31
(MCCE36), and 1.37 (Null-model). Since this study does not
include all pKa values for all methods when obtaining the
rmsd, we avoid judging the methods further, but conclude
that PROPKA3 is a viable option even when compared to
more rigorous approaches.

Conclusions

The overall goal of this study has been to clean up the ad
hoc parametrization of previous versions of PROPKA and
to treat the physics healthier. This includes using a more
appropriate form of Coulomb interactions and a better model
for desolvation penalties, but the most important achievement
has been to treat all residues consistently without any
discontinuous jumps and generalizing the effective potentials
by minimizing the number of exceptions. The resulting new
version of PROPKA has, not counting model pKa values,
six adjustable parameters (two for Coulomb interactions, two
for desolvation penalties, and two for intrinsic electrostatics)
and was parametrized against a subset of 85 unproblematic
Asp and Glu residues with experimentally known pKa values

and reasonable crystal structures. PROPKA2 had officially
ten corresponding adjustable parameters (one for Coulomb
interactions, two for desolvation penalties, and seven for
hydrogen bonding), and was parametrized against 314
experimental pKa values (many were even included in the
test sets used to determine the accuracy in this study).
However, effectively many of the radii and cutoffs in
PROPKA2 should also be considered as parameters since
they generally are an intricate part of determining the pKa

values and very interaction specific, and were frequently
adjusted based on experimental pKa values. In principle, there
is nothing wrong with using a larger set of parameters; on
the contrary, it is clearly better if the observable requires it,
but in this case many of these seem to have compensated
for an inappropriate model. For the new version, however,
we have improved the model and based these radii on
structure observations and unbiased descriptors rather than
values adjusted to improve experimental data points.

In an ideal world where we have a “correct” ensemble of
protein structures in their protein + water solvent (i.e., not
from a crystal), we could most likely reduce these to three
(one for each interaction type). If we indeed had such a
situation, though, we would on the other hand considered it
justified to parametrize the hydrogen bonding interactions
individually, for example, for the ROH, CONH, NH, and
SH interactions, since hydrogen bonding abilities are clearly
different. When we arrive at that, we will probably see an
increase in accuracy, but as long as we do not have better
structures and more experimental values, there seem to be
little use in diversifying the parameters. In fact, obtaining
an rmsd close to 0.6 for the training set and 0.79 for the
largest test set should in many aspects be considered better
than expected; approximations such as using a minimum
protein model and not including protein reorganization
explicitly seems intuitively to be rather crude. The results
are nevertheless encouraging. It should also in this context
be noted that much of the success for PROPKA as a pKa

predictor tool does not lie in its functions being better or
more accurate. Instead, it lies in that it tries to predict the
bare minimum, is comparatively insensitive, and utilizes
cancelation of errors efficiently. In fact, most other pKa

predictors are clearly more rigorous and can therefore be
seen as having better rules. However, as these methods try
to predict things rigorously, the larger are the effects involved
and the bigger is the potential to over or underestimate their
values. Finally, it should also be recognized that the most
important parameter in virtually all current pKa predicting
programs is actually the reference model value pKa

Water.
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